Novel Design of Co-Poly(Hydrazide Imide) and Its Complex with Cu(I) for Membrane Separation of Methanol/Dimethyl Carbonate Mixture
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Polymers
2.3. Membrane Preparation
2.4. Membrane Characterization
2.5. Pervaporation Tests
2.6. Computational Methods
3. Results and Discussion
3.1. Membrane Structure
3.2. Mechanical Properties
3.3. Thermal Analysis
3.4. Transport Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aricò, F.; Tundo, P. Dimethyl carbonate: A modern green reagent and solvent. Russ. Chem. Rev. 2010, 79, 479–489. [Google Scholar] [CrossRef] [Green Version]
- Huang, K.; Liu, G.; Lou, Y.; Dong, Z.; Shen, J.; Jin, W. A graphene oxide membrane with highly selective molecular separation of aqueous organic solution. Angew. Chem. Int. Ed. Engl. 2014, 53, 6929–6932. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Lv, L.; Liu, G.; Jin, W.; Xing, W. PDMS/PVDF composite pervaporation membrane for the separation of dimethyl carbonate from a methanol solution. J. Membr. Sci. 2014, 471, 47–55. [Google Scholar] [CrossRef]
- Delledonne, D.; Rivett, F.; Romano, U. Developments in the production and application of dimethylcarbonate. Appl. Catal. A 2001, 221, 241–251. [Google Scholar] [CrossRef]
- Kawamura, T.; Kimura, A.; Egashira, M. Thermal stability of alkyl carbonate mixed solvent electrolytes for lithium ion cells. J. Power Sources 2002, 104, 260–264. [Google Scholar] [CrossRef]
- Andersson, A.M.; Herstedt, M.; Bishop, A.G. The influence of lithium salt on the interfacial reactions controlling the thermal stability of graphite anodes. Electrochim. Acta 2003, 47, 1885–1898. [Google Scholar] [CrossRef]
- Lu, X.C.; Yang, J.G.; Zhang, W.G.; Huang., Z. Improving the combustion and emissions of direct injection compression ignition engines using oxygenated fuel additives combined with a cetane number improver. Energy Fuels 2005, 19, 1879–1888. [Google Scholar] [CrossRef]
- Xu, L.; Wang, Y.; Li, Q.; Cui, S.; Tang, M.; Nie, Z.; Wei, Q. A methyl-modified silica layer supported on porous ceram ic membranes for the enhanced separation of methyl tert-butyl ether from aqueous solution. Membranes 2022, 12, 452. [Google Scholar] [CrossRef] [PubMed]
- Pulyalina, A.; Tataurov, M.; Faykov, I.; Rostovtseva, V.; Polotskaya, G. Polyimide asymmetric porous membrane vs. dense film for purification of MTBE oxygenate by pervaporation. Symmetry 2020, 12, 436. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Lin, W.; Li, Q.; Rong, Q.; Zu, H.; Sang, M. Separation of dimethyl carbonate/methanol azeotropic mixture by pervaporation with dealcoholized room temperature-vulcanized silicone rubber/nanosilica hybrid active layer. Separ. Purif. Technol. 2020, 248, 116926. [Google Scholar] [CrossRef]
- Bian, J.; Xiao, M.; Wang, S.J. Highly effective synthesis of dimethyl carbonate from methanol and carbon dioxide using a novel copper-nickel/graphite bimetallic nanocomposite catalyst. Chem. Eng. J. 2009, 147, 287–296. [Google Scholar] [CrossRef]
