Power Generation Performance of Reverse Electrodialysis (RED) Using Various Ion Exchange Membranes and Power Output Prediction for a Large RED Stack
Abstract
:1. Introduction
2. Experimental Section
2.1. Membranes
2.2. Solutions for RED Power Generation Test
2.3. Construction of the Lab-Scale RED Stack
2.4. Evaluation of Power Generation Characteristics
3. Results and Discussion
3.1. Model SW and Model RW
3.1.1. Comparison of the Open Circuit Voltage
3.1.2. Comparison of the Internal Resistance
3.1.3. Comparison of the Maximum Power Density
3.2. Model RO Brine and Model RW
3.2.1. Comparison of the Open Circuit Voltage
3.2.2. Comparison of the Internal Resistance
3.2.3. Comparison of the Maximum Power Density
3.3. Natural SW and Surface Water
3.3.1. Comparison of the Open Circuit Voltage
3.3.2. Comparison of the Internal Resistance
3.3.3. Comparison of the Maximum Power Density
3.4. Prediction of the Power Output with a Pilot-Scale RED Stack
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jia, Z.; Wang, B.; Song, S.; Fan, Y. Blue Energy: Current Technologies for Sustainable Power Generation from Water Salinity Gradient. Renew. Sustain. Energy Rev. 2014, 31, 91–100. [Google Scholar] [CrossRef]
- Yip, N.Y.; Brogioli, D.; Hamelers, H.V.M.; Nijmeijer, K. Salinity Gradients for Sustainable Energy: Primer, Progress, and Prospects. Environ. Sci. Technol. 2016, 50, 12072–12094. [Google Scholar] [CrossRef] [PubMed]
- Nazif, A.; Karkhanechi, H.; Saljoughi, E.; Mousavi, S.M.; Matsuyama, H. Recent Progress in Membrane Development, Affecting Parameters, and Applications of Reverse Electrodialysis: A Review. J. Water Process Eng. 2022, 47, 102706. [Google Scholar] [CrossRef]
- Veerman, J.; Saakes, M.; Metz, S.J.; Harmsen, G.J. Electrical Power from Sea and River Water by Reverse Electrodialysis: A First Step from the Laboratory to a Real Power Plant. Environ. Sci. Technol. 2010, 44, 9207–9212. [Google Scholar] [CrossRef]
- Vermaas, D.A.; Saakes, M.; Nijmeijer, K. Doubled Power Density from Salinity Gradients at Reduced Intermembrane Distance. Environ. Sci. Technol. 2011, 45, 7089–7095. [Google Scholar] [CrossRef]
- Güler, E.; Elizen, R.; Vermaas, D.A.; Saakes, M.; Nijmeijer, K. Performance-Determining Membrane Properties in Reverse Electrodialysis. J. Membr. Sci. 2013, 446, 266–276. [Google Scholar] [CrossRef]
- Vermaas, D.A.; Kunteng, D.; Veerman, J.; Saakes, M.; Nijmeijer, K. Periodic Feedwater Reversal and Air Sparging as Antifouling Strategies in Reverse Electrodialysis. Environ. Sci. Technol. 2014, 48, 3065–3073. [Google Scholar] [CrossRef] [PubMed]
- Hong, J.G.; Chen, Y. Nanocomposite Reverse Electrodialysis (RED) Ion-Exchange Membranes for Salinity Gradient Power Generation. J. Membr. Sci. 2014, 460, 139–147. [Google Scholar] [CrossRef]
