Multifunctional Membranes—A Versatile Approach for Emerging Pollutants Removal
Abstract
:1. Introduction
2. Emerging Pollutants
2.1. Classification
- -
- Persistent organic pollutants (POPs) from flame retardants, furniture foam, plastics, etc.;
- -
- Pharmaceuticals and personal care products (PPCPs) from prescribed drugs (antidepressants, blood pressure, etc.) to over-the-counter medications (ibuprofen, acetaminophen, etc.), as well as bactericides (such as triclosan), sunscreens, and synthetic musks;
- -
- Veterinary medicines such as antimicrobials, antibiotics, antifungals, and growth hormones;
- -
- Endocrine-disrupting chemicals (EDCs), including synthetic estrogens and androgens, and naturally occurring estrogens, along with organochlorine pesticides and alkylphenols, well-known to alter normal hormonal functions and steroidal synthesis in aquatic organisms;
- -
- Nanomaterials such as carbon nanotubes or nano-scale particulate titanium dioxide, with little being known about either their environmental fate or effects.
2.2. Environmental Impact
3. Membranes
3.1. Treatment Technologies for Electrospun Functional Membranes
3.2. Dense (Non-Porous) Membranes
3.3. Porous Membranes
4. Electrospinning Technique
4.1. Principles, Characteristics, Parameters
4.2. Materials
4.2.1. Polymers
4.2.2. Composites Using Carrier Polymers as Substrate
4.3. Performances of Electrospun Materials Used for Adsorption and Advanced Degradation Processes
4.4. Performances of Electrospun Materials Integrated into Separation Membranes Processes
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Sakib, M.N.; Mallik, A.K.; Rahman, M.M. Update on chitosan-based electrospun nanofibers for wastewater treatment: A review. Carbohydr. Polym. Technol. Appl. 2021, 2, 100064. [Google Scholar] [CrossRef]
- Dharupaneedi, S.P.; Nataraj, S.K.; Nadagouda, M.; Reddy, K.R.; Shukla, S.S.; Aminabhavi, T.M. Membrane-based separation of potential emerging pollutants. Sep. Purif. Technol. 2019, 210, 850–866. [Google Scholar] [CrossRef]
- Deblonde, T.; Cossu-Leguille, C.; Hartemann, P. Emerging pollutants in wastewater: A review of the literature. Int. J. Hyg. Environ. Health 2011, 214, 442–448. [Google Scholar] [CrossRef] [PubMed]
- Stuart, M.A.C.; Huck, W.T.S.; Genzer, J.; Mueller, M.; Ober, C.; Stamm, M.; Sukhorukov, G.B.; Szleifer, I.; Tsukruk, V.V.; Urban, M.; et al. Emerging applications of stimuli-responsive polymer materials. Nat. Mater. 2010, 9, 101–113. [Google Scholar] [CrossRef]
- Nasseri, S.; Ebrahimi, S.; Abtahi, M.; Saeedi, R. Synthesis and characterization of polysulfone/graphene oxide nano composite membranes for removal of bisphenol A from water. J. Environ. Manag. 2018, 205, 174–182. [Google Scholar] [CrossRef] [PubMed]
- Gilca, A.F.; Teodosiu, C.; Fiore, S.; Musteret, C.P. Emerging disinfection byproducts: A review on their occurrence and control in drinking water treatment processes. Chemosphere 2020, 259, 127476. [Google Scholar] [CrossRef]
- Jones, O.A.H.; Voulvoulis, N.; Lester, J.N. Human pharmaceuticals in wastewater treatment processes. Crit. Rev. Environ. Sci. Technol. 2005, 35, 401–427. [Google Scholar] [CrossRef]
- Geissen, V.; Mol, H.; Klumpp, E.; Umlauf, G.; Nadal, M.; Van der Ploeg, M.; Van de Zee, S.E.; Ritsema, C.J. Emerging pollutants in the environment: A challenge for water resource management. Int. Soil Water Conserv. Res. 2015, 3, 57–65. [Google Scholar] [CrossRef]
- Available online: www.norman-network.net (accessed on 11 November 2021).
- Vasilachi, I.C.; Asiminicesei, D.M.; Fertu, D.I.; Gavrilescu, M. Occurrence and fate of emerging pollutants in water environment and options for their removal. Water 2021, 13, 181. [Google Scholar] [CrossRef]
- Stone, V.; Donaldson, K. Signs of stress. Nat. Nanotechnol. 2006, 1, 23–24. [Google Scholar] [CrossRef]
- Ankley, G.; Hoff, D.; Mount, D.; Lazorchak, J.; Beaman, J.; Linton, T.; Erickson, R. Aquatic Life Criteria for Contaminants of Emerging Concern; Prepared by the Office of Water and Office of Research and Development Emerging Contaminants Workgroup; US Environmental Protection Agency: Washington, DC, USA, 2008; Part I; pp. 1–46.
- Kaur, H.; Hippargi, G.; Pophali, G.R.; Bansiwal, A.K. Treatment methods for removal of pharmaceuticals and personal care products from domestic wastewater. In Pharmaceuticals and Personal Care Products: Waste Management and Treatment Technology; Elsevier: Amsterdam, The Netherlands, 2019; pp. 129–150. [Google Scholar]
- Petrie, B.; Barden, R.; Kasprzyk-Hordern, B. A review on emerging contaminants in wastewaters and the environment: Current knowledge, understudied areas and recommendations for future monitoring. Water Res. 2015, 72, 3–27. [Google Scholar] [CrossRef]
- Gavrilescu, M.; Demnerová, K.; Aamand, J.; Agathos, S.; Fava, F. Emerging pollutants in the environment: Present and future challenges in biomonitoring, ecological risks and bioremediation. New Biotechnol. 2015, 32, 147–156. [Google Scholar] [CrossRef]
- Gogoi, A.; Mazumder, P.; Tyagi, V.K.; Chaminda, G.T.; An, A.K.; Kumar, M. Occurrence and fate of emerging contaminants in water environment: A review. Groundw. Sustain. Dev. 2018, 6, 169–180. [Google Scholar] [CrossRef]
- Tang, Y.; Yin, M.; Yang, W.; Li, H.; Zhong, Y.; Mo, L.; Liang, Y.; Ma, X.; Sun, X. Emerging pollutants in water environment: Occurrence, monitoring, fate, and risk assessment. Water Environ. Res. 2019, 91, 984–991. [Google Scholar] [CrossRef] [Green Version]
- Cycoń, M.; Mrozik, A.; Piotrowska-Seget, Z. Antibiotics in the soil environment—Degradation and their impact on microbial activity and diversity. Front. Microbiol. 2019, 10, 338. [Google Scholar] [CrossRef]
- Kraemer, S.A.; Ramachandran, A.; Perron, G.G. Antibiotic pollution in the environment: From microbial ecology to public policy. Microorganisms 2019, 7, 180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taheran, M.; Naghdi, M.; Brar, S.K.; Verma, M.; Surampalli, R.Y. Emerging contaminants: Here today, there tomorrow! Environ. Nanotechnol. Monit. Manag. 2018, 10, 122–126. [Google Scholar] [CrossRef]
- Richardson, S.D. Water analysis: Emerging contaminants and current issues. Anal. Chem. 2009, 81, 4645–4677. [Google Scholar] [CrossRef]
- Suárez, S.; Carballa, M.; Omil, F.; Lema, J.M. How are pharmaceutical and personal care products (PPCPs) removed from urban wastewaters? Rev. Environ. Sci. Bio/Technol. 2008, 7, 125–138. [Google Scholar] [CrossRef]
- Tondera, K.; Blecken, G.-T.; Tournebize, J.; Viklander, M.; Österlund, H.; Wikström, A.A.; Tanner, C.C. Emerging contaminants: Occurrence, treatment efficiency and accumulation under varying flows. In Ecotechnologies for the Treatment of Variable Stormwater and Wastewater Flows; Springer: Berlin/Heidelberg, Germany, 2018; pp. 93–109. [Google Scholar]
- Radjenović, J.; Petrović, M.; Ventura, F.; Barceló, D. Rejection of pharmaceuticals in nanofiltration and reverse osmosis membrane drinking water treatment. Water Res. 2008, 42, 3601–3610. [Google Scholar] [CrossRef]
- Anastasi, A.; Spina, F.; Romagnolo, A.; Tigini, V.; Prigione, V.; Varese, G.C. Integrated fungal biomass and activated sludge treatment for textile wastewaters bioremediation. Bioresour. Technol. 2012, 123, 106–111. [Google Scholar] [CrossRef] [PubMed]
- Tadkaew, N.; Hai, F.I.; McDonald, J.A.; Khan, S.J.; Nghiem, L.D. Removal of trace organics by MBR treatment: The role of molecular properties. Water Res. 2011, 45, 2439–2451. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, M.B.; Zhou, J.L.; Ngo, H.H.; Guo, W.; Thomaidis, N.S.; Xu, J. Progress in the biological and chemical treatment technologies for emerging contaminant removal from wastewater: A critical review. J. Hazard. Mater. 2017, 323, 274–298. [Google Scholar] [CrossRef] [PubMed]
- Grandclément, C.; Seyssiecq, I.; Piram, A.; Wong-Wah-Chung, P.; Vanot, G.; Tiliacos, N.; Roche, N.; Doumenq, P. From the conventional biological wastewater treatment to hybrid processes, the evaluation of organic micropollutant removal: A review. Water Res. 2017, 111, 297–317. [Google Scholar] [CrossRef] [Green Version]
- Ferrando-Climent, L.; Gonzalez-Olmos, R.; Anfruns, A.; Aymerich, I.; Corominas, L.; Barceló, D.; Rodriguez-Mozaz, S. Elimination study of the chemotherapy drug tamoxifen by different advanced oxidation processes: Transformation products and toxicity assessment. Chemosphere 2017, 168, 284–292. [Google Scholar] [CrossRef] [PubMed]
- Von Gunten, U. Ozonation of drinking water: Part II. Disinfection and by-product formation in presence of bromide, iodide or chlorine. Water Res. 2003, 37, 1469–1487. [Google Scholar] [CrossRef]
- Cruz-Morató, C.; Lucas, D.; Llorca, M.; Rodriguez-Mozaz, S.; Gorga, M.; Petrovic, M.; Barceló, D.; Vicent, T.; Sarrà, M.; Marco-Urrea, E. Hospital wastewater treatment by fungal bioreactor: Removal efficiency for pharmaceuticals and endocrine disruptor compounds. Sci. Total Environ. 2014, 493, 365–376. [Google Scholar] [CrossRef]
- Miralles-Cuevas, S.; Oller, I.; Agüera, A.; Llorca, M.; Pérez, J.S.; Malato, S. Combination of nanofiltration and ozonation for the remediation of real municipal wastewater effluents: Acute and chronic toxicity assessment. J. Hazard. Mater. 2017, 323, 442–451. [Google Scholar] [CrossRef]
- Riaz, T.; Ahmad, A.; Saleemi, S.; Adrees, M.; Jamshed, F.; Hai, A.M.; Jamil, T. Synthesis and characterization of polyurethane-cellulose acetate blend membrane for chromium (VI) removal. Carbohydr. Polym. 2016, 153, 582–591. [Google Scholar] [CrossRef]
- Zhao, K.; Kang, S.-X.; Yang, Y.-Y.; Yu, D.-G. Electrospun functional nanofiber membrane for antibiotic removal in water. Polymers 2021, 13, 226. [Google Scholar] [CrossRef]
- Liu, X.; Yang, Y.; Yu, D.-G.; Zhu, M.-J.; Zhao, M.; Williams, G.R. Tunable zero-order drug delivery systems created by modified triaxial electrospinning. Chem. Eng. J. 2019, 356, 886–894. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Li, W.; Yu, D.-G.; Wang, G.; Williams, G.R.; Zhang, Z. Tunable drug release from nanofibers coated with blank cellulose acetate layers fabricated using tri-axial electrospinning. Carbohydr. Polym. 2019, 203, 228–237. [Google Scholar] [CrossRef] [PubMed]
- Sagitha, P.; Reshmi, C.; Sundaran, S.P.; Sujith, A. Recent advances in post-modification strategies of polymeric electrospun membranes. Eur. Polym. J. 2018, 105, 227–249. [Google Scholar] [CrossRef]
- An, S.; Jeon, B.; Bae, J.H.; Kim, I.S.; Paeng, K.; Kim, M.; Lee, H. Thiol-based chemistry as versatile routes for the effective functionalization of cellulose nanofibers. Carbohydr. Polym. 2019, 226, 115259. [Google Scholar] [CrossRef]
- Qin, D.; Lu, W.; Wang, X.; Li, N.; Chen, X.; Zhu, Z.; Chen, W. Graphitic carbon nitride from burial to re-emergence on polyethylene terephthalate nanofibers as an easily recycled photocatalyst for degrading antibiotics under solar irradiation. ACS Appl. Mater. Interfaces 2016, 8, 25962–25970. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, F.E.; Lalia, B.S.; Hashaikeh, R. A review on electrospinning for membrane fabrication: Challenges and applications. Desalination 2015, 356, 15–30. [Google Scholar] [CrossRef]
- Ulbricht, M. Advanced functional polymer membranes. Polymer 2006, 47, 2217–2262. [Google Scholar] [CrossRef] [Green Version]
- Ravanchi, M.T.; Kaghazchi, T.; Kargari, A. Application of membrane separation processes in petrochemical industry: A review. Desalination 2009, 235, 199–244. [Google Scholar] [CrossRef]