- Lin, H.; Yang, B.; Sun, J. Kinetics studies for the synthesis of dimethylcarbonate from urea and methanol. Chem. Eng. J. 2004, 103, 21–27. [Google Scholar] [CrossRef]
- Dong, G.; Nagasawa, H.; Yu, L.; Wang, Q.; Yamamoto, K.; Ohshita, J.; Kanezashi, M.; Tsuru, T. Pervaporation removal of methanol from methanol/organic azeotropes using organosilica membranes: Experimental and modeling. J. Membr. Sci. 2020, 610, 118284. [Google Scholar] [CrossRef]
- Tsuru, T.; Sasaki, A.; Kanezashi, M. Pervaporation of methanol/dimethyl carbonate using SiO2 membranes with nano-tuned pore sizes and surface chemistry. AlChE J. 2011, 57, 2079–2089. [Google Scholar] [CrossRef]
- Ong, Y.K.; Shi, G.M.; Le, N.L.; Tang, Y.P.; Zuo, J.; Nunes, S.P.; Chung, T.S. Recent membrane development for pervaporation processes. Prog. Polym. Sci. 2016, 57, 1–31. [Google Scholar] [CrossRef] [Green Version]
- Yang, G.; Xie, Z.; Cran, M.; Wu, C.; Gray, S. Dimensional Nanofillers in mixed matrix membranes for pervaporation separations: A Review. Membranes 2020, 10, 193. [Google Scholar] [CrossRef] [PubMed]
- Pikalova, E.; Osinkin, D.; Kalinina, E. Direct Electrophoretic Deposition and Characterization of Thin-Film Membranes Based on Doped BaCeO3 and CeO2 for Anode-Supported Solid Oxide Fuel Cells. Membranes 2022, 12, 682. [Google Scholar] [CrossRef] [PubMed]
- Pikalova, E.; Kalinina, E. Solid oxide fuel cells based on ceramic membranes with mixed conductivity: Improving efficiency. Russ. Chem. Rev. 2021, 90, 703. [Google Scholar] [CrossRef]
- Pientka, Z.; Brozova, L.; Pulyalina, A.; Goikhman, M.; Podeshvo, I.; Gofman, I.; Saprykina, N.; Polotskaya, G. Synthesis and Characterization of Polybenzoxazinone and its Prepolymer Using Gas Separation. Macromol. Chem. Phys. 2013, 214, 2867–2874. [Google Scholar] [CrossRef]
- Van der Bruggen, B.; Jansen, J.C.; Figoli, A.; Geens, J.; Boussu, K.; Drioli, E. Characteristics and Performance of a “Universal” Membrane Suitable for Gas Separation, Pervaporation, and Nanofiltration Applications. J. Phys. Chem. 2006, 110, 13799–13803. [Google Scholar] [CrossRef] [PubMed]
- Bernardo, P.; Drioli, E.; Golemme, G. Membrane Gas Separation: A Review/State of the Art. Ind. Eng. Chem. Res. 2009, 48, 4638–4663. [Google Scholar] [CrossRef]
- Galiano, F.; Castro-Muñoz, R.; Figoli, A. Pervaporation, vapour permeation and membrane distillation: From membrane fabrication to application. Membranes 2021, 11, 162. [Google Scholar] [CrossRef]
- Pulyalina, A.Y.; Polotskaya, G.A.; Kalyuzhnaya, L.M.; Saprykina, N.N.; Sushchenko, I.G.; Meleshko, T.K.; Toikka, A.M. The study of sorption and transport properties of membranes containing polyaniline. Polym. Sci. Ser. A 2010, 52, 856–863. [Google Scholar] [CrossRef] [Green Version]
- Pulyalina, A.Y.; Polotskaya, G.A.; Kalyuzhnaya, L.M.; Sushchenko, I.G.; Meleshko, T.K.; Yakimanskii, A.V.; Chislov, M.V.; Toikka, A.M. Sorption and transport of aqueous isopropanol solutions in polyimide-poly(aniline-co-anthranilic acid) composites. Russ. J. Appl. Chem. 2011, 84, 840–846. [Google Scholar] [CrossRef]