- Daniilidis, A.; Vermaas, D.A.; Herber, R.; Nijmeijer, K. Experimentally Obtainable Energy from Mixing River Water, Seawater or Brines with Reverse Electrodialysis. Renew. Energy 2014, 64, 123–131. [Google Scholar] [CrossRef]
- Tedesco, M.; Brauns, E.; Cipollina, A.; Micale, G.; Modica, P.; Russo, G.; Helsen, J. Reverse Electrodialysis with Saline Waters and Concentrated Brines: A Laboratory Investigation towards Technology Scale-Up. J. Membr. Sci. 2015, 492, 9–20. [Google Scholar] [CrossRef]
- Avci, A.H.; Sarkar, P.; Tufa, R.A.; Messana, D.; Argurio, P.; Fontananova, E.; Di Profio, G.; Curcio, E. Effect of Mg2+ Ions on Energy Generation by Reverse Electrodialysis. J. Membr. Sci. 2016, 520, 499–506. [Google Scholar] [CrossRef]
- Moreno, J.; de Hart, N.; Saakes, M.; Nijmeijer, K. CO2 Saturated Water as Two-Phase Flow for Fouling Control in Reverse Electrodialysis. Water Res. 2017, 125, 23–31. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Jiang, D.; Zhang, B.; Hong, J.G.; Chen, Y. A Novel Hybrid Poly (Vinyl Alcohol) (PVA)/Poly (2,6-Dimethyl-1,4-Phenylene Oxide) (PPO) Membranes for Reverse Electrodialysis Power System. Electrochim. Acta 2017, 239, 65–73. [Google Scholar] [CrossRef] [Green Version]
- Hee, C.D.; Hyuck, L.K.; Mi, K.Y.; Hyun, P.S.; Hyo, L.W.; Min, L.S.; Moo, L.Y. Effect of Cationic Groups in Poly(Arylene Ether Sulfone) Membranes on Reverse Electrodialysis Performance. Chem. Commun. 2017, 53, 2323–2326. [Google Scholar] [CrossRef]
- Fontananova, E.; Messana, D.; Tufa, R.A.; Nicotera, I.; Kosma, V.; Curcio, E.; van Baak, W.; Drioli, E.; Di Profio, G. Effect of Solution Concentration and Composition on the Electrochemical Properties of Ion Exchange Membranes for Energy Conversion. J. Power Source 2017, 340, 282–293. [Google Scholar] [CrossRef]
- Farrell, E.; Hassan, M.I.; Tufa, R.A.; Tuomiranta, A.; Avci, A.H.; Politano, A.; Curcio, E.; Arafat, H.A. Reverse Electrodialysis Powered Greenhouse Concept for Water- and Energy-Self-Sufficient Agriculture. Appl. Energy 2017, 187, 390–409. [Google Scholar] [CrossRef]
- Kingsbury, R.S.; Liu, F.; Zhu, S.; Boggs, C.; Armstrong, M.D.; Call, D.F.; Coronell, O. Impact of Natural Organic Matter and Inorganic Solutes on Energy Recovery from Five Real Salinity Gradients Using Reverse Electrodialysis. J. Membr. Sci. 2017, 541, 621–632. [Google Scholar] [CrossRef]
- Moreno, J.; Díez, V.; Saakes, M.; Nijmeijer, K. Mitigation of the Effects of Multivalent Ion Transport in Reverse Electrodialysis. J. Membr. Sci. 2018, 550, 155–162. [Google Scholar] [CrossRef]
- Avci, A.H.; Tufa, R.A.; Fontananova, E.; Profio, G.D.; Curcio, E. Reverse Electrodialysis for Energy Production from Natural River Water and Seawater. Energy 2018, 165, 512–521. [Google Scholar] [CrossRef]
- Guo, Z.-Y.; Ji, Z.-Y.; Zhang, Y.-G.; Yang, F.-J.; Liu, J.; Zhao, Y.-Y.; Yuan, J.-S. Effect of Ions (K+, Mg2+, Ca2+ and SO42−) and Temperature on Energy Generation Performance of Reverse Electrodialysis Stack. Electrochim. Acta 2018, 290, 282–290. [Google Scholar] [CrossRef]