- Drioli, E.; Giorno, L. Encyclopedia of Membranes; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Hai, F.I.; Nghiem, L.D.; Modin, O. Biocatalytic membrane reactors for the removal of recalcitrant and emerging pollutants from wastewater. Handb. Membr. React. 2013, 763–807. [Google Scholar] [CrossRef]
- Fitch, M.; Neeman, J.; England, E. Mass transfer and benzene removal from air using latex rubber tubing and a hollow-fiber membrane module. Appl. Biochem. Biotechnol. 2003, 104, 199–214. [Google Scholar] [CrossRef]
- Sundarrajan, S.; Balamurugan, R.; Kaur, S.; Ramakrishna, S. Potential of engineered electrospun nanofiber membranes for nanofiltration applications. Dry. Technol. 2013, 31, 163–169. [Google Scholar] [CrossRef]
- Vrentas, J.; Vrentas, C. Transport in nonporous membranes. Chem. Eng. Sci. 2002, 57, 4199–4208. [Google Scholar] [CrossRef]
- Geise, G.M.; Lee, H.S.; Miller, D.J.; Freeman, B.D.; McGrath, J.E.; Paul, D.R. Water purification by membranes: The role of polymer science. J. Polym. Sci. Part B Polym. Phys. 2010, 48, 1685–1718. [Google Scholar] [CrossRef]
- Cath, T.Y.; Childress, A.E.; Elimelech, M. Forward osmosis: Principles, applications, and recent developments. J. Membr. Sci. 2006, 281, 70–87. [Google Scholar] [CrossRef]
- McCutcheon, J.R.; Elimelech, M. Influence of membrane support layer hydrophobicity on water flux in osmotically driven membrane processes. J. Membr. Sci. 2008, 318, 458–466. [Google Scholar] [CrossRef]
- Kaur, S.; Sundarrajan, S.; Rana, D.; Matsuura, T.; Ramakrishna, S. Influence of electrospun fiber size on the separation efficiency of thin film nanofiltration composite membrane. J. Membr. Sci. 2012, 392, 101–111. [Google Scholar] [CrossRef]
- Ghosh, A.K.; Hoek, E.M. Impacts of support membrane structure and chemistry on polyamide–polysulfone interfacial composite membranes. J. Membr. Sci. 2009, 336, 140–148. [Google Scholar] [CrossRef]
- Yoon, K.; Kim, K.; Wang, X.; Fang, D.; Hsiao, B.S.; Chu, B. High flux ultrafiltration membranes based on electrospun nanofibrous PAN scaffolds and chitosan coating. Polymer 2006, 47, 2434–2441. [Google Scholar] [CrossRef]
- Kaur, S.; Sundarrajan, S.; Gopal, R.; Ramakrishna, S. Formation and characterization of polyamide composite electrospun nanofibrous membranes for salt separation. J. Appl. Polym. Sci. 2012, 124, E205–E215. [Google Scholar] [CrossRef]
- Tang, Z.; Wei, J.; Yung, L.; Ji, B.; Ma, H.; Qiu, C.; Yoon, K.; Wan, F.; Fang, D.; Hsiao, B.S. UV-cured poly (vinyl alcohol) ultrafiltration nanofibrous membrane based on electrospun nanofiber scaffolds. J. Membr. Sci. 2009, 328, 1–5. [Google Scholar] [CrossRef]
- Wang, X.; Fang, D.; Yoon, K.; Hsiao, B.S.; Chu, B. High performance ultrafiltration composite membranes based on poly (vinyl alcohol) hydrogel coating on crosslinked nanofibrous poly (vinyl alcohol) scaffold. J. Membr. Sci. 2006, 278, 261–268. [Google Scholar] [CrossRef]
- Ma, H.; Burger, C.; Hsiao, B.S.; Chu, B. Fabrication and characterization of cellulose nanofiber based thin-film nanofibrous composite membranes. J. Membr. Sci. 2014, 454, 272–282. [Google Scholar] [CrossRef]
- Hoover, L.A.; Schiffman, J.D.; Elimelech, M. Nanofibers in thin-film composite membrane support layers: Enabling expanded application of forward and pressure retarded osmosis. Desalination 2013, 308, 73–81. [Google Scholar] [CrossRef]
- Song, X.; Liu, Z.; Sun, D.D. Nano gives the answer: Breaking the bottleneck of internal concentration polarization with a nanofiber composite forward osmosis membrane for a high water production rate. Adv. Mater. 2011, 23, 3256–3260. [Google Scholar] [CrossRef] [PubMed]
- Tian, M.; Qiu, C.; Liao, Y.; Chou, S.; Wang, R. Preparation of polyamide thin film composite forward osmosis membranes using electrospun polyvinylidene fluoride (PVDF) nanofibers as substrates. Sep. Purif. Technol. 2013, 118, 727–736. [Google Scholar] [CrossRef]
- Bui, N.-N.; Lind, M.L.; Hoek, E.M.; McCutcheon, J.R. Electrospun nanofiber supported thin film composite membranes for engineered osmosis. J. Membr. Sci. 2011, 385, 10–19. [Google Scholar] [CrossRef]
- Bui, N.-N.; McCutcheon, J.R. Hydrophilic nanofibers as new supports for thin film composite membranes for engineered osmosis. Environ. Sci. Technol. 2013, 47, 1761–1769. [Google Scholar] [CrossRef]
- Lalia, B.S.; Kochkodan, V.; Hashaikeh, R.; Hilal, N. A review on membrane fabrication: Structure, properties and performance relationship. Desalination 2013, 326, 77–95. [Google Scholar] [CrossRef]
- Tijing, L.D.; Choi, J.-S.; Lee, S.; Kim, S.-H.; Shon, H.K. Recent progress of membrane distillation using electrospun nanofibrous membrane. J. Membr. Sci. 2014, 453, 435–462. [Google Scholar] [CrossRef]
- Alkhudhiri, A.; Darwish, N.; Hilal, N. Membrane distillation: A comprehensive review. Desalination 2012, 287, 2–18. [Google Scholar] [CrossRef]
- Shirazi, M.M.A.; Bastani, D.; Kargari, A.; Tabatabaei, M. Characterization of polymeric membranes for membrane distillation using atomic force microscopy. Desalination Water Treat. 2013, 51, 6003–6008. [Google Scholar] [CrossRef]
- Demir, M.M.; Yilgor, I.; Yilgor, E.; Erman, B. Electrospinning of polyurethane fibers. Polymer 2002, 43, 3303–3309. [Google Scholar] [CrossRef]
- Xue, J.; Wu, T.; Dai, Y.; Xia, Y. Electrospinning and electrospun nanofibers: Methods, materials, and applications. Chem. Rev. 2019, 119, 5298–5415. [Google Scholar] [CrossRef] [PubMed]
- GuptaV, B.; Kothari, V. Manufactured Fiber Technology; Springer: Berlin/Heidelberg, Germany, 1997. [Google Scholar]
- Luo, C.; Stoyanov, S.D.; Stride, E.; Pelan, E.; Edirisinghe, M. Electrospinning versus fibre production methods: From specifics to technological convergence. Chem. Soc. Rev. 2012, 41, 4708–4735. [Google Scholar] [CrossRef]
- Lee, S.; Kay Obendorf, S. Developing protective textile materials as barriers to liquid penetration using melt-electrospinning. J. Appl. Polym. Sci. 2006, 102, 3430–3437. [Google Scholar] [CrossRef]
- Han, X.J.; Huang, Z.M.; He, C.L.; Liu, L.; Wu, Q.S. Coaxial electrospinning of PC (shell)/PU (core) composite nanofibers for textile application. Polym. Compos. 2006, 27, 381–387. [Google Scholar] [CrossRef]
- Ma, M.; Mao, Y.; Gupta, M.; Gleason, K.K.; Rutledge, G.C. Superhydrophobic fabrics produced by electrospinning and chemical vapor deposition. Macromolecules 2005, 38, 9742–9748. [Google Scholar] [CrossRef]
- Virovska, D.; Paneva, D.; Manolova, N.; Rashkov, I.; Karashanova, D. Electrospinning/electrospraying vs. electrospinning: A comparative study on the design of poly (l-lactide)/zinc oxide non-woven textile. Appl. Surf. Sci. 2014, 311, 842–850. [Google Scholar] [CrossRef]
- Lee, K.Y.; Jeong, L.; Kang, Y.O.; Lee, S.J.; Park, W.H. Electrospinning of polysaccharides for regenerative medicine. Adv. Drug Deliv. Rev. 2009, 61, 1020–1032. [Google Scholar] [CrossRef]
- Li, C.; Wang, Z.-H.; Yu, D.-G.; Williams, G.R. Tunable biphasic drug release from ethyl cellulose nanofibers fabricated using a modified coaxial electrospinning process. Nanoscale Res. Lett. 2014, 9, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Russo, G.; Lamberti, G. Electrospinning of drug-loaded polymer systems: Preparation and drug release. J. Appl. Polym. Sci. 2011, 122, 3551–3556. [Google Scholar] [CrossRef]
- Agarwal, S.; Wendorff, J.H.; Greiner, A. Use of electrospinning technique for biomedical applications. Polymer 2008, 49, 5603–5621. [Google Scholar] [CrossRef] [Green Version]
- Qin, X.-H.; Wu, D.-Q.; Chu, C.-C. Dual functions of polyvinyl alcohol (PVA): Fabricating particles and electrospinning nanofibers applied in controlled drug release. J. Nanoparticle Res. 2013, 15, 1–14. [Google Scholar] [CrossRef]
- Lin, Q.; Li, Y.; Yang, M. Polyaniline nanofiber humidity sensor prepared by electrospinning. Sens. Actuators B Chem. 2012, 161, 967–972. [Google Scholar] [CrossRef]
- Landau, O.; Rothschild, A.; Zussman, E. Processing-microstructure-properties correlation of ultrasensitive gas sensors produced by electrospinning. Chem. Mater. 2009, 21, 9–11. [Google Scholar] [CrossRef]
- Zanin, M.H.A.; Cerize, N.N.; de Oliveira, A.M. Production of nanofibers by electrospinning technology: Overview and application in cosmetics. In Nanocosmetics and Nanomedicines; Springer: Berlin/Heidelberg, Germany, 2011; pp. 311–332. [Google Scholar]
- Camerlo, A.; Vebert-Nardin, C.; Rossi, R.M.; Popa, A.-M. Fragrance encapsulation in polymeric matrices by emulsion electrospinning. Eur. Polym. J. 2013, 49, 3806–3813. [Google Scholar] [CrossRef]
- Fang, J.; Niu, H.; Lin, T.; Wang, X. Applications of electrospun nanofibers. Chin. Sci. Bull. 2008, 53, 2265–2286. [Google Scholar] [CrossRef] [Green Version]
- Cui, J.; Li, F.; Wang, Y.; Zhang, Q.; Ma, W.; Huang, C. Electrospun nanofiber membranes for wastewater treatment applications. Sep. Purif. Technol. 2020, 250, 117116. [Google Scholar] [CrossRef]
- Hou, L.; Wang, N.; Wu, J.; Cui, Z.; Jiang, L.; Zhao, Y. Bioinspired superwettability electrospun micro/nanofibers and their applications. Adv. Funct. Mater. 2018, 28, 1801114. [Google Scholar] [CrossRef]
- Cloete, T.E. Nanotechnology in Water Treatment Applications; Caister Academic Press: Norfolk, UK, 2010. [Google Scholar]
- Zhu, X.; Cui, W.; Li, X.; Jin, Y. Electrospun fibrous mats with high porosity as potential scaffolds for skin tissue engineering. Biomacromolecules 2008, 9, 1795–1801. [Google Scholar] [CrossRef]
- Xiong, J.; Huo, P.; Ko, F.K. Fabrication of ultrafine fibrous polytetrafluoroethylene porous membranes by electrospinning. J. Mater. Res. 2009, 24, 2755–2761. [Google Scholar] [CrossRef]
- Subramanian, S.; Seeram, R. New directions in nanofiltration applications—are nanofibers the right materials as membranes in desalination? Desalination 2013, 308, 198–208. [Google Scholar] [CrossRef]
- Balamurugan, R.; Sundarrajan, S.; Ramakrishna, S. Recent trends in nanofibrous membranes and their suitability for air and water filtrations. Membranes 2011, 1, 232–248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barhate, R.S.; Ramakrishna, S. Nanofibrous filtering media: Filtration problems and solutions from tiny materials. J. Membr. Sci. 2007, 296, 1–8. [Google Scholar] [CrossRef]
- Yoon, K.; Hsiao, B.S.; Chu, B. Functional nanofibers for environmental applications. J. Mater. Chem. 2008, 18, 5326–5334. [Google Scholar] [CrossRef]
- Feng, C.; Khulbe, K.; Matsuura, T.; Tabe, S.; Ismail, A.F. Preparation and characterization of electro-spun nanofiber membranes and their possible applications in water treatment. Sep. Purif. Technol. 2013, 102, 118–135. [Google Scholar] [CrossRef]
- Kaur, S.; Sundarrajan, S.; Rana, D.; Sridhar, R.; Gopal, R.; Matsuura, T.; Ramakrishna, S. The characterization of electrospun nanofibrous liquid filtration membranes. J. Mater. Sci. 2014, 49, 6143–6159. [Google Scholar] [CrossRef]
- Kumar, P.S.; Sundaramurthy, J.; Sundarrajan, S.; Babu, V.J.; Singh, G.; Allakhverdiev, S.I.; Ramakrishna, S. Hierarchical electrospun nanofibers for energy harvesting, production and environmental remediation. Energy Environ. Sci. 2014, 7, 3192–3222. [Google Scholar] [CrossRef]
- Wang, M.; Hai, T.; Feng, Z.; Yu, D.-G.; Yang, Y.; Annie Bligh, S. The relationships between the working fluids, process characteristics and products from the modified coaxial electrospinning of zein. Polymers 2019, 11, 1287. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Wang, C. Effects of working parameters on electrospinning. In One-Dimensional Nanostructures; Springer: Berlin/Heidelberg, Germany, 2013; pp. 15–28. [Google Scholar]
