Existing Filtration Treatment on Drinking Water Process and Concerns Issues
Abstract
:1. Introduction
2. Available Drinking Water Treatment Technologies
2.1. Conventional Treatment
2.2. Advanced Treatment
2.3. Hybrid Treatment
3. Membrane Filtration Technology
Membrane Filtration and Fouling Issue
4. Current Solutions and Way Forward
Reference | Filtration Type | Plant Size | Fouling Reduction Technique |
---|---|---|---|
H. Rho et al. [113] | UF | Pilot | Chemical |
R. Bert et al. [114] | UF | Lab | Hydrodynamic |
S. Kim and C. Park [115] | UF | Bench | Chemical |
C. Lee et al. [112] | FO-RO | Pilot | Hydrodynamic |
K. Almoalimi and Y. Liu [116] | FO | Lab | Physical |
B. Unal [117] | RO | Full-scale | Chemical |
L. Martinelli et al. [118] | UF | Lab | Hydrodynamic |
M. Yang et al. [119] | MBR | Lab | Hydrodynamic |
H. Jang et al. [108] | UF | