TiO2–Based Nanofibrous Membranes for Environmental Protection
Abstract
:1. Introduction
2. Electrospinning/Electrospraying Techniques
2.1. Electrospinning
2.2. Electrospraying
2.3. Techniques for TiO2 Electrospun Nanofiber Fabrication
2.3.1. Electrospun TiO2 Nanofibers
2.3.2. TiO2 Nanofibers
2.3.3. Electrospun TiO2 Modification
3. Applications of Electrospun Nanofibrous Membranes in Environmental Protection
3.1. Dyes Degradation
3.2. Herbicides
3.3. Polymers
3.4. Pharmaceuticals Removal from Wastewater
4. Conclusions
5. Challenges
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xiao, J.; Lv, W.; Song, Y.; Zheng, Q. Graphene/nanofiber aerogels: Performance regulation towards multiple applications in dye adsorption and oil/water separation. Chem. Eng. J. 2018, 338, 202–210. [Google Scholar] [CrossRef]
- Xiao, X.; Sun, Y.; Sun, W.; Shen, H.; Zheng, H.; Xu, Y.; Zhao, J.; Wu, H.; Liu, C. Advanced treatment of actual textile dye wastewater by Fenton-flocculation process. Can. J. Chem. Eng. 2017, 95, 1245–1252. [Google Scholar] [CrossRef]
- Ma, P.; Yu, Y.; Xie, J.; Fu, Z. Ag3PO4/CuO composites utilizing the synergistic effect of photocatalysis and Fenton-like catalysis to dispose organic pollutants. Adv. Powder Technol. 2017, 28, 2797–2804. [Google Scholar] [CrossRef]
- Liu, L.; Liu, Z.; Bai, H.; Sun, D.D. Concurrent filtration and solar photocatalytic disinfection/degradation using high-performance Ag/TiO2 nanofiber membrane. Water Res. 2012, 46, 1101–1112. [Google Scholar] [CrossRef]
- Chen, Y.; Shen, C.; Wang, J.; Xiao, G.; Luo, G. Green synthesis of Ag–TiO2 supported on porous glass with enhanced photocatalytic performance for oxidative desulfurization and removal of dyes under visible light. ACS Sustain. Chem. Eng. 2018, 6, 13276–13286. [Google Scholar] [CrossRef]
- Lin, Z.; Wang, W.; Huang, R. Study of oily sludge treatment by centrifugation. Desalin. Water Treat. 2017, 68, 99–106. [Google Scholar] [CrossRef]
- Tanudjaja, H.J.; Hejase, C.A.; Tarabara, V.V.; Fane, A.G.; Chew, J.W. Membrane based separation for oily wastewater: A practical perspective. Water Res. 2019, 156, 347–365. [Google Scholar] [CrossRef]
- Ulbricht, M. Advanced functional polymer membranes. Polymer 2006, 47, 2217–2262. [Google Scholar] [CrossRef] [Green Version]
- Ravanchi, M.T.; Kaghazchi, T.; Kargari, A. Application of membrane separation processes in petrochemical industry: A review. Desalination 2009, 235, 199–244. [Google Scholar] [CrossRef]
- Ahmed, F.E.; Lalia, B.S.; Hashaikeh, R. A review on electrospinning for membrane fabrication. Chall. Appl. Desalin. 2015, 356, 15–30. [Google Scholar] [CrossRef]
- Bhardwaj, N.; Kundu, S.C. Electrospinning: A fascinating fiber fabrication technique. Biotechnol. Adv. 2010, 28, 325–347. [Google Scholar] [CrossRef]
- Shah, R.N.; Shah, N.A.; Del Rosario Lim, M.M.; Hsieh, C.; Nuber, G.; Stupp, S.I. Supramolecular design of self-assembling nanofibers for cartilage regeneration. Proc. Natl. Acad. Sci. USA 2010, 107, 3293–3298. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, A.; Arino, K. Polypropylene nanofiber sheets prepared by CO2 laser supersonic multi-drawing. Eur. Polym. J. 2012, 48, 1169–1176. [Google Scholar] [CrossRef]
- Zhao, J.; Han, W.; Tu, M.; Huan, S.; Zeng, R.; Wu, H.; Cha, Z.; Zhou, C. Preparation and properties of biomimetic porous nanofibrous poly(L-lactide) scaffold with chitosan nanofiber network by a dual thermally induced phase separation technique. Mater. Sci. Eng. C Mater. Biol. Appl. 2012, 32, 1496–1502. [Google Scholar] [CrossRef]
- Wang, Y.; Shi, Y.; Pan, L.; Yang, M.; Peng, L.; Zong, S.; Shi, Y.; Yu, G. Multifunctional superhydrophobic surfaces templated from innately microstructured hydrogel matrix. Nano Lett. 2014, 14, 4803–4809. [Google Scholar] [CrossRef]
- Huang, B.; Wang, X.; Fang, H.; Jiang, S.; Hou, H. Mechanically strong sulfonated polybenzimidazole PEMs with enhanced proton conductivity. Mater. Lett. 2019, 234, 354–356. [Google Scholar] [CrossRef]
- Yung, L.; Ma, H.; Wang, X.; Yoon, K.; Wang, R.; Hsiao, B.S.; Chu, B. Fabrication of thin film nanofibrous composite membranes by interfacial polymerization using ionic liquids as additives. J. Membr. Sci. 2010, 365, 52–58. [Google Scholar] [CrossRef]