- Costa, L.M.M.; Bretas, R.E.S.; Gregorio, R. Effect of solution concentration on the electrospray/electrospinning transition and on the crystalline phase of PVDF. Mater. Sci. Appl. 2010, 1, 246–251. [Google Scholar] [CrossRef] [Green Version]
- Luo, C.; Nangrejo, M.; Edirisinghe, M. A novel method of selecting solvents for polymer electrospinning. Polymer 2010, 51, 1654–1662. [Google Scholar] [CrossRef]
- Luo, C.; Stride, E.; Edirisinghe, M. Mapping the influence of solubility and dielectric constant on electrospinning polycaprolactone solutions. Macromolecules 2012, 45, 4669–4680. [Google Scholar] [CrossRef]
- Şener, A.G.; Altay, A.S.; Altay, F. Effect of voltage on morphology of electrospun nanofibers. In Proceedings of the 2011 7th International Conference on Electrical and Electronics Engineering (ELECO), Bursa, Turkey, 1–4 December 2011; pp. I-324–I-328. [Google Scholar]
- Feng, L.; Li, S.; Zhai, J.; Song, Y.; Jiang, L.; Zhu, D. Template based synthesis of aligned polyacrylonitrile nanofibers using a novel extrusion method. Synth. Met. 2003, 135–136, 817–818. [Google Scholar] [CrossRef]
- Casper, C.L.; Stephens, J.S.; Tassi, N.G.; Chase, D.B.; Rabolt, J.F. Controlling surface morphology of electrospun polystyrene fibers: Effect of humidity and molecular weight in the electrospinning process. Macromolecules 2004, 37, 573–578. [Google Scholar] [CrossRef]
- De Vrieze, S.; Van Camp, T.; Nelvig, A.; Hagström, B.; Westbroek, P.; De Clerck, K. The effect of temperature and humidity on electrospinning. J. Mater. Sci. 2009, 44, 1357–1362. [Google Scholar] [CrossRef]
- Kang, S.; Hou, S.; Chen, X.; Yu, D.-G.; Wang, L.; Li, X.; R Williams, G. Energy-saving electrospinning with a concentric teflon-core rod spinneret to create medicated nanofibers. Polymers 2020, 12, 2421. [Google Scholar] [CrossRef]
- Wang, M.; Yu, D.-G.; Li, X.; Williams, G.R. The development and bio-applications of multifluid electrospinning. Mater. Highlights 2020, 1, 1–13. [Google Scholar] [CrossRef]
- Kupka, V.; Dvořáková, E.; Manakhov, A.; Michlíček, M.; Petruš, J.; Vojtová, L.; Zajíčková, L. Well-blended PCL/PEO electrospun nanofibers with functional properties enhanced by plasma processing. Polymers 2020, 12, 1403. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Zhang, J.; Lu, J.; Huang, J.; Zhang, F.; Hu, Y.; Liu, C.; An, R.; Miao, H.; Chen, Y. Preparation and properties of plant-oil-based epoxy acrylate-like resins for UV-curable coatings. Polymers 2020, 12, 2165. [Google Scholar] [CrossRef]
- Liu, N.; Qu, R.; Chen, Y.; Cao, Y.; Zhang, W.; Lin, X.; Wei, Y.; Feng, L.; Jiang, L. In situ dual-functional water purification with simultaneous oil removal and visible light catalysis. Nanoscale 2016, 8, 18558–18564. [Google Scholar] [CrossRef]
- Lv, Y.; Zhang, C.; He, A.; Yang, S.J.; Wu, G.P.; Darling, S.B.; Xu, Z.K. Photocatalytic nanofiltration membranes with self-cleaning property for wastewater treatment. Adv. Funct. Mater. 2017, 27, 1700251. [Google Scholar] [CrossRef]
- Sikhwivhilu, K.; Moutloali, R.M. Functionalized PVDF membrane-immobilized Fe/Ni bimetallic nanoparticles for catalytic degradation of methyl orange dye: A comparative study. Mater. Today Proc. 2015, 2, 4070–4080. [Google Scholar] [CrossRef]
- Rojas-Lema, S.; Terol, J.; Fages, E.; Balart, R.; Quiles-Carrillo, L.; Prieto, C.; Torres-Giner, S. Microencapsulation of copper (II) sulfate in ionically cross-linked chitosan by spray drying for the development of irreversible moisture indicators in paper packaging. Polymers 2020, 12, 2039. [Google Scholar] [CrossRef]
- Zhao, S.; Ba, C.; Yao, Y.; Zheng, W.; Economy, J.; Wang, P. Removal of antibiotics using polyethylenimine cross-linked nanofiltration membranes: Relating membrane performance to surface charge characteristics. Chem. Eng. J. 2018, 335, 101–109. [Google Scholar] [CrossRef]
- Satilmis, B.; Uyar, T. Amine modified electrospun PIM-1 ultrafine fibers for an efficient removal of methyl orange from an aqueous system. Appl. Surf. Sci. 2018, 453, 220–229. [Google Scholar] [CrossRef]
- Ramakrishna, S. An Introduction to Electrospinning and Nanofibers; World Scientific: Singapore, 2005. [Google Scholar]
- Smith, L.; Ma, P. Nano-fibrous scaffolds for tissue engineering. Colloids Surf. B Biointerfaces 2004, 39, 125–131. [Google Scholar] [CrossRef] [PubMed]
- Subbiah, T.; Bhat, G.S.; Tock, R.W.; Parameswaran, S.; Ramkumar, S.S. Electrospinning of nanofibers. J. Appl. Polym. Sci. 2005, 96, 557–569. [Google Scholar] [CrossRef]
- Xing, X.; Wang, Y.; Li, B. Nanofiber drawing and nanodevice assembly in poly (trimethylene terephthalate). Opt. Express 2008, 16, 10815–10822. [Google Scholar] [CrossRef]
- Suzuki, A.; Mikuni, T.; Hasegawa, T. Nylon 66 nanofibers prepared by CO2 laser supersonic drawing. J. Appl. Polym. Sci. 2014, 131, 6. [Google Scholar] [CrossRef]
- Suzuki, A.; Arino, K. Polypropylene nanofiber sheets prepared by CO2 laser supersonic multi-drawing. Eur. Polym. J. 2012, 48, 1169–1176. [Google Scholar] [CrossRef]
- Nain, A.S.; Amon, C.; Sitti, M. Proximal probes based nanorobotic drawing of polymer micro/nanofibers. IEEE Trans. Nanotechnol. 2006, 5, 499–510. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, Y.; Wang, W.; Li, G.; Ma, X.; Li, X.; Zhang, Z.; Qian, Y. Template-assisted synthesis of porous molybdenum dioxide nanofibers and nanospheres by redox etching method. J. Cryst. Growth 2006, 290, 96–102. [Google Scholar] [CrossRef]
- Tao, S.L.; Desai, T.A. Aligned arrays of biodegradable poly (ϵ-caprolactone) nanowires and nanofibers by template synthesis. Nano Lett. 2007, 7, 1463–1468. [Google Scholar] [CrossRef] [PubMed]
- Che, G.; Lakshmi, B.; Martin, C.; Fisher, E.; Ruoff, R.S. Chemical vapor deposition based synthesis of carbon nanotubes and nanofibers using a template method. Chem. Mater. 1998, 10, 260–267. [Google Scholar] [CrossRef]
- Ma, P.X.; Zhang, R. Synthetic nano-scale fibrous extracellular matrix. J. Biomed. Mater. Res. Off. J. Soc. Biomater. Jpn. Soc. Biomater. Aust. Soc. Biomater. 1999, 46, 60–72. [Google Scholar] [CrossRef] [Green Version]
- Ichimori, T.; Mizuma, K.; Uchida, T.; Yamazaki, S.; Kimura, K. Morphological diversity and nanofiber networks of poly (p-oxybenzoyl) generated by phase separation during copolymerization. J. Appl. Polym. Sci. 2013, 128, 1282–1290. [Google Scholar] [CrossRef]
- Shao, J.; Chen, C.; Wang, Y.; Chen, X.; Du, C. Early stage evolution of structure and nanoscale property of nanofibers in thermally induced phase separation process. React. Funct. Polym. 2012, 72, 765–772. [Google Scholar] [CrossRef]
- Nasir, A.M.; Awang, N.; Jaafar, J.; Ismail, A.F.; Othman, M.H.D.; Rahman, M.A.; Aziz, F.; Yajid, M.A.M. Recent progress on fabrication and application of electrospun nanofibrous photocatalytic membranes for wastewater treatment: A review. J. Water Process Eng. 2021, 40, 101878. [Google Scholar] [CrossRef]
- Wang, L.; Ali, J.; Zhang, C.; Mailhot, G.; Pan, G. Simultaneously enhanced photocatalytic and antibacterial activities of TiO2/Ag composite nanofibers for wastewater purification. J. Environ. Chem. Eng. 2020, 8, 102104. [Google Scholar] [CrossRef]
- Ni, Y.; Yan, K.; Xu, F.; Zhong, W.; Zhao, Q.; Liu, K.; Yan, K.; Wang, D. Synergistic effect on TiO2 doped poly (vinyl alcohol-co-ethylene) nanofibrous film for filtration and photocatalytic degradation of methylene blue. Compos. Commun. 2019, 12, 112–116. [Google Scholar] [CrossRef]
- Zhang, R.; Wang, X.; Song, J.; Si, Y.; Zhuang, X.; Yu, J.; Ding, B. In situ synthesis of flexible hierarchical TiO2 nanofibrous membranes with enhanced photocatalytic activity. J. Mater. Chem. A 2015, 3, 22136–22144. [Google Scholar] [CrossRef]
- Habiba, U.; Afifi, A.M.; Salleh, A.; Ang, B.C. Chitosan/(polyvinyl alcohol)/zeolite electrospun composite nanofibrous membrane for adsorption of Cr6+, Fe3+ and Ni2+. J. Hazard. Mater. 2017, 322, 182–194. [Google Scholar] [CrossRef]
- Zahakifar, F.; Keshtkar, A.R.; Talebi, M. Performance evaluation of sodium alginate/polyvinyl alcohol/polyethylene oxide/ZSM5 zeolite hybrid adsorbent for ion uptake from aqueous solutions: A case study of thorium (IV). J. Radioanal. Nucl. Chem. 2021, 327, 65–72. [Google Scholar] [CrossRef]
- Shariful, M.I.; Sharif, S.B.; Lee, J.J.L.; Habiba, U.; Ang, B.C.; Amalina, M.A. Adsorption of divalent heavy metal ion by mesoporous-high surface area chitosan/poly (ethylene oxide) nanofibrous membrane. Carbohydr. Polym. 2017, 157, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Liao, Y.; Loh, C.-H.; Tian, M.; Wang, R.; Fane, A.G. Progress in electrospun polymeric nanofibrous membranes for water treatment: Fabrication, modification and applications. Prog. Polym. Sci. 2018, 77, 69–94. [Google Scholar] [CrossRef]
- Ozbey-Unal, B.; Gezmis-Yavuz, E.; Eryildiz, B.; Koseoglu-Imer, D.Y.; Keskinler, B.; Koyuncu, I. Boron removal from geothermal water by nanofiber-based membrane distillation membranes with significantly improved surface hydrophobicity. J. Environ. Chem. Eng. 2020, 8, 104113. [Google Scholar] [CrossRef]
- Ghafoor, S.; Inayat, A.; Aftab, F.; Duran, H.; Kirchhoff, K.; Waseem, S.; Arshad, S.N. TiO2 nanofibers embedded with g-C3N4 nanosheets and decorated with Ag nanoparticles as Z-scheme photocatalysts for environmental remediation. J. Environ. Chem. Eng. 2019, 7, 103452. [Google Scholar] [CrossRef]
- Kim, J.H.; Joshi, M.K.; Lee, J.; Park, C.H.; Kim, C.S. Polydopamine-assisted immobilization of hierarchical zinc oxide nanostructures on electrospun nanofibrous membrane for photocatalysis and antimicrobial activity. J. Colloid Interface Sci. 2018, 513, 566–574. [Google Scholar] [CrossRef]
- Agrawal, S.; Ranjan, R.; Lal, B.; Rahman, A.; Singh, S.P.; Selvaratnam, T.; Nawaz, T. Synthesis and water treatment applications of nanofibers by electrospinning. Processes 2021, 9, 1779. [Google Scholar] [CrossRef]
- Hwang, J.; Harrington, D.; Klok, H.-A.; Stupp, S. Cell-Synthetic Surface Interactions: Self-Assembling Biomaterials; Academic Press: Cambridge, MA, USA, 2002. [Google Scholar]
- Matthews, J.A.; Wnek, G.E.; Simpson, D.G.; Bowlin, G.L. Electrospinning of collagen nanofibers. Biomacromolecules 2002, 3, 232–238. [Google Scholar] [CrossRef]
- Gersbach, C.A.; Byers, B.A.; Pavlath, G.K.; Guldberg, R.E.; García, A.J. Runx2/Cbfa1-genetically engineered skeletal myoblasts mineralize collagen scaffolds in vitro. Biotechnol. Bioeng. 2004, 88, 369–378. [Google Scholar] [CrossRef] [PubMed]
- Shields, K.J.; Beckman, M.J.; Bowlin, G.L.; Wayne, J.S. Mechanical properties and cellular proliferation of electrospun collagen type II. Tissue Eng. 2004, 10, 1510–1517. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Ouyang, H.; Lim, C.T.; Ramakrishna, S.; Huang, Z.M. Electrospinning of gelatin fibers and gelatin/PCL composite fibrous scaffolds. J. Biomed. Mater. Res. Part B Appl. Biomater. 2005, 72, 156–165. [Google Scholar] [CrossRef]
- Bhattarai, N.; Edmondson, D.; Veiseh, O.; Matsen, F.A.; Zhang, M. Electrospun chitosan-based nanofibers and their cellular compatibility. Biomaterials 2005, 26, 6176–6184. [Google Scholar] [CrossRef]
- Geng, X.; Kwon, O.-H.; Jang, J. Electrospinning of chitosan dissolved in concentrated acetic acid solution. Biomaterials 2005, 26, 5427–5432. [Google Scholar] [CrossRef] [PubMed]