- Rijnaarts, T.; Moreno, J.; Saakes, M.; de Vos, W.M.; Nijmeijer, K. Role of Anion Exchange Membrane Fouling in Reverse Electrodialysis Using Natural Feed Waters. Colloids Surf. Physicochem. Eng. Asp. 2019, 560, 198–204. [Google Scholar] [CrossRef]
- Avci, A.H.; Rijnaarts, T.; Fontananova, E.; Di Profio, G.; Vankelecom, I.F.V.; De Vos, W.M.; Curcio, E. Sulfonated Polyethersulfone Based Cation Exchange Membranes for Reverse Electrodialysis under High Salinity Gradients. J. Membr. Sci. 2020, 595, 117585. [Google Scholar] [CrossRef]
- Tedesco, M.; Scalici, C.; Vaccari, D.; Cipollina, A.; Tamburini, A.; Micale, G. Performance of the First Reverse Electrodialysis Pilot Plant for Power Production from Saline Waters and Concentrated Brines. J. Membr. Sci. 2016, 500, 33–45. [Google Scholar] [CrossRef] [Green Version]
- Tedesco, M.; Cipollina, A.; Tamburini, A.; Micale, G. Towards 1kW Power Production in a Reverse Electrodialysis Pilot Plant with Saline Waters and Concentrated Brines. J. Membr. Sci. 2017, 522, 226–236. [Google Scholar] [CrossRef] [Green Version]
- Nam, J.-Y.; Hwang, K.-S.; Kim, H.-C.; Jeong, H.; Kim, H.; Jwa, E.; Yang, S.; Choi, J.; Kim, C.-S.; Han, J.-H.; et al. Assessing the Behavior of the Feed-Water Constituents of a Pilot-Scale 1000-Cell-Pair Reverse Electrodialysis with Seawater and Municipal Wastewater Effluent. Water Res. 2019, 148, 261–271. [Google Scholar] [CrossRef] [PubMed]
- Mehdizadeh, S.; Yasukawa, M.; Abo, T.; Kuno, M.; Noguchi, Y.; Higa, M. The Effect of Feed Solution Temperature on the Power Output Performance of a Pilot-Scale Reverse Electrodialysis (RED) System with Different Intermediate Distance. Membranes 2019, 9, 73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mehdizadeh, S.; Kakihana, Y.; Abo, T.; Yuan, Q.; Higa, M. Power Generation Performance of a Pilot-Scale Reverse Electrodialysis Using Monovalent Selective Ion-Exchange Membranes. Membranes 2021, 11, 27. [Google Scholar] [CrossRef]
- Kakihana, Y.; Hashim, N.A.; Mizuno, T.; Anno, M.; Higa, M. Ionic Transport Properties of Cation-Exchange Membranes Prepared from Poly(Vinyl Alcohol-b-Sodium Styrene Sulfonate). Membranes 2021, 11, 452. [Google Scholar] [CrossRef]
- Mehdizadeh, S.; Yasukawa, M.; Kuno, M.; Kawabata, Y.; Higa, M. Evaluation of Energy Harvesting from Discharged Solutions in a Salt Production Plant by Reverse Electrodialysis (RED). Desalination 2019, 467, 95–102. [Google Scholar] [CrossRef]
- Yasukawa, M.; Mehdizadeh, S.; Sakurada, T.; Abo, T.; Kuno, M.; Higa, M. Power Generation Performance of a Bench-Scale Reverse Electrodialysis Stack Using Wastewater Discharged from Sewage Treatment and Seawater Reverse Osmosis. Desalination 2020, 491, 114449. [Google Scholar] [CrossRef]
- Vermaas, D.A.; Guler, E.; Saakes, M.; Nijmeijer, K. Theoretical Power Density from Salinity Gradients Using Reverse Electrodialysis. Energy Procedia 2012, 20, 170–184. [Google Scholar] [CrossRef] [Green Version]