- Pulyalina, A.Y.; Polotskaya, G.A.; Toikka, A.M. Investigation of pervaporation membranes based on polycarbamide: Effect of residual solvent. Pet. Chem. 2014, 54, 573–579. [Google Scholar] [CrossRef]
- Pulyalina, A.; Polotskaya, G.; Goikhman, M.; Podeshvo, I.; Chernitsa, B.; Korchebitov, V.; Toikka, A. Novel approach to determination of sorption in pervaporation process: A case study of isopropanol dehydration by polyamidoimideurea membranes. Sci. Rep. 2017, 7, 8415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goyal, P.; Sundarrajan, S.; Ramakrishna, S. A review on mixed matrix membranes for solvent dehydration and recovery process. Membranes 2021, 11, 441. [Google Scholar] [CrossRef]
- Plisko, T.; Burts, K.; Zolotarev, A.; Bildyukevich, A.; Dmitrenko, M.; Kuzminova, A.; Ermakov, S.; Penkova, A. Development and investigation of hierarchically structured thin-film nanocomposite membranes from polyamide/chitosan succinate embedded with a metal-organic framework (Fe-BTC) for pervaporation. Membranes 2022, 12, 967. [Google Scholar] [CrossRef]
- Zhang, Z.; Xu, S.; Wu, Y.; Shi, S.; Xiao, G. Recent Advances of Pervaporation Separation in DMF/H2O Solutions: A Review. Membranes 2021, 11, 455. [Google Scholar] [CrossRef]
- Wang, L.; Li, J.; Lin, Y.; Chen, X. Separation of dimethyl carbonate/methanol mixtures by pervaporation with poly(acrylic acid)/ poly(vinyl alcohol) blend membranes. J. Membr. Sci. 2007, 305, 238–246. [Google Scholar] [CrossRef]
- Wang, L.; Li, J.; Lin, Y.; Chen, X. Crosslinked poly(vinyl alcohol) membranes for separation of dimethyl carbonate/methanol mixtures by pervaporation. Chem. Eng. J. 2009, 146, 71–78. [Google Scholar] [CrossRef]
- Won, W.; Feng, X.; Lawless, D. Separation of dimethyl carbonate/methanol/water mixtures by pervaporation using crosslinked chitosan membranes. Separ. Purif. Technol. 2003, 31, 129–140. [Google Scholar] [CrossRef]
- Liu, B.; Cao, Y.; Wang, T.; Yuan, Q. Preparation of novel ZSM-5 zeolite-filled chitosan membranes for pervaporation separation of dimethyl carbonate/methanol mixtures. J. Appl. Polym. Sci. 2007, 106, 2117–2125. [Google Scholar] [CrossRef]
- Dong, X.; Lin, Y.S. Synthesis of an organophilic ZIF-71 membrane for pervaporation solvent separation. Chem. Commun. 2013, 49, 1196–1198. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Li, R.; Liu, G.; Pan, Y.; Li, J.; Wang, Z.; Guo, Y.; Liu, G.; Jin, W. Efficient separation of methanol/dimethyl carbonate mixtures by UiO-66 MOF incorporated chitosan mixed-matrix membrane. J. Membr. Sci. 2022, 652, 120473. [Google Scholar] [CrossRef]
- Pulyalina, A.Y.; Polotskaya, G.A.; Toikka, A.M. Membrane materials based on polyheteroarylenes and their application for pervaporation. Russ. Chem. Rev. 2016, 85, 81–98. [Google Scholar] [CrossRef]
- Li, C.L.; Lee, K.R. Dehydration of ethanol/water mixtures by pervaporation using soluble polyimide membranes. Polym. Int. 2006, 55, 505–512. [Google Scholar] [CrossRef]