- Um, I.C.; Fang, D.; Hsiao, B.S.; Okamoto, A.; Chu, B. Electro-spinning and electro-blowing of hyaluronic acid. Biomacromolecules 2004, 5, 1428–1436. [Google Scholar] [CrossRef]
- Jin, H.-J.; Fridrikh, S.V.; Rutledge, G.C.; Kaplan, D.L. Electrospinning Bombyx mori silk with poly (ethylene oxide). Biomacromolecules 2002, 3, 1233–1239. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Murugan, R.; Wang, S.; Ramakrishna, S. Electrospinning of nano/micro scale poly (L-lactic acid) aligned fibers and their potential in neural tissue engineering. Biomaterials 2005, 26, 2603–2610. [Google Scholar] [CrossRef]
- Verreck, G.; Chun, I.; Rosenblatt, J.; Peeters, J.; Van Dijck, A.; Mensch, J.; Noppe, M.; Brewster, M.E. Incorporation of drugs in an amorphous state into electrospun nanofibers composed of a water-insoluble, nonbiodegradable polymer. J. Control. Release 2003, 92, 349–360. [Google Scholar] [CrossRef]
- Riboldi, S.A.; Sampaolesi, M.; Neuenschwander, P.; Cossu, G.; Mantero, S. Electrospun degradable polyesterurethane membranes: Potential scaffolds for skeletal muscle tissue engineering. Biomaterials 2005, 26, 4606–4615. [Google Scholar] [CrossRef] [Green Version]
- Li, W.J.; Danielson, K.G.; Alexander, P.G.; Tuan, R.S. Biological response of chondrocytes cultured in three-dimensional nanofibrous poly (ϵ-caprolactone) scaffolds. J. Biomed. Mater. Res. Part A Off. J. Soc. Biomater. Jpn. Soc. Biomater. Aust. Soc. Biomater. Korean Soc. Biomater. 2003, 67, 1105–1114. [Google Scholar]
- Li, M.; Mondrinos, M.J.; Gandhi, M.R.; Ko, F.K.; Weiss, A.S.; Lelkes, P.I. Electrospun protein fibers as matrices for tissue engineering. Biomaterials 2005, 26, 5999–6008. [Google Scholar] [CrossRef] [PubMed]
- Luu, Y.; Kim, K.; Hsiao, B.; Chu, B.; Hadjiargyrou, M. Development of a nanostructured DNA delivery scaffold via electrospinning of PLGA and PLA–PEG block copolymers. J. Control. Release 2003, 89, 341–353. [Google Scholar] [CrossRef]
- Kim, K.; Luu, Y.K.; Chang, C.; Fang, D.; Hsiao, B.S.; Chu, B.; Hadjiargyrou, M. Incorporation and controlled release of a hydrophilic antibiotic using poly (lactide-co-glycolide)-based electrospun nanofibrous scaffolds. J. Control. Release 2004, 98, 47–56. [Google Scholar] [CrossRef]
- Uematsu, K.; Hattori, K.; Ishimoto, Y.; Yamauchi, J.; Habata, T.; Takakura, Y.; Ohgushi, H.; Fukuchi, T.; Sato, M. Cartilage regeneration using mesenchymal stem cells and a three-dimensional poly-lactic-glycolic acid (PLGA) scaffold. Biomaterials 2005, 26, 4273–4279. [Google Scholar] [CrossRef]
- Kenawy, E.-R.; Bowlin, G.L.; Mansfield, K.; Layman, J.; Simpson, D.G.; Sanders, E.H.; Wnek, G.E. Release of tetracycline hydrochloride from electrospun poly (ethylene-co-vinylacetate), poly (lactic acid), and a blend. J. Control. Release 2002, 81, 57–64. [Google Scholar] [CrossRef]
- Mo, X.; Weber, H.J. Electrospinning P (LLA-CL) nanofiber: A tubular scaffold fabrication with circumferential alignment. In Macromolecular Symposia; Wiley-VCH Verlag: Weinheim, Germany, 2004; pp. 413–416. [Google Scholar]
- Mo, X.; Xu, C.; Kotaki, M.; Ramakrishna, S. Electrospun P (LLA-CL) nanofiber: A biomimetic extracellular matrix for smooth muscle cell and endothelial cell proliferation. Biomaterials 2004, 25, 1883–1890. [Google Scholar] [CrossRef]
- Vasita, R.; Katti, D.S. Nanofibers and their applications in tissue engineering. Int. J. Nanomed. 2006, 1, 15. [Google Scholar] [CrossRef]
- Benelli, G.; Pavela, R.; Maggi, F.; Petrelli, R.; Nicoletti, M. Commentary: Making green pesticides greener? The potential of plant products for nanosynthesis and pest control. J. Clust. Sci. 2017, 28, 3–10. [Google Scholar] [CrossRef]
- Fortunati, E.; Peltzer, M.; Armentano, I.; Torre, L.; Jiménez, A.; Kenny, J. Effects of modified cellulose nanocrystals on the barrier and migration properties of PLA nano-biocomposites. Carbohydr. Polym. 2012, 90, 948–956. [Google Scholar] [CrossRef]
- Ortiz, J.; Chabot, B. Electrospun nanofibers for the removal of heavy metals from aqueous solutions. In Mitacs Globalink Intership Report; Monterrey Institute of Technology and Higher Education: Monterrey, Mexico, 2016. [Google Scholar]
- Li, S.; Yue, X.; Jing, Y.; Bai, S.; Dai, Z. Fabrication of zonal thiol-functionalized silica nanofibers for removal of heavy metal ions from wastewater. Colloids Surf. A Physicochem. Eng. Asp. 2011, 380, 229–233. [Google Scholar] [CrossRef]
- Li, L.; Zhang, J.; Li, Y.; Yang, C. Removal of Cr (VI) with a spiral wound chitosan nanofiber membrane module via dead-end filtration. J. Membr. Sci. 2017, 544, 333–341. [Google Scholar] [CrossRef]
- Kalantari, K.; Afifi, A.M.; Jahangirian, H.; Webster, T.J. Biomedical applications of chitosan electrospun nanofibers as a green polymer–Review. Carbohydr. Polym. 2019, 207, 588–600. [Google Scholar] [CrossRef]
- Bui, V.K.H.; Park, D.; Lee, Y.-C. Chitosan combined with ZnO, TiO2 and Ag nanoparticles for antimicrobial wound healing applications: A mini review of the research trends. Polymers 2017, 9, 21. [Google Scholar] [CrossRef] [Green Version]
- Paradis-Tanguay, L.; Camiré, A.; Renaud, M.; Chabot, B.; Lajeunesse, A. Sorption capacities of chitosan/polyethylene oxide (PEO) electrospun nanofibers used to remove ibuprofen in water. J. Polym. Eng. 2019, 39, 207–215. [Google Scholar] [CrossRef]
- Wang, P.; Wang, L.; Dong, S.; Zhang, G.; Shi, X.; Xiang, C.; Li, L. Adsorption of hexavalent chromium by novel chitosan/poly (ethylene oxide)/permutit electrospun nanofibers. New J. Chem. 2018, 42, 17740–17749. [Google Scholar] [CrossRef]
- Abdolmaleki, A.Y.; Zilouei, H.; Khorasani, S.N.; Zargoosh, K. Adsorption of tetracycline from water using glutaraldehyde-crosslinked electrospun nanofibers of chitosan/poly (vinyl alcohol). Water Sci. Technol. 2018, 77, 1324–1335. [Google Scholar] [CrossRef]
- Esmaeili, A.; Beni, A.A. Optimization and design of a continuous biosorption process using brown algae and chitosan/PVA nano-fiber membrane for removal of nickel by a new biosorbent. Int. J. Environ. Sci. Technol. 2018, 15, 765–778. [Google Scholar] [CrossRef]
- Karim, M.R.; Aijaz, M.O.; Alharth, N.H.; Alharbi, H.F.; Al-Mubaddel, F.S.; Awual, M.R. Composite nanofibers membranes of poly (vinyl alcohol)/chitosan for selective lead (II) and cadmium (II) ions removal from wastewater. Ecotoxicol. Environ. Saf. 2019, 169, 479–486. [Google Scholar] [CrossRef] [PubMed]
- Mahmoodi, N.M.; Mokhtari-Shourijeh, Z. Preparation of PVA-chitosan blend nanofiber and its dye removal ability from colored wastewater. Fibers Polym. 2015, 16, 1861–1869. [Google Scholar] [CrossRef]
- Mei, Y.; Runjun, S.; Yan, F.; Honghong, W.; Hao, D.; Chengkun, L. Preparation, characterization and kinetics study of chitosan/PVA electrospun nanofiber membranes for the adsorption of dye from water. J. Polym. Eng. 2019, 39, 459–471. [Google Scholar] [CrossRef]
- Sharma, R.; Singh, N.; Tiwari, S.; Tiwari, S.K.; Dhakate, S.R. Cerium functionalized PVA–chitosan composite nanofibers for effective remediation of ultra-low concentrations of Hg (II) in water. RSC Adv. 2015, 5, 16622–16630. [Google Scholar] [CrossRef] [Green Version]
- Wu, R.-X.; Zheng, G.-F.; Li, W.-W.; Zhong, L.-B.; Zheng, Y.-M. Electrospun chitosan nanofiber membrane for adsorption of Cu (II) from aqueous solution: Fabrication, characterization and performance. J. Nanosci. Nanotechnol. 2018, 18, 5624–5635. [Google Scholar] [CrossRef] [PubMed]
- Elkady, M.; Salama, E.; Amer, W.A.; Ebeid, E.-Z.M.; Ayad, M.M.; Shokry, H. Novel eco-friendly electrospun nanomagnetic zinc oxide hybridized PVA/alginate/chitosan nanofibers for enhanced phenol decontamination. Environ. Sci. Pollut. Res. 2020, 27, 43077–43092. [Google Scholar] [CrossRef]
- Fan, J.-P.; Luo, J.-J.; Zhang, X.-H.; Zhen, B.; Dong, C.-Y.; Li, Y.-C.; Shen, J.; Cheng, Y.-T.; Chen, H.-P. A novel electrospun β-CD/CS/PVA nanofiber membrane for simultaneous and rapid removal of organic micropollutants and heavy metal ions from water. Chem. Eng. J. 2019, 378, 122232. [Google Scholar] [CrossRef]
- Bahmani, E.; Koushkbaghi, S.; Darabi, M.; ZabihiSahebi, A.; Askari, A.; Irani, M. Fabrication of novel chitosan-g-PNVCL/ZIF-8 composite nanofibers for adsorption of Cr (VI), As (V) and phenol in a single and ternary systems. Carbohydr. Polym. 2019, 224, 115148. [Google Scholar] [CrossRef] [PubMed]
- Chabalala, M.B.; Al-Abri, M.Z.; Mamba, B.B.; Nxumalo, E.N. Mechanistic aspects for the enhanced adsorption of bromophenol blue and atrazine over cyclodextrin modified polyacrylonitrile nanofiber membranes. Chem. Eng. Res. Des. 2021, 169, 19–32. [Google Scholar] [CrossRef]
- Lv, Y.; Ma, J.; Liu, K.; Jiang, Y.; Yang, G.; Liu, Y.; Lin, C.; Ye, X.; Shi, Y.; Liu, M. Rapid elimination of trace bisphenol pollutants with porous β-cyclodextrin modified cellulose nanofibrous membrane in water: Adsorption behavior and mechanism. J. Hazard. Mater. 2021, 403, 123666. [Google Scholar] [CrossRef]
- Khalil, A.M.; Schäfer, A.I. Cross-linked β-cyclodextrin nanofiber composite membrane for steroid hormone micropollutant removal from water. J. Membr. Sci. 2021, 618, 118228. [Google Scholar] [CrossRef]
- Camiré, A.; Espinasse, J.; Chabot, B.; Lajeunesse, A. Development of electrospun lignin nanofibers for the adsorption of pharmaceutical contaminants in wastewater. Environ. Sci. Pollut. Res. 2020, 27, 3560–3573. [Google Scholar] [CrossRef]
- Da Silva, B.A.; de Sousa Cunha, R.; Valerio, A.; Junior, A.D.N.; Hotza, D.; González, S.Y.G. Electrospinning of cellulose using ionic liquids: An overview on processing and applications. Eur. Polym. J. 2021, 147, 110283. [Google Scholar] [CrossRef]
- Jonas, R.; Farah, L.F. Production and application of microbial cellulose. Polym. Degrad. Stab. 1998, 59, 101–106. [Google Scholar] [CrossRef]
- Rodrigues Filho, G.; Monteiro, D.S.; da Silva Meireles, C.; de Assunção, R.M.N.; Cerqueira, D.A.; Barud, H.S.; Ribeiro, S.J.; Messadeq, Y. Synthesis and characterization of cellulose acetate produced from recycled newspaper. Carbohydr. Polym. 2008, 73, 74–82. [Google Scholar] [CrossRef]
- Reddy, K.O.; Zhang, J.; Zhang, J.; Rajulu, A.V. Preparation and properties of self-reinforced cellulose composite films from Agave microfibrils using an ionic liquid. Carbohydr. Polym. 2014, 114, 537–545. [Google Scholar] [CrossRef]
- Na, B.; Zhang, P.; Lv, R.; Tian, R.; Ju, Y.; Liu, Q. Effect of ionic liquids on the morphology and mesophase formation of electrospun polylactide nanofibers. Polymer 2015, 65, 55–62. [Google Scholar] [CrossRef]
- Yarin, A.L.; Koombhongse, S.; Reneker, D.H. Taylor cone and jetting from liquid droplets in electrospinning of nanofibers. J. Appl. Phys. 2001, 90, 4836–4846. [Google Scholar] [CrossRef] [Green Version]
- Moon, R.J.; Martini, A.; Nairn, J.; Simonsen, J.; Youngblood, J. Cellulose nanomaterials review: Structure, properties and nanocomposites. Chem. Soc. Rev. 2011, 40, 3941–3994. [Google Scholar] [CrossRef]
- Ahmed, F.E.; Lalia, B.S.; Hilal, N.; Hashaikeh, R. Underwater superoleophobic cellulose/electrospun PVDF–HFP membranes for efficient oil/water separation. Desalination 2014, 344, 48–54. [Google Scholar] [CrossRef]
- Kacmaz, S.; Ertekin, K.; Gocmenturk, M.; Suslu, A.; Ergun, Y.; Celik, E. Selective sensing of Fe3+ at pico-molar level with ethyl cellulose based electrospun nanofibers. React. Funct. Polym. 2013, 73, 674–682. [Google Scholar] [CrossRef]