- Nasir, A.M.; Awang, N.; Jaafar, J.; Ismail, A.F.; Othman, M.H.D.; Rahman, M.A.; Aziz, F.; Yajid, M.A.M. Recent progress on fabrication and application of electrospun nanofibrous photocatalytic membranes for wastewater treatment: A review. J. Water Process Eng. 2021, 40, 1–22. [Google Scholar] [CrossRef]
- Zong, H.; Xia, X.; Liang, Y.; Dai, S.; Alsaedi, A.; Hayat, T. Designing function-oriented artificial nanomaterials and membranes via electrospinning and electrospraying techniques. Mater. Sci. Eng. 2018, C92, 1075–1091. [Google Scholar] [CrossRef]
- Vild, A.; Teixeira, S.; Kühn, K.; Cuniberti, G.; Sencadas, V. Orthogonal experimental design of titanium dioxide—Poly(methyl methacrylate) electrospun nanocomposite membranes for photocatalytic applications. J. Environ. Chem. Eng. 2016, 4, 3151–3158. [Google Scholar] [CrossRef] [Green Version]
- Liang, X.; Yang, Y.; Jin, X.; Huang, Z.; Kang, F. The high performances of SiO2/Al2O3 coated electrospun polyimide fibrous separator for lithium-ion battery. J. Membr. Sci. 2015, 493, 1–7. [Google Scholar] [CrossRef]
- Yang, H.; Jiang, S.; Fang, H.; Hu, X.; Duan, G.; Hou, H. Molecular orientation in aligned electrospun polyimide nanofibers by polarized FT-IR spectroscopy. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2018, 200, 339–344. [Google Scholar] [CrossRef]
- Zhang, L.; Aboagye, A.; Kelkar, A.; Lai, C.; Fong, H. A review: Carbon nanofibers from electrospun polyacrylonitrile and their applications. J. Mater. Sci. 2013, 49, 463–480. [Google Scholar] [CrossRef]
- Song, R.; Yan, J.; Xu, S.; Wang, Y.; Ye, T.; Chang, J.; Deng, H.; Li, B. Silver ions/ovalbumin films layer-by-layer self-assembled polyacrylonitrile nanofibrous mats and their antibacterial activity. Colloids Surf. B Biointerfaces 2013, 108, 322–328. [Google Scholar] [CrossRef]
- Garain, S.; Jana, S.; Sinha, T.K.; Mandal, D. Design of in situ poled Ce3+-doped electrospun PVDF/graphene composite nanofibers for fabrication of nanopressure sensor and ultrasensitive acoustic nanogenerator. ACS Appl. Mater Interfaces 2016, 8, 4532–4540. [Google Scholar] [CrossRef]
- Lv, D.; Wang, R.; Tang, G.; Mou, Z.; Lei, J.; Han, J.; De Smedt, S.; Xiong, R.; Huang, C. Ecofriendly electrospun membranes loaded with visible-light-responding nanoparticles for multifunctional usages: Highly efficient air filtration, dye scavenging, and bactericidal activity. ACS Appl. Mater. Interfaces 2019, 11, 12880–12889. [Google Scholar] [CrossRef] [Green Version]
- Zhou, C.; Shi, Q.; Guo, W.; Terrell, L.; Qureshi, A.T.; Hayes, D.J.; Wu, Q. Electrospun bio-nanocomposite scaffolds for bone tissue engineering by cellulose nanocrystals reinforcing maleic anhydride grafted PLA. ACS Appl. Mater. Interfaces 2013, 5, 3847–3854. [Google Scholar] [CrossRef]
- Scholten, E.; Bromberg, L.; Rutledge, G.C.; Hatton, T.A. Electrospun polyurethane fibers for absorption of volatile organic compounds from air. ACS Appl. Mater. Interfaces 2011, 3, 3902–3909. [Google Scholar] [CrossRef] [Green Version]
- Goetz, L.A.; Jalvo, B.; Rosal, R.; Mathew, A.P. Superhydrophilic anti-fouling electrospun cellulose acetate membranes coated with chitin nanocrystals for water filtration. J. Membr. Sci. 2016, 510, 238–248. [Google Scholar] [CrossRef]
- Lu, C.; Chiang, S.W.; Du, H.; Li, J.; Gan, L.; Zhang, X.; Chu, X.; Yao, Y.; Li, B.; Kang, F. Thermal conductivity of electrospinning chain-aligned polyethylene oxide (PEO). Polymer 2017, 115, 52–59. [Google Scholar] [CrossRef]
- Xu, T.; Miszuk, J.M.; Zhao, Y.; Sun, H.; Fong, H. Electrospun polycaprolactone 3D nanofibrous scaffold with interconnected and hierarchically structured pores for bone tissue engineering. Adv. Healthc. Mater. 2015, 4, 2238–2246. [Google Scholar] [CrossRef]
- Chlanda, A.; Kijenska, E.; Rinoldi, C.; Tarnowski, M.; Wierzchon, T.; Swieszkowski, W. Structure and physico-mechanical properties of low temperature plasma treated electrospun nanofibrous scaffolds examined with atomic force microscopy. Micron 2018, 107, 79–84. [Google Scholar] [CrossRef]
- Liu, Z.; Jia, L.; Yan, Z.; Bai, L. Plasma-treated electrospun nanofibers as a template for the electrostatic assembly of silver nanoparticles. New J. Chem. 2018, 42, 11185–11191. [Google Scholar] [CrossRef]
- Higaki, Y.; Kabayama, H.; Tao, D.; Takahara, A. Surface functionalization of electrospun poly(butylene terephthalate) fibers by surface-initiated radical polymerization. Macromol. Chem. Phys. 2015, 216, 1103–1108. [Google Scholar] [CrossRef]