- Długołęcki, P.; Nymeijer, K.; Metz, S.; Wessling, M. Current Status of Ion Exchange Membranes for Power Generation from Salinity Gradients. J. Membr. Sci. 2008, 319, 214–222. [Google Scholar] [CrossRef]
- Kuno, M.; Yasukawa, M.; Kakihana, Y.; Higa, M. The Effect of Divalent Ions on Reverse Electrodialysis Power Generation System. Bull. Soc. Sea Water Sci. Jpn. 2017, 71, 350–351. [Google Scholar] [CrossRef]
- Kingsbury, R.S.; Flotron, S.; Zhu, S.; Call, D.F.; Coronell, O. Junction Potentials Bias Measurements of Ion Exchange Membrane Permselectivity. Environ. Sci. Technol. 2018, 52, 4929–4936. [Google Scholar] [CrossRef] [PubMed]
- Veerman, J.; Saakes, M.; Metz, S.J.; Harmsen, G.J. Reverse Electrodialysis: Performance of a Stack with 50 Cells on the Mixing of Sea and River Water. J. Membr. Sci. 2009, 327, 136–144. [Google Scholar] [CrossRef] [Green Version]
- Mehdizadeh, S.; Yasukawa, M.; Abo, T.; Kakihana, Y.; Higa, M. Effect of Spacer Geometry on Membrane and Solution Compartment Resistances in Reverse Electrodialysis. J. Membr. Sci. 2019, 572, 271–280. [Google Scholar] [CrossRef]
- Veerman, J.; de Jong, R.M.; Saakes, M.; Metz, S.J.; Harmsen, G.J. Reverse Electrodialysis: Comparison of Six Commercial Membrane Pairs on the Thermodynamic Efficiency and Power Density. J. Membr. Sci. 2009, 343, 7–15. [Google Scholar] [CrossRef]
- Tufa, R.A.; Curcio, E.; van Baak, W.; Veerman, J.; Grasman, S.; Fontananova, E.; Di Profio, G. Potential of Brackish Water and Brine for Energy Generation by Salinity Gradient Power-Reverse Electrodialysis (SGP-RE). RSC Adv. 2014, 4, 42617–42623. [Google Scholar] [CrossRef] [Green Version]
- Vermaas, D.A.; Veerman, J.; Saakes, M.; Nijmeijer, K. Influence of Multivalent Ions on Renewable Energy Generation in Reverse Electrodialysis. Energy Environ. Sci. 2014, 7, 1434–1445. [Google Scholar] [CrossRef] [Green Version]
- Rijnaarts, T.; Huerta, E.; Baak, W.V.; Nijmeijer, K. Effect of Divalent Cations on RED Performance and Cation Exchange Membrane Selection to Enhance Power Densities. Environ. Sci. Technol. 2017, 51, 13028–13035. [Google Scholar] [CrossRef]
- Pawlowski, S.; Crespo, J.G.; Velizarov, S. Profiled Ion Exchange Membranes: A Comprehensible Review. Int. J. Mol. Sci. 2019, 20, 165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vermaas, D.A.; Saakes, M.; Nijmeijer, K. Power Generation Using Profiled Membranes in Reverse Electrodialysis. J. Membr. Sci. 2011, 385–386, 234–242. [Google Scholar] [CrossRef]
- Güler, E.; Elizen, R.; Saakes, M.; Nijmeijer, K. Micro-Structured Membranes for Electricity Generation by Reverse Electrodialysis. J. Membr. Sci. 2014, 458, 136–148. [Google Scholar] [CrossRef]
- Seo, J.; Kushner, D.I.; Hickner, M.A. 3D Printing of Micropatterned Anion Exchange Membranes. ACS Appl. Mater. Interfaces 2016, 8, 16656–16663. [Google Scholar] [CrossRef]