- Gouda, M.; Abu-Abdeen, M. Highly conductive cellulosic nanofibers for efficient water desalination. Fibers Polym. 2017, 18, 2111–2117. [Google Scholar] [CrossRef]
- Jain, H.; Garg, M.C. Fabrication of polymeric nanocomposite forward osmosis membranes for water desalination—A review. Environ. Technol. Innov. 2021, 23, 101561. [Google Scholar] [CrossRef]
- Lee, C.; Chae, S.H.; Yang, E.; Kim, S.; Kim, J.H.; Kim, I.S. A comprehensive review of the feasibility of pressure retarded osmosis: Recent technological advances and industrial efforts towards commercialization. Desalination 2020, 491, 114501. [Google Scholar] [CrossRef]
- Duong, P.H.; Nunes, S.P.; Chung, T.-S. Dual-skinned polyamide/poly (vinylidene fluoride)/cellulose acetate membranes with embedded woven. J. Membr. Sci. 2016, 520, 840–849. [Google Scholar] [CrossRef]
- Ong, R.C.; Chung, T.-S.; de Wit, J.S.; Helmer, B.J. Novel cellulose ester substrates for high performance flat-sheet thin-film composite (TFC) forward osmosis (FO) membranes. J. Membr. Sci. 2015, 473, 63–71. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, K.Y.; Chung, T.-S.; Chen, H.; Jean, Y.; Amy, G. Well-constructed cellulose acetate membranes for forward osmosis: Minimized internal concentration polarization with an ultra-thin selective layer. J. Membr. Sci. 2010, 360, 522–535. [Google Scholar] [CrossRef]
- Sairam, M.; Sereewatthanawut, E.; Li, K.; Bismarck, A.; Livingston, A. Method for the preparation of cellulose acetate flat sheet composite membranes for forward osmosis—Desalination using MgSO4 draw solution. Desalination 2011, 273, 299–307. [Google Scholar] [CrossRef]
- Wu, Q.-Y.; Xing, X.-Y.; Yu, Y.; Gu, L.; Xu, Z.-K. Novel thin film composite membranes supported by cellulose triacetate porous substrates for high-performance forward osmosis. Polymer 2018, 153, 150–160. [Google Scholar] [CrossRef]
- Li, M.-N.; Chen, X.-J.; Wan, Z.-H.; Wang, S.-G.; Sun, X.-F. Forward osmosis membranes for high-efficiency desalination with Nano-MoS2 composite substrates. Chemosphere 2021, 278, 130341. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Tian, J.; Ren, Z.; Shi, W.; Zhang, Z.; Xu, Y.; Gao, S.; Cui, F. High performance thin-film composite (TFC) forward osmosis (FO) membrane fabricated on novel hydrophilic disulfonated poly (arylene ether sulfone) multiblock copolymer/polysulfone substrate. J. Membr. Sci. 2016, 520, 529–539. [Google Scholar] [CrossRef]
- Morales-Torres, S.; Esteves, C.M.; Figueiredo, J.L.; Silva, A.M. Thin-film composite forward osmosis membranes based on polysulfone supports blended with nanostructured carbon materials. J. Membr. Sci. 2016, 520, 326–336. [Google Scholar] [CrossRef]
- Camacho, L.M.; Pinion, T.A.; Olatunji, S.O. Behavior of mixed-matrix graphene oxide–polysulfone membranes in the process of direct contact membrane distillation. Sep. Purif. Technol. 2020, 240, 116645. [Google Scholar] [CrossRef]
- Wang, Y.; Ou, R.; Ge, Q.; Wang, H.; Xu, T. Preparation of polyethersulfone/carbon nanotube substrate for high-performance forward osmosis membrane. Desalination 2013, 330, 70–78. [Google Scholar] [CrossRef]
- Li, D.; Xia, Y. Fabrication of titania nanofibers by electrospinning. Nano Lett. 2003, 3, 555–560. [Google Scholar] [CrossRef]
- Dai, Y.; Liu, W.; Formo, E.; Sun, Y.; Xia, Y. Ceramic nanofibers fabricated by electrospinning and their applications in catalysis, environmental science, and energy technology. Polym. Adv. Technol. 2011, 22, 326–338. [Google Scholar] [CrossRef]
- Malwal, D.; Gopinath, P. Fabrication and characterization of poly (ethylene oxide) templated nickel oxide nanofibers for dye degradation. Environ. Sci. Nano 2015, 2, 78–85. [Google Scholar] [CrossRef]
- Saquing, C.D.; Tang, C.; Monian, B.; Bonino, C.A.; Manasco, J.L.; Alsberg, E.; Khan, S.A. Alginate–polyethylene oxide blend nanofibers and the role of the carrier polymer in electrospinning. Ind. Eng. Chem. Res. 2013, 52, 8692–8704. [Google Scholar] [CrossRef]
- Viswanathamurthi, P.; Bhattarai, N.; Kim, H.; Khil, M.; Lee, D.; Suh, E.-K. GeO2 fibers: Preparation, morphology and photoluminescence property. J. Chem. Phys. 2004, 121, 441–445. [Google Scholar] [CrossRef]
- Choi, S.-S.; Lee, S.G.; Im, S.S.; Kim, S.H.; Joo, Y.L. Silica nanofibers from electrospinning/sol-gel process. J. Mater. Sci. Lett. 2003, 22, 891–893. [Google Scholar] [CrossRef]
- Zhang, C.-L.; Yu, S.-H. Nanoparticles meet electrospinning: Recent advances and future prospects. Chem. Soc. Rev. 2014, 43, 4423–4448. [Google Scholar] [CrossRef]
- Jin, Y.; Yang, D.; Kang, D.; Jiang, X. Fabrication of necklace-like structures via electrospinning. Langmuir 2010, 26, 1186–1190. [Google Scholar] [CrossRef]
- Zhang, C.L.; Lv, K.P.; Hu, N.Y.; Yu, L.; Ren, X.F.; Liu, S.L.; Yu, S.H. Macroscopic-scale alignment of ultralong Ag nanowires in polymer nanofiber mat and their hierarchical structures by magnetic-field-assisted electrospinning. Small 2012, 8, 2936–2940. [Google Scholar] [CrossRef]
- Nor, N.; Jaafar, J.; Ismail, A.; Mohamed, M.A.; Rahman, M.; Othman, M.; Lau, W.; Yusof, N. Preparation and performance of PVDF-based nanocomposite membrane consisting of TiO2 nanofibers for organic pollutant decomposition in wastewater under UV irradiation. Desalination 2016, 391, 89–97. [Google Scholar] [CrossRef]
- Gadisa, B.T.; Kassahun, S.K.; Appiah-Ntiamoah, R.; Kim, H. Tuning the charge carrier density and exciton pair separation in electrospun 1D ZnO-C composite nanofibers and its effect on photodegradation of emerging contaminants. J. Colloid Interface Sci. 2020, 570, 251–263. [Google Scholar] [CrossRef] [PubMed]
- Ramasundaram, S.; Yoo, H.N.; Song, K.G.; Lee, J.; Choi, K.J.; Hong, S.W. Titanium dioxide nanofibers integrated stainless steel filter for photocatalytic degradation of pharmaceutical compounds. J. Hazard. Mater. 2013, 258, 124–132. [Google Scholar] [CrossRef]
- Greenstein, K.E.; Nagorzanski, M.R.; Kelsay, B.; Verdugo, E.M.; Myung, N.V.; Parkin, G.F.; Cwiertny, D.M. Carbon–titanium dioxide (C/TiO2) nanofiber composites for chemical oxidation of emerging organic contaminants in reactive filtration applications. Environ. Sci. Nano 2021, 8, 711–722. [Google Scholar] [CrossRef]
- Song, J.; Wu, X.; Zhang, M.; Liu, C.; Yu, J.; Sun, G.; Si, Y.; Ding, B. Highly flexible, core-shell heterostructured, and visible-light-driven titania-based nanofibrous membranes for antibiotic removal and E. coil inactivation. Chem. Eng. J. 2020, 379, 122269. [Google Scholar] [CrossRef]
- Yu, D.-G.; Zhou, J.; Chatterton, N.P.; Li, Y.; Huang, J.; Wang, X. Polyacrylonitrile nanofibers coated with silver nanoparticles using a modified coaxial electrospinning process. Int. J. Nanomed. 2012, 7, 5725. [Google Scholar] [CrossRef] [Green Version]
- Geltmeyer, J.; De Roo, J.; Van den Broeck, F.; Martins, J.C.; De Buysser, K.; De Clerck, K. The influence of tetraethoxysilane sol preparation on the electrospinning of silica nanofibers. J. Sol-Gel Sci. Technol. 2016, 77, 453–462. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Li, M.; Zhang, M.; Wang, C.; Luo, R.; Yan, X.; Zhang, H.; Qi, J.; Sun, X.; Li, J. Metal organic framework derived one-dimensional porous Fe/N-doped carbon nanofibers with enhanced catalytic performance. J. Hazard. Mater. 2021, 416, 126101. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.-C.; Oh, S.-I.; Kang, W.; Yoo, H.-Y.; Lee, J.; Kim, D.-W. Superior anodic oxidation in tailored Sb-doped SnO2/RuO2 composite nanofibers for electrochemical water treatment. J. Catal. 2019, 374, 118–126. [Google Scholar] [CrossRef]
- Xie, W.; Shi, Y.; Wang, Y.; Zheng, Y.; Liu, H.; Hu, Q.; Wei, S.; Gu, H.; Guo, Z. Electrospun iron/cobalt alloy nanoparticles on carbon nanofibers towards exhaustive electrocatalytic degradation of tetracycline in wastewater. Chem. Eng. J. 2021, 405, 126585. [Google Scholar] [CrossRef]
- Yang, G.C.; Yen, C.-H. The use of different materials to form the intermediate layers of tubular carbon nanofibers/carbon/alumina composite membranes for removing pharmaceuticals from aqueous solutions. J. Membr. Sci. 2013, 425, 121–130. [Google Scholar] [CrossRef]
- Peter, K.T.; Vargo, J.D.; Rupasinghe, T.P.; De Jesus, A.; Tivanski, A.V.; Sander, E.A.; Myung, N.V.; Cwiertny, D.M. Synthesis, optimization, and performance demonstration of electrospun carbon nanofiber–carbon nanotube composite sorbents for point-of-use water treatment. ACS Appl. Mater. Interfaces 2016, 8, 11431–11440. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Niu, J.; Zhang, X.; Liu, J.; Cao, G.; Kong, X. Sorption of triclosan on electrospun fibrous membranes: Effects of pH and dissolved organic matter. Emerg. Contam. 2015, 1, 25–32. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.; Sun, M.; Liu, Y.; Liu, H.; Qu, J.; Li, J. Ionic liquid assisted electrospun cellulose acetate fibers for aqueous removal of triclosan. Langmuir 2015, 31, 1820–1827. [Google Scholar] [CrossRef]
- Zhao, R.; Shi, X.; Ma, T.; Rong, H.; Wang, Z.; Cui, F.; Zhu, G.; Wang, C. Constructing mesoporous adsorption channels and MOF–polymer interfaces in electrospun composite fibers for effective removal of emerging organic contaminants. ACS Appl. Mater. Interfaces 2020, 13, 755–764. [Google Scholar] [CrossRef] [PubMed]
- Camiré, A.; Chabot, B.; Lajeunesse, A. Sorption capacities of a lignin-based electrospun nanofibrous material for pharmaceutical residues remediation in water. In Sorption in 2020s; IntechOpen: London, UK, 2019; Volume 25. [Google Scholar]
- Li, A.; Zhou, M.; Luo, P.; Shang, J.; Wang, P.; Lyu, L. Deposition of MOFs on polydopamine-modified electrospun polyvinyl alcohol/silica nanofibers mats for chloramphenicol adsorption in water. Nano 2020, 15, 2050046. [Google Scholar] [CrossRef]
- Zhang, Y.; Ou, H.; Liu, H.; Ke, Y.; Zhang, W.; Liao, G.; Wang, D. Polyimide-based carbon nanofibers: A versatile adsorbent for highly efficient removals of chlorophenols, dyes and antibiotics. Colloids Surf. A Physicochem. Eng. Asp. 2018, 537, 92–101. [Google Scholar] [CrossRef]
- Chao, S.; Li, X.; Li, Y.; Wang, Y.; Wang, C. Preparation of polydopamine-modified zeolitic imidazolate framework-8 functionalized electrospun fibers for efficient removal of tetracycline. J. Colloid Interface Sci. 2019, 552, 506–516. [Google Scholar] [CrossRef]
- Das, S.; Barui, A.; Adak, A. Montmorillonite impregnated electrospun cellulose acetate nanofiber sorptive membrane for ciprofloxacin removal from wastewater. J. Water Process Eng. 2020, 37, 101497. [Google Scholar] [CrossRef]
- Park, J.-A.; Nam, A.; Kim, J.-H.; Yun, S.-T.; Choi, J.-W.; Lee, S.-H. Blend-electrospun graphene oxide/Poly (vinylidene fluoride) nanofibrous membranes with high flux, tetracycline removal and anti-fouling properties. Chemosphere 2018, 207, 347–356. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Zhang, Y.; You, Q.; Wang, Q.; Liao, G.; Wang, D. Highly efficient removal of antibiotics and dyes from water by the modified carbon nanofibers composites with abundant mesoporous structure. Colloids Surf. A Physicochem. Eng. Asp. 2018, 558, 392–401. [Google Scholar] [CrossRef]
- Li, X.; Chen, S.; Fan, X.; Quan, X.; Tan, F.; Zhang, Y.; Gao, J. Adsorption of ciprofloxacin, bisphenol and 2-chlorophenol on electrospun carbon nanofibers: In comparison with powder activated carbon. J. Colloid Interface Sci. 2015, 447, 120–127. [Google Scholar] [CrossRef]