- Zhu, M.; Xiong, R.; Huang, C. Bio-based and photocrosslinked electrospun antibacterial nanofibrous membranes for air filtration. Carbohydr. Polym. 2019, 205, 55–62. [Google Scholar] [CrossRef]
- Zhang, M.; Ma, W.; Wu, S.; Tang, G.; Cui, J.; Zhang, Q.; Chen, F.; Xiong, R.; Huang, C. Electrospun frogspawn structured membrane for gravity-driven oil-water separation. J. Colloid Interface Sci. 2019, 547, 136–144. [Google Scholar] [CrossRef]
- Zhang, D.; Karki, A.B.; Rutman, D.; Young, D.P.; Wang, A.; Cocke, D.; Ho, T.H.; Guo, Z. Electrospun polyacrylonitrile nanocomposite fibers reinforced with Fe3O4 nanoparticles: Fabrication and property analysis. Polymer 2009, 50, 4189–4198. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, R.; Chao, S.; Sun, B.; Wang, C.; Li, X. Polydopamine coating assisted synthesis of MnO2 loaded inorganic/organic composite electrospun fiber adsorbent for efficient removal of Pb2+ from water. Chem. Eng. J. 2018, 344, 277–289. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, J.; Guo, Y.; Zhang, H.; Cao, J.; Xu, Q.; Wang, S.; Wang, B.; Liu, Z. Effects of various factors on the modification of carbon nanotubes with polyvinyl alcohol in supercritical CO2 and their application in electrospun fibers. Chem. Res. Chin. Univ. 2014, 30, 690–697. [Google Scholar] [CrossRef]
- Shibuya, M.; Park, M.J.; Lim, S.; Phuntsho, S.; Matsuyama, H.; Shon, H.K. Novel CA/PVDF nanofiber supports strategically designed via coaxial electrospinning for high performance thin- film composite forward osmosis membranes for desalination. Desalination 2018, 445, 63–74. [Google Scholar] [CrossRef]
- Cossich, E.; Bergamasco, R.; De Amorim, M.T.P.; Martins, P.M.; Marques, J.; Tavares, C.J.; Lanceros-Méndez, S.; Sencadas, V. Development of electrospun photocatalytic TiO2-polyamide-12 nanocomposites. Mater. Chem. Phys. 2015, 164, 91–97. [Google Scholar] [CrossRef] [Green Version]
- Mondal, K.; Bhattacharyya, S.; Sharma, A. Photocatalytic degradation of naphthalene by electrospun mesoporous carbondoped anatase TiO2 nanofiber mats. Ind. Eng. Chem. Res. 2014, 53, 18900–18909. [Google Scholar] [CrossRef]
- Soo, J.Z.; Ang, B.C.; Ong, B.H. Influence of calcination on the morphology and crystallinity of titanium dioxide nanofibers towards enhancing photocatalytic dye degradation. Mater. Res. Express 2019, 6, 025039. [Google Scholar] [CrossRef]
- Nasr, M.; Eid, C.; Habchi, R.; Miele, P.; Bechelany, M. Recent progress on titanium dioxide nanomaterials for photocatalytic applications. ChemSusChem 2018, 11, 3023–3047. [Google Scholar] [CrossRef]
- Martin, S.; Castillo, J.L. Ten-fold reduction from the state-of-the-art platinum loading of electrodes prepared by electrospraying for high temperature proton exchange membrane fuel cells. Electrochem. Commun. 2018, 93, 57–61. [Google Scholar] [CrossRef]
- Li, Y.; Lee, D.-K.; Kim, J.Y.; Kim, B.; Park, N.-G.; Kim, K.; Shin, J.-H.; Choi, I.-S.; Ko, M.J. Highly durable and flexible dye-sensitized solar cells fabricated on plastic substrates: PVDF-nanofiber-reinforced TiO2 photoelectrodes. Energy Environ. Sci. 2012, 5, 8950. [Google Scholar] [CrossRef]
- Neubert, S.; Pliszka, D.; Thavasi, V.; Wintermantel, E.; Ramakrishna, S. Conductive electrospun PANi-PEO/TiO2 fibrous membrane for photo catalysis. Mater. Sci. Eng. B 2011, 176, 640–646. [Google Scholar] [CrossRef]
- Pahasup-anan, T.; Suwannahong, K.; Dechapanya, W.; Rangkupan, R. Fabrication and photocatalytic activity of TiO2 composite membranes via simultaneous electrospinning and electrospraying process. J. Environ. Sci. 2018, 72, 13–24. [Google Scholar] [CrossRef]
- Arthanareeswaran, G.; Thanikaivelan, P. Fabrication of cellulose acetate-zirconia hybrid membranes for ultrafiltration applications: Performance, structure and fouling analysis. Sep. Purif. Technol. 2010, 74, 230–235. [Google Scholar] [CrossRef]
- Liu, G.; Yang, D.; Zhu, Y.; Ma, J.; Nie, M.; Jiang, Z. Titanate nanotubes-embedded chitosan nanocomposite membranes with high isopropanol dehydration performance. Chem. Eng. Sci. 2011, 66, 4221–4228. [Google Scholar] [CrossRef]
- Razmjou, A.; Mansouri, J.; Chen, V. The effects of mechanical and chemical modification of TiO2 nanoparticles on the surface chemistry, structure and fouling performance of PES ultrafiltration membranes Comparison of Two Different Corrosion Protection Strategies: Surface Engineering View pr. J. Membr. Sci. 2010, 378, 73–84. [Google Scholar] [CrossRef]