- Pulyalina, A.Y.; Polotskaya, G.A.; Goikhman, M.Y.; Podeshvo, I.V.; Gulii, N.S.; Shugurov, S.M.; Tataurov, M.V.; Toikka, A.M. Preparation and characterization of methanol selective membranes based on polyheteroarylene—Cu(I) complexes for purification of methyl tertiary butyl ether/MeOH. Polym. Int. 2017, 66, 1873–1882. [Google Scholar] [CrossRef]
- Xu, Y.M.; Chung, T.-S. High-performance UiO-66/polyimide mixed matrix membranes for ethanol, isopropanol and n-butanol dehydration via pervaporation. J. Memb. Sci. 2017, 531, 16–26. [Google Scholar] [CrossRef]
- Polotskaya, G.; Pulyalina, A.; Goikhman, M.; Podeshvo, I.; Rostovtseva, V.; Shugurov, S.; Gofman, I.; Saprykina, N.; Gulii, N.; Loretsyan, N.; et al. Novel Polyheteroarylene membranes for separation of methanol–hexane mixture by pervaporation. Sci. Rep. 2018, 8, 17849. [Google Scholar] [CrossRef] [Green Version]
- Mohamed, N.A.; Al-Dossary, A.O.H. Structure–property relationships for novel wholly aromatic polyamide–hydrazides containing various proportions of para-phenylene and meta-phenylene units III. Preparation and properties of semi-permeable membranes for water desalination by reverse osmosis separation performance. Eur. Polym. J. 2003, 39, 1653–1667. [Google Scholar]
- Polotskaya, G.; Goikhman, M.; Podeshvo, I.; Loretsyan, N.; Saprykina, N.; Gofman, I.; Tian, N.; Dubovenko, R.; Pulyalina, A. Prospects of co-poly(biquinoline-hydrazide-imide)s for separation of benzene-isopropanol mixture via pervaporation. J. Appl. Polym. Sci. 2022, 139, 51646. [Google Scholar] [CrossRef]
- Ohya, H.; Kudryavtsev, V.V.; Semenova, S.I. Polyimide Membranes. Applications, Fabrications and Properties; Kodansha Ltd.: Tokyo, Japan, 1996; p. 328. [Google Scholar]
- Krasikov, V.D.; Pokhvoshchev, Y.V.; Malakhova, I.I.; Gorshkov, N.I.; Gulii, N.S.; Podeshvo, I.V.; Goikhman, M.Y.; Yakimansky, A.V. Study of formation of metal–polymer complexes between copper (I) and polyamic acids by HPLC. Int. J. Polym. Anal. Charact. 2017, 22, 375–382. [Google Scholar] [CrossRef]
- Goikhman, M.Y.; Gofman, I.V.; Podeshvo, I.V.; Aleksandrova, E.L.; Pozdnyakov, A.O.; Kudryavtsev, V. New polymers containing diquinolyl units in the backbone and their complexes with Cu(I): Synthesis and photophysical properties. Polym. Sci. Ser. A 2003, 45, 591–596. [Google Scholar]
- Wolinska-Grabczyk, A. Transport of liquid hydrocarbons in the polyurethane-based membranes. J. Membr. Sci. 2007, 302, 59–69. [Google Scholar] [CrossRef]
- Baker, R.W.; Wijmans, J.G.; Huang, Y. Permeability, permeance and selectivity: A preferred way of reporting pervaporation performance data. J. Membr. Sci. 2010, 348, 346–352. [Google Scholar] [CrossRef]
- Bannwarth, C.; Ehlert, S.; Grimme, S. GFN2-xTB—An Accurate and Broadly Parametrized Self-Consistent Tight-Binding Quantum Chemical Method with Multipole Electrostatics and Density-Dependent Dispersion Contributions. J. Chem. Theory Comput. 2019, 15, 1652–1671. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neese, F. Software update: The ORCA program system—Version 5.0. WIREs Comput. Mol. Sci. 2022, 12, e1606. [Google Scholar] [CrossRef]