- Kebede, T.; Seroto, M.; Chokwe, R.; Dube, S.; Nindi, M. Adsorption of antiretroviral (ARVs) and related drugs from environmental wastewaters using nanofibers. J. Environ. Chem. Eng. 2020, 8, 104049. [Google Scholar] [CrossRef]
- Khalil, A.M.; Hashem, T.; Gopalakrishnan, A.; Schäfer, A.I. Cyclodextrin composite nanofiber membrane: Impact of the crosslinker type on steroid hormone micropollutant removal from water. ACS Appl. Polym. Mater. 2021, 3, 2646–2656. [Google Scholar] [CrossRef]
- Bobirică, C.; Bobirică, L.; Râpă, M.; Matei, E.; Predescu, A.M.; Orbeci, C. Photocatalytic degradation of ampicillin using PLA/TiO2 hybrid nanofibers coated on different types of fiberglass. Water 2020, 12, 176. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.-P.; Yang, L.-M.; Chen, J.P.; Zheng, Y.-M. Electrospun spongy zero-valent iron as excellent electro-Fenton catalyst for enhanced sulfathiazole removal by a combination of adsorption and electro-catalytic oxidation. J. Hazard. Mater. 2019, 371, 576–585. [Google Scholar] [CrossRef]
- Kizildag, N.; Geltmeyer, J.; Ucar, N.; De Buysser, K.; De Clerck, K. Coaxial nanofibers containing TiO2 in the shell for water treatment applications. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Hong Kong, China, 12–14 December 2017; p. 102007. [Google Scholar]
- Gadisa, B.T.; Appiah-Ntiamoah, R.; Kim, H. In-situ derived hierarchical ZnO/Zn-C nanofiber with high photocatalytic activity and recyclability under solar light. Appl. Surf. Sci. 2019, 491, 350–359. [Google Scholar] [CrossRef]
- Qin, D.; Lu, W.; Zhu, Z.; Li, N.; Xu, T.; Wang, G.; Chen, W. Free channel formation around graphitic carbon nitride embedded in porous polyethylene terephthalate nanofibers with excellent reusability for eliminating antibiotics under solar irradiation. Ind. Eng. Chem. Res. 2017, 56, 11151–11160. [Google Scholar] [CrossRef]
- Mi, B.; Elimelech, M. Organic fouling of forward osmosis membranes: Fouling reversibility and cleaning without chemical reagents. J. Membr. Sci. 2010, 348, 337–345. [Google Scholar] [CrossRef]
- Owen, R.; Jobling, S. The hidden costs of flexible fertility. Nature 2012, 485, 441. [Google Scholar] [CrossRef] [PubMed]
- Huerta-Fontela, M.; Galceran, M.T.; Ventura, F. Occurrence and removal of pharmaceuticals and hormones through drinking water treatment. Water Res. 2011, 45, 1432–1442. [Google Scholar] [CrossRef]
- Rivera-Utrilla, J.; Sánchez-Polo, M.; Gómez-Serrano, V.; Álvarez, P.; Alvim-Ferraz, M.; Dias, J. Activated carbon modifications to enhance its water treatment applications. An overview. J. Hazard. Mater. 2011, 187, 1–23. [Google Scholar] [CrossRef]
- Kümmerer, K. Pharmaceuticals in the environment. Annu. Rev. Environ. Resour. 2010, 35, 57–75. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Geißen, S.-U.; Gal, C. Carbamazepine and diclofenac: Removal in wastewater treatment plants and occurrence in water bodies. Chemosphere 2008, 73, 1151–1161. [Google Scholar] [CrossRef]
- Gerrity, D.; Snyder, S. Wastewater and drinking water treatment technologies. In Human Pharmaceuticals in the Environment; Springer: Berlin/Heidelberg, Germany, 2012; pp. 225–255. [Google Scholar]
- Packer, J.L.; Werner, J.J.; Latch, D.E.; McNeill, K.; Arnold, W.A. Photochemical fate of pharmaceuticals in the environment: Naproxen, diclofenac, clofibric acid, and ibuprofen. Aquat. Sci. 2003, 65, 342–351. [Google Scholar] [CrossRef]
- Wert, E.C.; Rosario-Ortiz, F.L.; Drury, D.D.; Snyder, S.A. Formation of oxidation byproducts from ozonation of wastewater. Water Res. 2007, 41, 1481–1490. [Google Scholar] [CrossRef]
- Langlais, B.; Reckhow, D.A.; Brink, D.R. Ozone in water treatment. Appl. Eng. 1991, 558-592, 558–592. [Google Scholar]
- Benner, J.; Salhi, E.; Ternes, T.; von Gunten, U. Ozonation of reverse osmosis concentrate: Kinetics and efficiency of beta blocker oxidation. Water Res. 2008, 42, 3003–3012. [Google Scholar] [CrossRef] [PubMed]
- Huber, M.M.; GÖbel, A.; Joss, A.; Hermann, N.; LÖffler, D.; McArdell, C.S.; Ried, A.; Siegrist, H.; Ternes, T.A.; von Gunten, U. Oxidation of pharmaceuticals during ozonation of municipal wastewater effluents: A pilot study. Environ. Sci. Technol. 2005, 39, 4290–4299. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, J.; Huang, H.; Cho, H.-H. Carbon nanotube composite membranes for microfiltration of pharmaceuticals and personal care products: Capabilities and potential mechanisms. J. Membr. Sci. 2015, 479, 165–174. [Google Scholar] [CrossRef]
- Chon, K.; Cho, J.; Shon, H.K. A pilot-scale hybrid municipal wastewater reclamation system using combined coagulation and disk filtration, ultrafiltration, and reverse osmosis: Removal of nutrients and micropollutants, and characterization of membrane foulants. Bioresour. Technol. 2013, 141, 109–116. [Google Scholar] [CrossRef] [PubMed]
- Benítez, F.J.; Acero, J.L.; Leal, A.I.; González, M. The use of ultrafiltration and nanofiltration membranes for the purification of cork processing wastewater. J. Hazard. Mater. 2009, 162, 1438–1445. [Google Scholar] [CrossRef] [PubMed]
- Javier Benitez, F.; Acero, J.L.; Real, F.J.; Roldán, G.; Rodriguez, E. Ultrafiltration and nanofiltration membranes applied to the removal of the pharmaceuticals amoxicillin, naproxen, metoprolol and phenacetin from water. J. Chem. Technol. Biotechnol. 2011, 86, 858–866. [Google Scholar] [CrossRef]
- Ruíz, F.N.; Arévalo, A.A.; Álvarez, J.C.D.; Cisneros, B.J. Operating conditions and membrane selection for the removal of conventional and emerging pollutants from spring water using nanofiltration technology: The Tula Valley case. Desalination Water Treat. 2012, 42, 117–124. [Google Scholar] [CrossRef]
- Nghiem, L.D.; Schäfer, A.I.; Elimelech, M. Nanofiltration of hormone mimicking trace organic contaminants. Sep. Sci. Technol. 2005, 40, 2633–2649. [Google Scholar] [CrossRef]
- López-Muñoz, M.J.; Sotto, A.; Arsuaga, J.M. Nanofiltration removal of pharmaceutically active compounds. Desalination Water Treat. 2012, 42, 138–143. [Google Scholar] [CrossRef]
- Semião, A.J.; Schäfer, A.I. Removal of adsorbing estrogenic micropollutants by nanofiltration membranes. Part A—Experimental evidence. J. Membr. Sci. 2013, 431, 244–256. [Google Scholar] [CrossRef] [Green Version]
- Khouni, I.; Marrot, B.; Moulin, P.; Amar, R.B. Decolourization of the reconstituted textile effluent by different process treatments: Enzymatic catalysis, coagulation/flocculation and nanofiltration processes. Desalination 2011, 268, 27–37. [Google Scholar] [CrossRef]
- Kim, J.-H.; Park, P.-K.; Lee, C.-H.; Kwon, H.-H. Surface modification of nanofiltration membranes to improve the removal of organic micro-pollutants (EDCs and PhACs) in drinking water treatment: Graft polymerization and cross-linking followed by functional group substitution. J. Membr. Sci. 2008, 321, 190–198. [Google Scholar] [CrossRef]
- Sun, S.P.; Hatton, T.A.; Chung, T.-S. Hyperbranched polyethyleneimine induced cross-linking of polyamide−imide nanofiltration hollow fiber membranes for effective removal of ciprofloxacin. Environ. Sci. Technol. 2011, 45, 4003–4009. [Google Scholar] [CrossRef] [PubMed]
- Nghiem, L.D.; Schäfer, A.I.; Elimelech, M. Role of electrostatic interactions in the retention of pharmaceutically active contaminants by a loose nanofiltration membrane. J. Membr. Sci. 2006, 286, 52–59. [Google Scholar] [CrossRef] [Green Version]
- Liu, P.; Zhang, H.; Feng, Y.; Yang, F.; Zhang, J. Removal of trace antibiotics from wastewater: A systematic study of nanofiltration combined with ozone-based advanced oxidation processes. Chem. Eng. J. 2014, 240, 211–220. [Google Scholar] [CrossRef]
- Snyder, S.; Wert, E.; Yoon, Y.; Westerhoff, P. Role of membranes and activated carbon in the removal of endocrine disruptors and pharmaceuticals during water treatment processes. Desalination 2007, 202, 156–181. [Google Scholar] [CrossRef]
Water Treatment Technologies for the Removal of Emerging Pollutents (EPS) | |||
---|---|---|---|
Conventional Processes | Non-Conventional Processes | ||
Biological Processes | |||
Activated sludge | Constructed wetlands | ||
Advantages | Challenges | Advantages | Challenges |
|
|
|
|
Biological activated carbon | Membrane reactor systems (MBR) | ||
Advantages | Challenges | Advantages | Challenges |
|
|
|
|
Microalgae reactor | |||
Advantages | Challenges | ||
|
| ||
Chemical Processes | |||
AOPs | Waste Stabilization Ponds (WSP) | ||
Advantages | Challenges | Advantages | Challenges |
|
|
|
|
Coagulation | Oxidation Ditches (OD) | ||
Advantages | Challenges | Advantages | Challenges |
|
|
|
|
Fenton and photo-Fenton | |||
Advantages | Challenges | ||
|
| ||
Ozonation | |||
Advantages | Challenges | ||
|
| ||
Photocatalysis (TiO2) | |||
Advantages | Challenges | ||
|
| ||
Physical Process | |||
Micro- or ultra-filtration | Aeration systems with new types of membranes | ||
Advantages | Challenges | Advantages | Challenges |
|
|
|
|
Nanofiltration | |||
Advantages | Challenges | ||
|
| ||
Reverse osmosis | |||
Advantages | Challenges | ||
|
|
Type of Process | Type of Nanofiber/Method/Characteristics | EP Types/Category, Performances |
---|---|---|
Adsorption [184] | Anionic nanofibrous nonwoven adsorbent: alkali lignin and poly(vinyl alcohol) (PVA). Method: 4 h thermal treatment (180 °C), 120 min chemical treatment (citrate buffer solution 0.5 M, pH 4.5). Diameter: 156 nm. | Pharmaceutical contaminant (32 ppm fluoxetine), contact time 1 h, Adsorption efficiency: 70%. |
Adsorption [181] | Electrospun PAN nanofiber membranes modified with β-cyclodextrin (β-CD) crosslinked with citric acid. Method: PAN and PAN-CD (ratio 80:20) prepared in DMF solution, 12 h at room temperature. Citric acid (0.1 M) as crosslinker and sulfuric acid (0.05 M) as activator. Diameter: 557 nm PAN and 497 nm PAN with β-CD. | Atrazine (5–25 ppm), adsorption capacity: PAN 0.603 mg/g, PAN-CD 0.817 mg/g. Adsorption efficiency: PAN 67% and PAN-CD 91%. |
Adsorption [182] | Porous β-cyclodextrin modified cellulose nano-fiber membrane (CA-P-CDP). Method: prepared PCDP was dispersed in a mixture of prepared CA membrane and NaOH solution, 2 h. Freeze-drying for 24 h. Diameter: 462 ± 94 nm for nanofibers of CA membrane. | Bisphenol A (BPA), S (BPS), F (BPF): 1 mg/L, adsorption capacities (15 min): 50.37, 48.52, 47.25 mg/g. |
Adsorption [183] | Composite nanofiber membrane (CNM). Method: polymerization of βCD using epichlorohydrin (EP) and deposited β-cyclodextrin-epichlorohydrin (βCDP) on PES ultrafiltration (UF) membranes via electrospinning. Diameter: 90–250 nm for surface of CNMs, cross Section 250 thickness of about 80 μm. | Radiolabeled steroid hormones. Removal efficiency estradiol E2 (2.59 TBq/mM): 80% (5 h) static adsorption, and 99% dynamic filtration. |
Adsorption [171] | chitosan/poly (vinyl alcohol) glutaraldehyde-crosslinked electrospun nanofibers (GCCPN). Minimum diameters: 6–18 nm, 75/25 chitosan/PVA ratio. | 50–250 mg/L TC. Maximum adsorption: 102 mg/g. Adsorption efficiency: 34–97%. |
Adsorption [228] | Polyporous electrospun fibrous membranes via electrospinning: methoxy polyethylene glycol-poly(lactide-co-glycolide) (MPEG-PLGA), poly(D,L-lactide-co-glycolide) (PLGA) and poly(D,L-lactide) (PDLLA). Triblock copolymer/polymers/solvent weight ratio: 1/10/90, 1.5/15/85 and 2/20/80, dissolved in methylene dichloride, vigorous stirring. Diameters: 740, 530 and 470 nm for MPEG-PLGA, PLGA, and PDLLA. | 10 g/L triclosan (TCS). Maximum adsorption capacities MPEG-PLGA, PLGA and PDLLA: 130, 93 and 99 mg/g. Removal efficiency: over 90% with decreasing at 80% in case of competitive adsorption. |