- Bae, T.-H.H.; Kim, I.-C.C.; Tak, T.-M.M. Preparation and characterization of fouling-resistant TiO2 self-assembled nanocomposite membranes. J. Membr. Sci. 2006, 275, 1–5. [Google Scholar] [CrossRef]
- Madaeni, S.S.; Ghaemi, N. Characterization of self-cleaning RO membranes coated with TiO2 particles under UV irradiation. J. Membr. Sci. 2007, 303, 221–233. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, F.; Lu, Y.; Zhao, L.; Song, L. Investigation of phosphorylated TiO2-SiO2 particles/polysulfone composite membrane for wastewater treatment. Desalination 2013, 324, 118–126. [Google Scholar] [CrossRef]
- Kim, S.H.; Kwak, S.-Y.Y.; Sohn, B.-H.H.; Park, T.H. Design of TiO2 nanoparticle self-assembled aromatic polyamide thin-film-composite (TFC) membrane as an approach to solve biofouling problem. J. Membr. Sci. 2003, 211, 157–165. [Google Scholar] [CrossRef]
- Leo, C.P.; Kamil, N.H.A.; Junaidi, M.U.M.; Kamal, S.N.M.; Ahmad, A.L. The potential of SAPO-44 zeolite filler in fouling mitigation of polysulfone ultrafiltration membrane. Sep. Purif. Technol. 2013, 103, 84–91. [Google Scholar] [CrossRef]
- Wang, Z.; Yu, H.; Xia, J.; Zhang, F.; Li, F.; Xia, Y.; Li, Y. Novel GO-blended PVDF ultrafiltration membranes. Desalination 2012, 299, 50–54. [Google Scholar] [CrossRef]
- Wang, T.; Gao, Y.; Tang, T.; Bian, H.; Zhang, Z.; Xu, J.; Xiao, H.; Chu, X. Preparation of ordered TiO2 nanofibers/nanotubes by magnetic field assisted electrospinning and the study of their photocatalytic properties. Ceram. Int. 2019, 45, 14404–14410. [Google Scholar] [CrossRef]
- Aghasiloo, P.; Yousefzadeh, M.; Latifi, M.; Jose, R. Highly porous TiO2 nanofibers by humid-electrospinning with enhanced photocatalytic properties. J. Alloys Compd. 2019, 790, 257–265. [Google Scholar] [CrossRef]
- Pascariu, P.; Airinei, A.; Iacomi, F.; Bucur, S.; Suchea, M.P. Chapter 12—Electrospun TiO2-based nanofiber composites and their bio-related and environmental applications. In Functional Nanostructured Interfaces for Environmental and Biomedical Applications; Dinca, V., Suchea, M.P., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 307–321. [Google Scholar]
- Watthanaarun, J.; Pavarajarn, V.; Supaphol, P. Titanium (IV) oxide nanofibers by combined sol–gel and electrospinning techniques: Preliminary report on effects of preparation conditions and secondary metal dopant. Sci. Technol. Adv. Mater. 2005, 6, 240–245. [Google Scholar] [CrossRef]
- Ananpattarachai, J.; Kajitvichyanukul, P. Enhancement of chromium removal efficiency on adsorption and photocatalytic reduction using a bio-catalyst, titania-impregnated chitosan/xylan hybrid film. J. Clean. Prod. 2016, 130, 126–136. [Google Scholar] [CrossRef]
- Valerio, A.; Wang, J.; Tong, S.; de Souza, A.A.; Hotza, D.; González, S.Y. Synergetic effect of photocatalysis and ozonation for enhanced tetracycline degradation using highly macroporous photocatalytic supports. Chem. Eng. Process. Process Intensif. 2020, 149, 107838. [Google Scholar] [CrossRef]
- Ding, Z.; Hu, X.; Yue, P.L.; Lu, G.Q.; Greenfield, P.F. Synthesis of anatase TiO2 supported on porous solids by chemical vapor deposition. Catal. Today 2001, 68, 173–182. [Google Scholar] [CrossRef]
- Pecchi, G.; Reyes, P.; Sanhueza, P.; Villaseñor, J. Photocatalytic degradation of pentachlorophenol on TiO2 sol–gel catalysts. Chemosphere 2001, 43, 141–146. [Google Scholar] [CrossRef]
- Sonawane, R.S.; Hegde, S.G.; Dongare, M.K. Preparation of titanium (IV) oxide thin film photocatalyst by sol–gel dip coating. Mater. Chem. Phys. 2003, 77, 744–750. [Google Scholar] [CrossRef]
- Cardona, A.I.; Candal, R.; Sa’nchez, B.; A´vila, P.; Rebollar, M. TiO2 on magnesium silicate monolith: Effects of different preparation techniques on the photocatalytic oxidation of chlorinated hydrocarbons. Energy 2004, 29, 845–852. [Google Scholar] [CrossRef]
- Shephard, G.S.; Stockenstro¨m, S.; de Villiers, D.; Engelbrecht, W.J.; Wessels, G.F.S. Degradation of microcystin toxins in a falling film photocatalytic reactor with immobilized titanium dioxide catalyst. Water Res. 2002, 36, 140–146. [Google Scholar] [CrossRef]
- Vella, G.; Imoberdorf, G.E.; Sclafani, A.; Cassano, A.E.; Alfano, O.M.; Rizzuti, L. Modeling of a TiO2-coated quartz wool packed bed photocatalytic reactor. Appl. Catal. B 2010, 96, 399–407. [Google Scholar] [CrossRef]