- Pawlowski, S.; Geraldes, V.; Crespo, J.G.; Velizarov, S. Computational Fluid Dynamics (CFD) Assisted Analysis of Profiled Membranes Performance in Reverse Electrodialysis. J. Membr. Sci. 2016, 502, 179–190. [Google Scholar] [CrossRef] [Green Version]
- Hamer, W.J.; Wu, Y.-C. Osmotic Coefficients and Mean Activity Coefficients of Uni Univalent Electrolytes in Water at 25 °C. J. Phys. Chem. Ref. Data 1972, 1, 1047–1100. [Google Scholar] [CrossRef]
Membrane | Charge Density [M] | Ion Transport Number [-] | Area Resistance [Ω cm2] | Thickness [μm] | |
---|---|---|---|---|---|
CEM | CSE | 1.90 | 0.98 | 2.03 | 150 |
CMX | 1.86 | 0.98 | 2.70 | 170 | |
CIMS | - | 0.98 | 2.49 | 150 | |
C-2 | - | 0.94 | 0.21 | 34 | |
FKS-20 | 1.93 | 0.98 | 0.47 | 18 | |
AEM | ASE | 1.84 | 0.98 | 2.77 | 150 |
AMX | 1.53 | 0.98 | 2.30 | 140 | |
ACS-8T | - | 0.98 | 2.41 | 150 | |
A-2 | - | 0.99 | 0.28 | 34 | |
FAS-20 | 2.14 | 0.97 | 0.46 | 23 |
Solution | Cations [mM] | Anions [mM] | TDS, ppm * | ||||
---|---|---|---|---|---|---|---|
Na+ | K+ | Mg2+ | Ca2+ | Cl− | SO42− | ||
Natural SW (55.2~55.4 mS cm−1) | 471 | 29 | 62 | 15 | 503 | 25 | 34300 |
Surface water (0.43~0.45 mS cm−1) | 0.89 | 0.19 | 0.19 | 0.92 | 0.97 | 0.20 | 123 |
Feed Solutions | CEM/AEM Pair | VOC [V] | Rint [Ω] | PDmax [W m−2] | PDmax Ratio to CIMS/ACS-8T |
---|---|---|---|---|---|
Model SW and model RW (κLS = 2.24 mS cm−1) | FKS-20/FAS-20 | 5.7 | 7.6 | 1.3 | 1.7 |
Model RO brine and model RW (κLS = 1.50 mS cm−1) | FKS-20/FAS-20 | 7.1 | 5.4 | 2.6 | 2.0 |
Natural SW and surface water (κLS = 3.40 mS cm−1) | C-2/A-2 | 4.5 | 5.1 | 1.3 | 2.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sugimoto, Y.; Ujike, R.; Higa, M.; Kakihana, Y.; Higa, M. Power Generation Performance of Reverse Electrodialysis (RED) Using Various Ion Exchange Membranes and Power Output Prediction for a Large RED Stack. Membranes 2022, 12, 1141. https://doi.org/10.3390/membranes12111141
Sugimoto Y, Ujike R, Higa M, Kakihana Y, Higa M. Power Generation Performance of Reverse Electrodialysis (RED) Using Various Ion Exchange Membranes and Power Output Prediction for a Large RED Stack. Membranes. 2022; 12(11):1141. https://doi.org/10.3390/membranes12111141
Chicago/Turabian StyleSugimoto, Yu, Ryo Ujike, Minato Higa, Yuriko Kakihana, and Mitsuru Higa. 2022. "Power Generation Performance of Reverse Electrodialysis (RED) Using Various Ion Exchange Membranes and Power Output Prediction for a Large RED Stack" Membranes 12, no. 11: 1141. https://doi.org/10.3390/membranes12111141
APA StyleSugimoto, Y., Ujike, R., Higa, M., Kakihana, Y., & Higa, M. (2022). Power Generation Performance of Reverse Electrodialysis (RED) Using Various Ion Exchange Membranes and Power Output Prediction for a Large RED Stack. Membranes, 12(11), 1141. https://doi.org/10.3390/membranes12111141