Adsorption [229] | Fiber-adsorbent from cellulose acetate (CA) membrane via electrospinning. Method: homogeneous CA solution from cellulose acetate added to 4:1 chloroform/methanol mixture, stirring and sonication. Adding under vigorous stirring of 1-Butyl-3-methylimidazolium hexafluorophosphate (BMIPF6) used as ionic liquid to obtain a homogeneous CA-BMIPF6 solution as precursor. Diameters: 100−400 nm, more than 10 cm long. Average pores diameter: 3 nm. | 25 mg/L Triclosan (TCS), Adsorption capacity: 797.7 mg/g. |
Adsorption [230] | Fiber membrane with interconnected mesopores based on an electrospun zeolitic imidazolate framework-8 (ZIF-8)/PAN fibers integrated into PVP. Method: zinc salt and 2-methylimidazole as precursors into PVP to obtain electrospun fiber membrane, PVP removal at 50 °C for 24 h, membrane soaked into methanol 3 days, dried at 100 °C in vacuum. Diameters: 36–112 nm. | TC, maximum adsorption capacity: 885.24 mg/g, after 4 h. Adsorption efficiency 97% after 10 cycles. |
Adsorption [231] | Alkali lignin AL and poly (vinyl alcohol) PVA nanofibers. Method: mixing 2 solutions: AL dissolution in NaOH 1 M (1) and PVA in water (2), heated to 80 °C, 60 min. Mass ratio of 1:1 of (1): (2) for electrospinning, refrigerated 4 °C max 1 month. Electrospun fiber stabilization: heating at 160 °C, 3 h, membranes immersion into sodium citrate buffer pH 4.5, 3 h. Diameters: 183 ± 5 nm by electrospinning, 156 ± 5 nm by thermal process, 188 ± 10 nm by chemical stabilization. | Fluoxetine (FLX), venlafaxine (VEN), carbamazepine (CAR), ibuprofen (IBU). Individual adsorption: FLX: 78.24 ±1.35 mg/g (78%), VEN: 49.76 ± 2.80, CAR: 8.04 ± 0.01, IBU: 5.00 ± 0.46 mg/g. Desorption tests: 90% recovery. |
Adsorbtion [232] | 4 types of nanofiber mats metalorganic frameworks (MOFs): polydopamine (PDA) modified electrospun PVA/SiO2 as organic inorganic hybrid nanofiber. Method: electrospun PVA/SiO2 nanofibers immersed in PDA 12 h, autoclaved with ionic liquids: MIL-53(Al), Uio-66-NH2 and NH2-MIL-125(Ti). Deposition efficiency: MIL-53(Al) > NH2-MIL-125(Ti) > UiO-66-NH2 > ZIF-8. Diameters: 0.3–0.5 mm thick for PVA/SiO2 nanofiber mat, >1000 nm for 3D-PDA-modified PVA/SiO2 nanofibers. | Chloramphenicol (CAP), equilibrium adsorption capacities: ZIF-8 (13.9 mg/g) < UiO-66-NH2 (25.1 mg/g) < NH2-MIL-125(Ti) (49.5 mg/g) < MIL-53(Al) (79.5 mg/g). |
Adsorption [233] | Fe3O4/polyacrylonitrile (PAN) composite nanofibers. Method: two-step process: electrospinning (8 h) and solvothermal method. The fibrous mat collected after electrospinning cut to 5 cm × 2 cm, immersed in FeCl3 dissolved in DEG, added Na3Cit and anhydrous sodium acetate, 80 °C, autoclave. Average diameter: 500 nm (single NF), 60 nm (Fe3O4 NPs), 20 nm (coating thickness). | TC. Maximum adsorption capacity (Langmuir isotherm): 257.07 mg/g, pH 6. 5 cycles of adsorption-desorption. |
Adsorption [233] | polyimide (PI)-based carbon nanofibers (CNFs). Method: electrospining polyamic acid solutions, thermal imidization and carbonization. Polyamic acid PAA nanofibers dried overnight, imidization of PAA fibers and carbonization at different temperatures and time intervals. High specific surface area: 715.89 m2/g. | 2,4-DCP and TC, different temperatures. Maximum adsorption: 483.09 mg/g (2,4-DCP), 146.63 mg/g (TC). Desorption: 5 consecutive cycles. |
Adsorption [234] | Zeolitic imidazolate framework-8 (ZIF-8) functionalized composite electrospun fiber. Method: adsorbent polydopamine (PDA) onto the surface of PAN electrospun nanofibers (PDA/PAN). PDA/PAN fibers immersed in Zn (NO3)2 solution 1 h, room temperature, adding 2-methylimidazole solution, heated, 40 min (ZIF-8 crystals onto fiber surface), washed and dried overnight. Average diameter: 349 nm. | TC: 478.18 mg/g, adsorption efficiency: 85%. 5 five adsorption/desorption cycles. |
Adsorption [235] | Electrospun montmorillonite-impregnated cellulose acetate nanofiber membranes (MMT-CA-NFM). Method: fine powder MMT onto CA nanofibers, with acetone and dimethyl acetamide as solvents, stirring, 2 days. Diameters: 24–41 nm. | Ciprofloxacin (CIP). Adsorption efficiency: 76% pH 6. Maximum adsorption capacity: 13.8 mg/g. Reusability capacity. |
Adsorption [236] | Graphene oxide (GO)/poly(vinylidene fluoride) (PVDF) electrospun nanofibrous membranes (ENMs). Method: GO-PVDF blend solution from mixture of PVDF in N,N-Dimethylformamide (DMF) and acetone with GO, deposited on aluminum foil. Average diameter: 161.67 ± 61.5 nm. | 5–500 mg/L TC The maximum TC adsorption capacity of GO is 720.26 mg/g. The maximum experimental TC removal capacity (qa,exp) was 17.92 mg/g with 1.5 wt% of GO (GO1.5/PVDF) ENMs. |
Adsorption [237] | Polyimide modified carbon nanofibers composites. Method: electrospinning, facile hydrothermal process and carbonization. β-cyclodextrin (β-CD) as carbon precursor for hydrothermal carbon nanoparticles (HTCNPs) and PI (polyimide) fibers as support scaffold for HTCNPs via hydrothermal process, carbonization under nitrogen atmosphere. Diameters: 2–10 nm (mesoporus). | TC, maximum adsorption capacities: 543.48 mg/g, removal efficiency: 82.32%. The basic fiber skeleton of porous structure maintained for 5 consecutive cycles. |
Adsorption [238] | Carbon nanofibers (CNFs). Method: PAN polymer solutions in N,N-dimethylformamide (DMF), stirring 3 h, 75 °C, via electrospinning and thermal treatment. Fibers carbonized at 900 °C, 1 h, dried at 110 C, 24 h. Average diameter: 500 nm. | CIP, BPA, 2-chlorophenol (2-CP). Maximum adsorption capacities: 2-CP (6.18 mmol/g) > BPA (4.82 mmol/g) > CIP (0.68 mmol/g). |
Adsorption [239] | Electrospun PVA fibers. Method: Mondia whitei polymeric extract frozen at −80 °C, dried, blended with PVA at different ratios, dissolved in formic acid, stirring, 60 °C, 2 h. Average diameter: 99 ± 0.023 nm. | 0.5–1.25 mg/L for each 13 antiretrovirals and related drugs from wastewater (influent and effluent). Maximum adsorption capacity: 75–320 mg/g. The removal efficiency after spiking 25 mL of the real wastewater sample (effluent and influent) with 10 mg/L of standard mixture solutions. |
Adsorption [140,184] | PVA nanofibers. Methoad: lkali lignin (AL) and PVA solutions (50:50). | Fluoxetine, removal efficiency: 70%. |
Adsorption [227] | Carbon nanofiber (CNF)–carbon nanotube (CNT) composite based on PAN polymer solution via electrospinning and carbonization. | 10 CECs (atrazine, sulfamethoxazole etc.). Removal efficiency > 90%. |
Adsorption [181] | PAN–CD nanofibers (PAN nanofiber modified with cyclodextrin). Diameters: 497 nm. | 10 mg/L atrazine. Removal efficiency: 91.46%. |
Adsorption [182] | Cellulose nanofibers incorporating CD. | (BPA), bisphenol S (BPS), and bisphenol F (BPF). Maximum adsorption capacities: 50.37 mg/g (BPA), 48.52 mg/g (BPS), 47.25 mg/g (BPF), pH 7. 5 cycles adsorption-desorption. |
Adsorption [183,240] | UF membrane. Method: electrospinning for polyethersulfone (PES) nanofibers preparation with CD deposited over PES, with different crosslinking agents (epichlorohydrin, trimethylolpropane, etc.). | Steroid hormones. Removal efficiency: 95%, estradiol, 5 h. |
Adsorption [218] | PVDF photocatalytic stainless-steel filter. Method: hot-pressed TiO2 nanofibers over metal filter with PVDF as binder. | Cimetidine. Removal efficiency: 90% for 29 µm thickness. |
Adsorption [219] | PAN nanofibers dopped with TiO2 nanoparticles. Method: TiO2 NPs dispersed in polymeric matrix with phthalic acid as dispersant. | 0.5 µM CECs (atrazine, benzotriazole, caffeine, carbamazepine, metoprolol, naproxen, sulfamethoxazole). Efficiency: 90%. |
Adsorption with oxidation [223] | Hollow and porous Fe-doped PAN nanofibers. Method: electrospinning and thermal treatment, activating with peroxymonosulfate (PMS). | BPA. Adsorption and oxidation efficiency: 100%, 6 min. |
Degradation [225] | PVP Fe/Co alloy on PVP nanofibers. | TC, degradations: 100%, 93.12%, 88.38% at 30 mg/L, 40 mg/L, 50 mg/L. |
Degradation [39] | Nanofiber Photocatalyst. Method: disperse graphitic carbon nitride (g-C3N4) into recycled polyethylene terephthalate (PET) solution, electrospinning and hydrothermal treatment. Diameters: 3.7 nm thickness for as-prepared g-C3N4. | 2 × 10−5 mol/L Sulfaquinoxaline (SQX), sulfadiazine (SD), sulfamerazine (SMZ). Degradation rate: 100% SQX, solar irradiation, 2.5 h and about 98% for SD and SMZ at different solar irradiation times. |
Degradation [223] | Porous and hollow one-dimension Fe/N-doped carbon nanofibers (Fe/NCNFs-9). Method: immobilizing Fe-MIL-101 on PAN nanofibers (Fe-MIL-101@PAN) via electrospinning, 900 °C carbonizing. Diameter: Fe-MIL-101: 530 nm. | 20 mg/L BPA completely degraded with PMS peroxymonosulfate (0.2 g/L) as activator and Fe/NCNFs-9 (0.4 g/L) within 6 min. |
Antibacterial degradation [241] | PSf/TiO2/AgNPs nanocomposite substrates as FO membrane. Method: TiO2/AgNP nanocomposite particles using dopamine hydrochloride (DOPA), dispersion with polysulfone PSf, electrospuned on PET nonwoven scaffold. | Tetracycline-resistant genes (TRGs). The rejection under AL-FS (active layer-facing feed solution) and AL-DS (active layer-facing draw solution): 28.53% and 24.48%. |
Electrochemical degradation [224] | ATO/RO composite nanofibers as dimensionally anodes. Method: RuO2 (RO) as primary electrocatalyst with Sb-doped SnO2 (ATO) as support material via dual nozzle electrospinning. Fiber mats preparation: 200 C for 2 h, and 475 °C for 12 h. Avg diameter: 172 nm, primary nanoparticles: 10–30 nm. | 0.25 mM BPA, degradation with current density of 3 mA·cm−2 and ATO/RO (30:1): 100%. |
Electrochemical degradation [225] | Electrospun composite nanofibers base on iron/cobalt alloy nanoparticles (Fe/Co-CNFs) integrated into PVP. Method: 5.0 wt% of ferric and cobalt nitrate as precursor, direct calcination of PVP composite nanofibers, 800 °C, 30 min, reduction atmosphere. | TC, degradation: 97.55%, after 10 cycles of electrocatalytic process, 1.0 V (vs. SCE) voltage, pH 5.0, 0.1 mol L−1 Na2SO4 as electrolyte. |
Electro-Fenton catalyst [242] | Electrospun three-dimensional (3D) nanofiber network. Method: water-resistant 3D PVA nanofiber network preparation from PVA/urea solution, crosslinked in ethanol solution containing glutaraldehyde and HCl. Spongy zero-valent iron (ZVI) preparation: Fe(III) ions reduced complexed with 3D PVA nanofiber network using NaBH4 solution, washed, frozen 2 h. | Sulfathiazole (STZ). Coupled adsorption and electro-catalytic oxidation rate: almost 100%, 5 min. 3D-E-Fenton experiments: 50% STZ adsorption, and total adsorption at 240 min. |
Electrochemical oxidation [224] | Antimony tin oxide doped ruthenium oxide (ATO-RO) nanoparticles incorporated into PVP nanofibers via electrospinning for nanofiber used as anode material for electrochemical oxidation. | 0.25 mM BPA, complete degradation, 20 min electrolysis at 3 mA/cm2 current density. |
Electrocoagulation [226] | PVC tubular carbon nanofibers with activated alumina over PVC support as the anode material for an electrocoagulation system. | caffeine, sulfamethoxazole, acetaminophen. Degradation efficiencies: 95.8%, 94.9%, 79.8%. |
Photodegradation [243] | 8.4 wt% TiO2 coaxial nanofibers using PVA as carrier polymer. | Isoproturon. 38% photocatalytic activity. |