- Someswararao, M.V.; Dubey, R.S.; Subbarao, P.S.V.; Singh, S. Electrospinning process parameters dependent investigation of TiO2 nanofibers. Results Phys. 2018, 11, 223–231. [Google Scholar] [CrossRef]
- Mahltig, B.; Gutmann, E.; Meyer, D.C.; Reibold, M.; Dresler, B.; Gu¨nther, K.; Faßler, D.; Bo¨ttcher, H. Solvothermal preparation of metallized titania sols for photocatalytic and antimicrobial coatings. J. Mater. Chem. 2007, 17, 2367–2374. [Google Scholar] [CrossRef]
- Nyangasi, L.O.; Andala, D.M.; Onindo, C.O.; Ngila, J.C.; Makhubela, B.C.E.; Ngigi, E.M. Preparation and characterization of Pd modified TiO2 nanofiber catalyst for carbon-carbon coupling Heck reaction. J. Nanomater. 2017, 2017, 8290892. [Google Scholar] [CrossRef] [Green Version]
- Pan, C.-Y.; Xu, G.-R.; Xu, K.; Zhao, H.-L.; Wu, Y.-Q.; Su, H.-C.; Xu, J.-M.; Das, R. Electrospun nanofibrous membranes in membrane distillation: Recent developments and future perspectives. Sep. Purif. Technol. 2019, 221, 44–63. [Google Scholar] [CrossRef]
- Luo, Y.; Jia, Y.; Zhang, D.; Cheng, X. Coaxial electrospinning method for the preparation of TiO2@CdS/PVA composite nanofiber Mat and investigation on its photodegradation catalysis. Photochem. Photobiol. 2016, 92, 515–522. [Google Scholar] [CrossRef] [PubMed]
- Grothe, T.; Böttjer, R.; Wehlage, D.; Großerhode, C.; Storck, J.; Juhász Junger, I.; Mahltig, B.; Grethe, T.; Graßmann, C.; Schwarz-Pfeiffer, A.; et al. Photocatalytic Properties of TiO2 composite nanofibers electrospun with different polymers. Norganic Compos. Fibers 2018, 303–319. [Google Scholar]
- Pasini, S.M.; Vale´rio, A.; Guelli Ulson de Souza, S.M.A.; Hotza, D.; Yin, G.; Wang, J.; Ulson de Souza, A.A. Plasmamodified TiO2/polyetherimide nanocomposite fibers for photocatalytic degradation of organic compounds. J. Environ. Chem. Eng. 2019, 7, 103213. [Google Scholar] [CrossRef]
- Drew, C.; Liu, X.; Ziegler, D.; Wang, X.; Bruno, F.F.; Whitten, J.; Samuelson, L.A.; Kumar, J. Metal oxide-coated polymer nanofibers. Nano Lett. 2003, 3, 143–147. [Google Scholar] [CrossRef]
- Kudhier, M.A.; Sabry, R.S.; Al-Haidarie, Y.K.; Al-Marjani, M.F. Significantly enhanced antibacterial activity of Agdoped TiO2 nanofibers synthesized by electrospinning. Mater. Technol. 2018, 33, 220–226. [Google Scholar] [CrossRef]
- Tang, Q.; Meng, X.; Wang, Z.; Zhou, J.; Tang, H. One-step electrospinning synthesis of TiO2/g-C3N4 nanofibers with enhanced photocatalytic properties. Appl. Surf. Sci. 2018, 430, 253–262. [Google Scholar] [CrossRef]
- Kim, J.-H.; Lee, J.-H.; Kim, J.-Y.; Kim, S. Synthesis of aligned TiO2 nanofibers using electrospinning. Appl. Sci. 2018, 8, 309. [Google Scholar] [CrossRef] [Green Version]
- Kuchi, C.; Harish, G.S.; Reddy, P.S. Effect of polymer concentration, needle diameter and annealing temperature on TiO2-PVP composite nanofibers synthesized by electrospinning technique. Ceram. Int. 2018, 44, 5266–5272. [Google Scholar] [CrossRef]
- Pelaez, M.; Nolan, N.T.; Pillai, S.C.; Seery, M.K.; Falaras, P.; Kontos, A.G.; Dunlop, P.S.M.; Hamilton, J.W.J.; Byrne, J.A.; O’shea, K.; et al. A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl. Catal. B Environ. 2012, 125, 331–349. [Google Scholar] [CrossRef] [Green Version]
- Ouyang, W.; Liu, S.; Yao, K.; Zhao, L.; Cao, L.; Jiang, S.; Hou, H. Ultrafine hollow TiO2 nanofibers from core-shell composite fibers and their photocatalytic properties. Compos. Commun. 2018, 9, 76–80. [Google Scholar] [CrossRef]
- Korina, E.; Stoilova, O.; Manolova, N.; Rashkov, I. Polymer fibers with magnetic core decorated with titanium dioxide prospective for photocatalytic water treatment. J. Environ. Chem. Eng. 2018, 6, 2075–2084. [Google Scholar]
- Bai, Y.; Mao, X.; Song, J.; Yin, X.; Yu, J.; Ding, B. Self-standing Ag2O@YSZ-TiO2 p-n nanoheterojunction composite nanofibrous membranes with superior photocatalytic activity. Compos. Commun. 2017, 5, 13–18. [Google Scholar] [CrossRef]
- Dai, Y.R.; Yin, L.F. Enhancement of photocatalytic activity for electrospun C@Ti/anatase fibers by lattice distortion under anisotropic stress. Catal. Sci. Technol. 2014, 4, 456–463. [Google Scholar] [CrossRef]