- Grimme, S.; Hansen, A.; Ehlert, S.; Mewes, J.M. r2SCAN-3c: A “Swiss army knife” composite electronic-structure method. J. Chem. Phys. 2021, 154, 064103. [Google Scholar] [CrossRef]
- Lu, T.; Chen, F. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592. [Google Scholar] [CrossRef]
- Comelli, F.; Francesconi, R. Isothermal vapor-liquid equilibria measurements, excess molar enthalpies, and excess molar volumes of dimethyl carbonate + methanol, + ethanol, and + propan-1-ol at 313.15 K. J. Chem. Eng. Data 1997, 42, 705–709. [Google Scholar] [CrossRef]
- Daubert, T.E.; Danner, R.P. Physical and Thermodynamic Properties of Pure Chemicals Data Compilation; Taylor and Francis: Washington, DC, USA, 1996. [Google Scholar]
Membrane | E, (GPa) | σy, (MPa) | σb, (MPa) | εb, (%) |
---|---|---|---|---|
PHI | 3.62 ± 0.14 | 130 ± 4 | 122 ± 3 | 32 ± 3 |
PHI-Cu(I) | 3.47 ± 0.19 | 127 ± 3 | 117 ± 1 | 55 ± 2 |
Membrane | τ5, (°C) | τ10, (°C) | T(DTA max), (°C) |
---|---|---|---|
PHI | 438 | 484 | 570 |
PHI-Cu(I) | 372 | 391 | 480 |
Liquid | Mol. Weight, (g/mol) | Density *, (g/cm3) | Molar Volume, (cm3/mol) | Kinetic Diameter, A° | Dipole Moment, (D) | Tb, (°C) |
---|---|---|---|---|---|---|
MeOH | 32.04 | 0.7866 | 40.73 | 3.8 | 1.66 | 64.7 |
DMC | 90.08 | 1.0635 | 84.70 | 6.0 | 0.93 | 90.0 |
Membrane | Density, (g/cm3) | Sorption Degree, (gMeOH/100 gpolymer) | Diffusion Coefficient of MeOH D⋅1011, m2/min |
---|---|---|---|
PHI | 1.368 | 14.1 | 1.37 |
PHI-Cu(I) | 1.375 | 12.4 | 1.18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Polotskaya, G.; Tian, N.; Faykov, I.; Goikhman, M.; Podeshvo, I.; Loretsyan, N.; Gofman, I.; Zolotovsky, K.; Pulyalina, A. Novel Design of Co-Poly(Hydrazide Imide) and Its Complex with Cu(I) for Membrane Separation of Methanol/Dimethyl Carbonate Mixture. Membranes 2023, 13, 160. https://doi.org/10.3390/membranes13020160
Polotskaya G, Tian N, Faykov I, Goikhman M, Podeshvo I, Loretsyan N, Gofman I, Zolotovsky K, Pulyalina A. Novel Design of Co-Poly(Hydrazide Imide) and Its Complex with Cu(I) for Membrane Separation of Methanol/Dimethyl Carbonate Mixture. Membranes. 2023; 13(2):160. https://doi.org/10.3390/membranes13020160
Chicago/Turabian StylePolotskaya, Galina, Nadezhda Tian, Ilya Faykov, Mikhail Goikhman, Irina Podeshvo, Nairi Loretsyan, Iosif Gofman, Konstantin Zolotovsky, and Alexandra Pulyalina. 2023. "Novel Design of Co-Poly(Hydrazide Imide) and Its Complex with Cu(I) for Membrane Separation of Methanol/Dimethyl Carbonate Mixture" Membranes 13, no. 2: 160. https://doi.org/10.3390/membranes13020160
APA StylePolotskaya, G., Tian, N., Faykov, I., Goikhman, M., Podeshvo, I., Loretsyan, N., Gofman, I., Zolotovsky, K., & Pulyalina, A. (2023). Novel Design of Co-Poly(Hydrazide Imide) and Its Complex with Cu(I) for Membrane Separation of Methanol/Dimethyl Carbonate Mixture. Membranes, 13(2), 160. https://doi.org/10.3390/membranes13020160