Photodegradation [216] | PVDF/TiO2 Nanocomposite membrane: electrospun titanium dioxide (TiO2) nanofibers onto PVDF flat sheet membrane. Method: hot press technique at 100 °C, 160 °C and 180 °C for 30 min. Photocatalyst TiO2 nanofibers are stabilized onto PVDF membrane as support. | 10 ppm BPA aqueous solution. Degradation efficiency: 63–85%, under UV radiation. |
Photodegradation [217,244] | ZnO-Carbon composite nanofibers. Method: different precursor polymers solutions (PAN, PS, PVP) dissolved in DMF, addition of 8 wt% Zn(acac)2. Final products: 1D ZnO-X nf (X: PAN, PS or PVP). | 30 ppm Caffeine (pharmaceutical drug). Degradation efficiency: 80% for 1D ZnO-PS nanofiber. |
Photodegradation and oxidation [218] | Photo-catalytical active stainless-steel filter (P-SSF). Method: electrospun TiO2 nanofibers integrated onto SSF surface through hot-press process, using poly (vinylidene fluoride) (PVDF) nanofibers interlayer as binder. Thickness: electrospinning 0.75, 1.5, 2.25, 3.0, and 5.0 mL PVDF solution for 12, 22, 32, 42, and 64 µm. PVDF NF Diameters: 0.15–0.78 µm. | Pharmaceuticals. Cimetidine degradation: 90%, at 10 L/m2 h and 0.1–0.2 kPa. TiO2 NFs thickness from 10 to 29 µm with oxidation of cimetidine from 42% to 90%. Degradation: cimetidine > propranolol > acetaminophen > sulfamethoxazole. |
Photodegradation [219] | Carbon/TiO2 (C/TiO2) nanofiber composite filters. Method: PAN nanofibers with embedded titanium dioxide (TiO2) nanoparticles via electrospinning, carbonization. Filter thickness: 300–1800 μm. | 0.5 μM for each 8 organic micropollutants (atrazine, benzotriazole, caffeine, carbamazepine, DEET, metoprolol, naproxen, and sulfamethoxazole). Degradation: 40–90%, for 300 μm thick filter. |
Photodegradation [245] | Porous nanofibers (g-C3N4@PET). Method: polyethylene glycol (PEG) and polyethylene terephthalate (PET), and graphitic carbon nitride (g-C3N4) via electrospinning, post-processing for PEG removal. Diameters: 2–50 nm. | sulfaquinoxaline (SQX), sulfachloropyridazine, sulfamerazine, sulfadiazine, sulfamethoxydiazine, p-benzoquinone, p-chlorophenol. Degradation: 90%. SQX: 10 consecutive cycles. |
Photodegradation [216] | Photocatalysts membrane. Method: PVDF as support for hot-pressed TiO2 nanofibers. | 10 mg/L BPA, Degradation efficicncy: 63–85%, UV light. |
Photodegradation [217] | ZnO–carbon composite nanofibers. Method: electrospinning with different polymeric precursors (PAN, PS, and PVP), carbon doping efficiency depend on the precursors. | Caffeine, diclofenac. Degardation rate: 80.4%, 2 h for caffeine, 79.5% for diclofenac. |
Adanced Photodegradation coupled with H2O2 [241] | Polylactic acid (PLA)/TiO2 hybrid nanofibers deposited on fiberglass supports. Method: TiO2 nanoparticles added to the PLA solution mixed with acetone/DMF (3:2 ratio), 60 °C, 600 rpm, 4 h. TiO2/PLA solution electrospun onto PLA surface as adhesive between nanofibers and fiberglass surface. | 300 mg/L Ampicillin, pH 3 with peroxide, 2 cycles. Complete degradation. Limitation: degradation of PLA under the photocatalytic conditions. |
Antibacterial Photodegradation [220] | Soft and heterostructured g-C3N4@Co-TiO2 (CNCT) nanofibrous membranes. Method: electrospinning and thermal polymerization process for Co-TiO2 nanofiber: PVP ethanol solution with TiO2 sol (1/1 ratio), stirred 1 h, electrospinning, fibrous membranes obtained calcined at 600 °C, 60 min, air. TiO2 sol preparation: mixture of TIP, Co(NO3)2·6H2O, EtOH, and HAc (1/0.03/3/3 ratio). In situ synthesized g-C3N4 nanoshell wrapped onto Co-TiO2 nanofiber as core-shell quantum heterojunction. Diameters: 305 nm Co-TiO2, 320 and 338 nm for CNCT-3 and CNCT-5 membranes (different melamine content). | Antibiotics (20 mg/L, pH 7): tetracycline hydrochloride (TC-H), doxycycline hydrochloride (DC-H), oxytetracycline hydrochloride (OTC-H), CIP. Degradation efficiency: 82.3 (CNCT-1), 90.8 (CNCT-3), and 75.7% (CNCT-5) for TC-H, 60 min. 60.2, 75.3, 82.2% for CIP, OTC-H, DC-H, visible light, 60 min. |
Type of Process | Membrane Material | EP Type/Category, Source | Performances/Limitations |
---|---|---|---|
MF [2,246,247,248] | polyether sulfone (PES), cellulose acetate (CA), nitrocellulose, polyester, regenerated cellulose, polyamide. | 0.2 μM (46–59 μg/L) compound spiked solutions: estrone (E1), 17β-estradiol (E2), 17α-ethynylestradiol (EE2), BPA; domestic wastewater. | E1 (0.44 μg/cm2), E2 (0.82 μg/cm2), EE2 (1.23 μg/cm2), BPA (0.32 μg/cm2). Higher concentrations causing membrane fouling. |
MF [249] | zeolite imidazolate metal-organic framework (ZIF-8) nanoparticles incorporated into poly(tetrafluoroethylene) (PTFE) double layer polymer membrane. | hormones: progesterone (PGS) (0.5–5.0 mg/L); waste streams | 95% PGS. High adsorption capacity and fouling tolerance, high porosity, low cost, efficient regeneration, ease operation. |
MF [179,250,251,252] | hybrid composite membranes: TiO2/PES, TiO2/PVDF. | diclofenac (25 mg/L), ibuprofen (100 mg/L); wastewaters. | Diclofenac: 68% in 120 min for TiO2/PES membrane; 55% in 120 min for TiO2/PVDF membrane. Ibuprofen: 65% in 120 min for TiO2/PES membrane; 45% in 120 min for TiO2/PVDF membrane. Recycle the photocatalyst TiO2. |
MF-RO [252,253,254,255,256,257] | Hybrid hollow fiber MF-RO membranes: MF polysulfone, RO polyamide. | Pharmaceuticals: carbamazepine, diclofenac, atenolol, azithromycin erythromycin etc., and pesticides between 162–240 ng/L. wastewater treatment plant. | Pharmaceuticals and pesticides: 98% and 100% (MF permeate: higher than 100 ng/L, RO ng/L or below the LOQs). MF-RO 97% for the most pharmaceuticals. RO pesticides: 67% 90%, 88% for diazinon, diuron, and 2,4 D.78 and 99% for MCPA and other pesticides, 97, 98% for MCPA and mecoprop. |
MF [258] | CNT composite PVDF membranes. | Triclosan (TCS), acetaminophen (AAP), ibuprofen (IBU) 1 mg/L. | 10–95%, increase with number of aromatic rings (AAP/IBU/TCS). |
NF and RO [24] | polyamide thin-film composite for both NF and RO. | analgesics and anti-inflammatory drugs (ketoprofen < MQL–314 ng/L, diclofenac 60.2–219.4 ng/L, propyphenazone 51.5–295.8 ng/L), b-blockers, antiepileptic drug carbamazepine 8.7–166.5 ng/L, antibiotics, lipid regulator (gemfibrozil), diuretic as hydrochlorothiazide (58.6–2548 ng/L). full-scale drinking water treatment plant (DWTP) using groundwater. | NF and RO membranes: acetaminophen (44.8–73%), gemfibrozil (50–70%) mefenamic acid (30–50%). carbamazepine, hydrochlorothiazide, propyphenazone and glibenclamide (>85%), ketoprofen, diclofenac, and sulfamethoxazole (R > 95%), sotalol and metoprolol as blockers (R > 90%). |
UF with coagulation and disk filtration [259] | hollow-fiber PVDF UF membrane and spiral-wound polyamide type TFC RO membranes combined with coagulation and disk filtration (CC–DF). | Micropolluants: atenolol (ATE), carbamazepine (CBZ), caffeine (CAF), diclofenac (DIC), dilatin (DIL), florfenicol (FLO), and sulfamethoxazole (SMX), A pilot-scale municipal wastewater system. | UF membrane (<17%), the RO membrane high removal efficiencies (91–98%), especially for negatively charged micropolluants (i.e., DIC and SMX) compared to the noncharged micropollutatns (CBZ, CAF, DIL) and/or positively charged micropollutants. |
UF/NF [260] | micellar-enhanced ultrafiltration (MEUF) with polyethersulfone (UF) and cellulose acetate, polysulfone–polyamide thin film (NF). | 11 ECs: acetaminophen (ACET), metoprolol (MET), caffeine (CAF), antipyrine (ANT), sulfamethoxazole (SUL), flumequine (FLUM), ketorolac (KET), atrazine (ATR), isoproturon (ISOP), 2-hydroxybiphenyl (HYD) and diclofenac (DIC), 0.5 mg/L. Cork processing wastewater. | Cationic surfactants cetyl pyridinium chloride (CPC)/cetyl trimethyl ammonium bromide (CTAB), pH 7.9 for: ATR 62/65.8% and ISOP 68.8/67.5%, Retention 95/85%: DIC > KET > SUL > FLUM (accordingly to the pKa values). |
UF [261] | thin-film composite, cross-linked aromatic polyamide top layer, and PT polyethersulfone membrane. | amoxicillin, naproxen, metoprolol and phenacetin. | The retention coefficients with the UF membranes followed the sequence naproxen > metoprolol > amoxicillin > phenacetin, and with the NF membranes:amoxicillin > naproxen > metoprolol > phenacetin. |
NF [262,263] | commercial NF-270, 800 kPa pressure. | Carbamazepine, BPA, triclosan, butyl benzyl phthalate, and 4- nonylphenol (100 ng/L). Untreated wastewater from agricultural and urban wastes. Hormones and tert-butyl phenol secondary wastewater. | Removal increased for hydrophobic compounds due to adsorption onto membranes (>90%), while water solubility reduced the retention of BPA. Hormones and tert-butyl phenol removal up to 90%. |
NF [264] | commercial NF-90 and NF-270 membranes. | sulfamethoxazole, diclofenac sodium, hydrochlorothiazide, 4-acetamidoantipyrine, nicotine and ranitidine hydrochloride. Wastewater streams. | Solute retention for NF-90: >95%, NF-270: from 75% (for nicotine) to 95% (for ranitidine hydrochloride). |
NF [265] | polyamide membrane (comparison with polysulfone, polyester membranes). | estrone and estradiol Aqueous solutions. | Polyamide NF membranes the highest hormone adsorption. |
NF [266,267] | grafted polyamide membranes with methacrylic acid cross-linked with ethylene diamine (ED). | Pharmaceutically active compounds: BPA, ibuprofen and salicylic acid. | 95% rejection for BPA, 74% rejection with pristine membrane. |
NF [268] | NF hollow fiber membrane dry-jet wet spinning using a hyperbranched polyethyleneimine (PEI) as cross-linker. | 20 ppm CPF. Synthetic solution. | pH 3 and positively charged PEI modified NF hollow fiber membranes: 99% rejections. pH increased with rejection decreased (CPF molecules become less positively charged). |
NF [269] | thin polyamide skin layer on top of a microporous polysulfone support. | sulfamethoxazole, carbamazepine, and ibuprofen. Pharmaceuticals spiked, 500 g/L. | Sulfamethoxazole and ibuprofen (negatively charged) retention increased with ionic strength increasing. |
NF [270] | commercial NF membrane based on TFC. | norfloxacin (NOR), ofloxacin (OFL), roxithromycin (ROX), azithromycin. Wastewater treatment plant. | 98% rejections. UV/O3 process, removal efficiencies: 87%, with 40% dissolved organic carbon (DOC), 58% acute toxicity reduction. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matei, E.; Covaliu-Mierla, C.I.; Ţurcanu, A.A.; Râpă, M.; Predescu, A.M.; Predescu, C. Multifunctional Membranes—A Versatile Approach for Emerging Pollutants Removal. Membranes 2022, 12, 67. https://doi.org/10.3390/membranes12010067
Matei E, Covaliu-Mierla CI, Ţurcanu AA, Râpă M, Predescu AM, Predescu C. Multifunctional Membranes—A Versatile Approach for Emerging Pollutants Removal. Membranes. 2022; 12(1):67. https://doi.org/10.3390/membranes12010067
Chicago/Turabian StyleMatei, Ecaterina, Cristina Ileana Covaliu-Mierla, Anca Andreea Ţurcanu, Maria Râpă, Andra Mihaela Predescu, and Cristian Predescu. 2022. "Multifunctional Membranes—A Versatile Approach for Emerging Pollutants Removal" Membranes 12, no. 1: 67. https://doi.org/10.3390/membranes12010067
APA StyleMatei, E., Covaliu-Mierla, C. I., Ţurcanu, A. A., Râpă, M., Predescu, A. M., & Predescu, C. (2022). Multifunctional Membranes—A Versatile Approach for Emerging Pollutants Removal. Membranes, 12(1), 67. https://doi.org/10.3390/membranes12010067