- Zhang, Z.-G.; Liu, H.; Cui, Y.-Q.; Dong, M.; Li, Q.-H.; Wang, X.-X.; Ramakrishna, S.; Long, Y.-Z. One step in situ loading of CuS nanoflowers on anatase TiO2/polyvinylidene fluoride fibers and their enhanced photocatalytic and selfcleaning performance. Nanoscale Res. Lett. 2019, 14, 215. [Google Scholar] [CrossRef]
- Lee, J.-C.; Gopalan, A.-I.; Sai-Anand, G.; Lee, K.-P.; Kim, W.-J. Preparation of visible light photocatalytic graphene embedded rutile titanium (IV) oxide composite nanowires and enhanced NOx removal. Catalysts 2019, 9, 170. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.A.; Krogman, K.C.; Ma, M.; Hill, R.M.; Hammond, P.T.; Rutledge, G.C. Highly reactive multilayer-assembled TiO2 coating on electrospun polymer nanofibers. Adv. Mater. 2009, 21, 1252–1256. [Google Scholar] [CrossRef]
- Lee, J.A.; Nam, Y.S.; Rutledge, G.C.; Hammond, P.T. Enhanced photocatalytic activity using layer-by-layer electrospun constructs for water remediation. Adv. Funct. Mater. 2010, 20, 2424–2429. [Google Scholar] [CrossRef]
- Chaúque, E.F.C.; Adelodun, A.A.; Dlamini, L.N.; Greyling, C.J.; Ray, S.C.; Ngila, J.C. Synthesis and photocatalytic application of TiO2 nanoparticles immobilized on polyacrylonitrile nanofibers using EDTA chelating agents. Mater. Chem. Phys. 2017, 192, 108–124. [Google Scholar] [CrossRef]
- Lian, H.; Meng, Z. A novel and highly photocatalytic “TiO2wallpaper” made of electrospun TiO2/bioglass hybrid nanofiber. Mater. Sci. Semicond. Process. 2018, 80, 68–73. [Google Scholar] [CrossRef]
- Lee, C.-G.; Javed, H.; Zhang, D.; Kim, J.-H.; Westerhoff, P.; Li, Q.; Alvarez, P.J.J. Porous electrospun fibers embedding TiO2 for adsorption and photocatalytic degradation of water pollutants. Environ. Sci. Technol. 2018, 52, 4285–4293. [Google Scholar] [CrossRef] [PubMed]
- Pant, H.R.; Bajgai, M.P.; Nam, K.T.; Seo, Y.A.; Pandeya, D.R.; Hong, S.T.; Kim, H.Y. Electrospun nylon-6 spider-net like nanofiber mat containing TiO2 nanoparticles: A multifunctional nanocomposite textile material. J. Hazard. Mater. 2011, 185, 124–130. [Google Scholar] [CrossRef] [PubMed]
- Küçük, Ö.; Teber, S.; Cihan Kaya, İ.; Akyıldız, H.; Kalem, V. Photocatalytic activity and dielectric properties of hydrothermally derived tetragonal BaTiO3 nanoparticles using TiO2 nanofibers. J. Alloys Compd. 2018, 765, 82–91. [Google Scholar] [CrossRef]
- Gomes, J.; Lincho, J.; Domingues, E.; Gmurek, M.; Mazierski, P.; Zaleska-Medynska, A.; Klimczuk, T.; Quinta-Ferreira, R.M.; Martins, R.C. TiO2 nanotube arrays-based reactor for photocatalytic oxidation of parabens mixtures in ultrapure water: Effects of photocatalyst properties, operational parameters and light source. Sci. Total Environ. 2019, 689, 79–89. [Google Scholar] [CrossRef]
- Adhikari, S.P.; Awasthi, G.P.; Kim, H.J.; Park, C.H.; Kim, C.S. Electrospinning directly synthesized porous TiO2 nanofibers modified by graphitic carbon nitride sheets for enhanced photocatalytic degradation activity under solar light irradiation. Langmuir 2016, 32, 6163–6175. [Google Scholar] [CrossRef]
- Li, W.; Li, T.; Li, G.; An, L.; Li, F.; Zhang, Z. Electrospun H4SiW12O40/cellulose acetate composite nanofibrous membrane for photocatalytic degradation of tetracycline and methyl orange with different mechanism. Carbohydr. Polym. 2017, 168, 153–162. [Google Scholar] [CrossRef]
- Shi, Y.; Yang, D.; Li, Y.; Qu, J.; Yu, Z. Fabrication of PAN @ TiO2/Ag nanofibrous membrane with high visible light response and satisfactory recyclability for dye photocatalytic degradation. Appl. Surf. Sci. 2017, 426, 622–629. [Google Scholar] [CrossRef]
- Panthi, G.; Park, S.; Chae, S.; Kim, T.; Chung, H.; Hong, S.; Park, M.; Kim, H. Immobilization of Ag3PO4 nanoparticles on electrospun PAN nanofibers via surface oximation: Bifunctional composite membrane with enhanced photocatalytic and antimicrobial activities. J. Ind. Eng. Chem. 2017, 45, 277–286. [Google Scholar] [CrossRef]
- Kim, J.H.; Kumar, J.M.; Joshua, L.; Hee, P.C.; Sang, K.C. Polydopamineassisted immobilization of hierarchical zinc oxide nanostructures on electrospun nanofibrous membrane for photocatalysis and antimicrobial activity. J. Colloid Interface Sci. 2018, 513, 566–574. [Google Scholar] [CrossRef]
- Xu, Z.; Li, X.; Wang, W.; Shi, J.; Teng, K.; Qian, X.; Shan, M.; Li, C.; Yang, C.; Liu, L. Microstructure and photocatalytic activity of electrospun carbon nanofibers decorated by TiO2 nanoparticles from hydrothermal reaction/blended spinning. Ceram. Int. 2016, 42, 15012–15022. [Google Scholar] [CrossRef]
- Hou, X.; Stanley, S.L.; Zhao, M.; Zhang, J.; Zhou, H.; Cai, Y.; Huang, F.; Wei, Q. MOFbased C-doped coupled TiO2/ZnO nano fi brous membrane with crossed network connection for enhanced photocatalytic activity. J. Alloys Compd. 2019, 777, 982–990. [Google Scholar] [CrossRef]
- Wang, C.; Hu, L.; Chai, B.; Yan, J.; Li, J. Enhanced photocatalytic activity of electrospun nanofibrous TiO2/g-C3N4 heterojunction photocatalyst under simulated solar light. Appl. Surf. Sci. 2018, 430, 243–252. [Google Scholar] [CrossRef]
- Gao, Y.; Yan, N.; Jiang, C.; Xu, C.; Yu, S.; Liang, P.; Zhang, X. Filtration-enhanced highly efficient photocatalytic degradation with a novel electrospun rGO@TiO2 nanofibrous membrane: Implication for improving photocatalytic efficiency. Appl. Catal. B Environ. 2020, 268, 118737. [Google Scholar] [CrossRef]
- Qayum, A.; Wei, J.; Li, Q.; Chen, D.; Jiao, X.; Xia, Y. Efficient decontamination of multi-component wastewater by hydrophilic electrospun PAN/AgBr/Ag fibrous membrane. Chem. Eng. J. 2019, 361, 1255–1263. [Google Scholar] [CrossRef]
- Xie, R.; Zhang, L.; Liu, H.; Xu, H.; Zhong, Y.; Sui, X.; Mao, Z. Construction of CQDs-Bi20TiO32/PAN electrospun fi ber membranes and their photocatalytic activity for isoproturon degradation under visible light. Mater. Res. Bull. 2017, 94, 7–14. [Google Scholar] [CrossRef]
- Alias, N.H.; Jaafar, J.; Samitsu, S.; Ismail, A.F.; Othman, M.H.; Rahman, M.A.; Othman, N.H.; Yusof, N.; Aziz, F.; Mohd, T.A. Efficient removal of partially hydrolysed polyacrylamide in polymer-flooding produced water using photocatalytic graphitic carbon nitride nanofibres. Arab. J. Chem. 2020, 13, 4341–4349. [Google Scholar] [CrossRef]
- Ramasundaram, S.; Son, A.; Gashaw, M.; Shim, S.; Hyup, S.; Chul, Y.; Lee, C.; Lee, J.; Won, S. Photocatalytic applications of paper-like poly(vinylidene fluoride)–titanium dioxide hybrids fabricated using a combination of electrospinning and electrospraying. J. Hazard. Mater. 2015, 285, 267–276. [Google Scholar] [CrossRef]
- Chen, H.; Jiang, G.; Yu, W.; Liu, D.; Liu, Y.; Li, L.; Huang, Q.; Tong, Z.; Chen, W. Preparation of electrospun ZnS-loaded hybrid carbon nanofiberic membranes for photocatalytic applications. Powder Technol. 2016, 298, 1–8. [Google Scholar] [CrossRef]
- Hashimah, N.; Jaafar, J.; Samitsu, S.; Yusof, N. Photocatalytic degradation of oil field produced water using graphitic carbon nitride embedded in electrospun polyacrylonitrile nanofibers. Chemosphere 2018, 204, 79–86. [Google Scholar]
- Alias, N.H.; Jaafar, J.; Samitsu, S.; Matsuura, T.; Ismail, A.F.; Othman, M.H.D.; Rahman, M.A.; Othman, N.H.; Abdullah, N.; Paiman, S.H.; et al. Photocatalytic nanofiber-coated alumina hollow fiber membranes for highly efficient oilfield produced water treatment. Chem. Eng. J. 2019, 360, 1437–1446. [Google Scholar] [CrossRef]
- Mahapatra, A.; Mishra, B.G.; Hota, G. Studies on Electrospun Alumina Nanofibers for the Removal of Chromium (VI) and Fluoride Toxic Ions from an Aqueous System. Ind. Eng. Chem. Res. 2013, 52, 1554–1561. [Google Scholar] [CrossRef]
- Chowdhury, S.; Khan, N.; Kim, G.-H.; Harris, J.; Longhurst, P.; Bolan, N.S. Chapter 22—zeolite for nutrient stripping from farm effluents. In Environmental Materials and Waste; Prasad, M.N.V., Shih, K., Eds.; Academic Press: New York, NY, USA, 2016; pp. 569–589. [Google Scholar]
- Bafana, A.; Devi, S.S.; Chakrabarti, T. Azo dyes: Past, present and the future. Environ. Rev. 2011, 19, 350–370. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, R.; Wang, P.; Li, Y.; Wang, C. Developing polyetherimide/graphitic carbon nitride floating photocatalyst with good photodegradation performance of methyl orange under light irradiation. Chemosphere 2017, 179, 84–91. [Google Scholar] [CrossRef]
- Mapukata, S.; Kobayashi, N.; Kimura, M.; Nyokong, T. Asymmetrical and symmetrical zinc phthalocyanine-cobalt ferrite conjugates embedded in electrospun fibers for dual photocatalytic degradation of azo dyes: Methyl Orange and Orange G. J. Photochem. Photobiol. A Chem. 2019, 379, 112–122. [Google Scholar] [CrossRef]
- Sui, C.; Li, C.; Guo, X.; Cheng, T.; Gao, Y.; Zhou, G.; Gong, J.; Du, J. Facile synthesis of silver nanoparticles modified PVA/H4SiW12O40 nanofibers-based electrospinning to enhance photocatalytic activity. Appl. Surf. Sci. 2012, 258, 7105–7111. [Google Scholar] [CrossRef]
- Leal, C.; Lerici, L.; Renzini, S.; Pierella, L.; Pizzio, L. Environmental synthesis and characterization of a novel tungstosilicic acid immobilized on zeolites catalyst for the photodegradation of methyl orange. Appl. Catal. B Environ. 2016, 188, 23–30. [Google Scholar] [CrossRef]
- Trinh, D.T.T.; Le, S.T.T.; Channei, D.; Khanitchaidecha, W.; Nakaruk, A. Investigation of intermediate compounds of phenol in photocatalysis process. Int. J. Chem. Eng. Appl. 2016, 7, 273–276. [Google Scholar] [CrossRef]
- Dalm´azio, I.; Alves, T.M.A.; Augusti, R. An appraisal on the degradation of paracetamol by TiO2/UV system in aqueous medium. Product identification by gas chromatography-mass spectrometry (GC-MS). J. Braz. Chem. Soc. 2008, 19, 81–88. [Google Scholar] [CrossRef] [Green Version]
- Moctezuma, E.; Leyva, E.; Aguilar, C.A.; Luna, R.A.; Montalvo, C. Photocatalytic degradation of paracetamol: Intermediates and total reaction mechanism. J. Hazard. Mater. 2012, 243, 130–138. [Google Scholar] [CrossRef]
ENPM | Synthesis Method | Pollutant | ENPM Quantity (g) | Pollutant Concentration (mg/L) | Solution Volume (mL) | Degradation Time (min) | Photocatalytic Degradation (%) | Ref. |
---|---|---|---|---|---|---|---|---|
H4SiW12O14/CA | Electrospinning | Methyl orange | 0.20 | 10 | 100 | 120 | 94.60% | [98] |
TiO2/bioglass nanofibers | Electrospinning, calcination, heating | Methylene blue | - | 10 | - | 120 | 60.0% | [92] |
TiO2/PMMA | Electrospinning | Methylene blue | - | 2 | 50 | 100 | 100% | [20] |
PAN/TiO2/Ag | Electrospinning and hydrothermal | Methylene blue | 0.01 | 10 | 20 | 60 | 99.7% | [99] |
Ag3PO4/PAN nanofibers | Electrospinning and surface modification | Methylene blue | 0.15 | 10 | 50 | 60 | 100% | [100] |
Pdopa-ZNRs/PU | Electrospinning, surface functionalization and hydrothermal | Methylene blue | - | 10 | 20 | 180 | 65.0% | [101] |
CNF@TiO2 | Blended spinning and carbonization | Rhodamine B | - | 10 | 200 | 60 | 80.0% | [102] |
MOF-based C-doped coupled TiO2/ZnO nanofibers | Electrospinning and calcination | Rhodamine | 0.02 | 10 | 25 | 100 | 92% | [103] |
TiO2/g-C3N4 heterojunction | Electrospinning and calcination | RhB | 0.05 | 10 | 50 | 100 | 96.0% | [104] |
rGO@TiO2 | Electrospinning and calcination | Propranolol | - | 5 | 50 | 60 | 100% | [105] |
H4SiW12O14/CA | Electrospinning | Tetracycline | 0.20 | 10 | 100 | 120 | 63.80% | [98] |
PAN/AgBr/Ag | Electrospinning, heat treatment and wet chemical | Salicylic acid (SA) | 0.10 | 5 | 20 | 300 | 97.0% | [106] |
CQDs-Bi20TiO32/PAN | Coaxial electrospinning | Isoproturon | 0.10 | 15 | 50 | 3600 | 90.4% | [107] |
Graphitic carbon nitride/PAN | Electrospinning | HPAM | - | 20 | - | 180 | 90.2% | [108] |
PVDF-TiO2 | Electrospinning and electrospraying | Cimetidine (CMT) | - | - | 45 | 40 | 100% | [109] |
4-Chlorophenol | - | - | 100 | 100% | ||||
Bisphenol A | - | - | 100 | 100% | ||||
GO/ZnS-CNFs | Electrospinning, calcination and solvothermal | p-aminotoluene | - | - | 10 | n/a | 90.0% | [110] |
Graphitic carbon nitride Nanofibers | Electrospinning | Oilfield produced water | 0.20 | 1000 | 200 | 480 | 96.6% | [111] |
GCN/PAN nanofibers | 85.4% | |||||||
Nanofiber coated alumina | Electrospinning and coating | Oilfield produced water | - | 1000 | - | 180 | 99.0% | [112] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Covaliu-Mierlă, C.I.; Matei, E.; Stoian, O.; Covaliu, L.; Constandache, A.-C.; Iovu, H.; Paraschiv, G. TiO2–Based Nanofibrous Membranes for Environmental Protection. Membranes 2022, 12, 236. https://doi.org/10.3390/membranes12020236
Covaliu-Mierlă CI, Matei E, Stoian O, Covaliu L, Constandache A-C, Iovu H, Paraschiv G. TiO2–Based Nanofibrous Membranes for Environmental Protection. Membranes. 2022; 12(2):236. https://doi.org/10.3390/membranes12020236
Chicago/Turabian StyleCovaliu-Mierlă, Cristina Ileana, Ecaterina Matei, Oana Stoian, Leon Covaliu, Alexandra-Corina Constandache, Horia Iovu, and Gigel Paraschiv. 2022. "TiO2–Based Nanofibrous Membranes for Environmental Protection" Membranes 12, no. 2: 236. https://doi.org/10.3390/membranes12020236
APA StyleCovaliu-Mierlă, C. I., Matei, E., Stoian, O., Covaliu, L., Constandache, A. -C., Iovu, H., & Paraschiv, G. (2022). TiO2–Based Nanofibrous Membranes for Environmental Protection. Membranes, 12(2), 236. https://doi.org/10.3390/membranes12020236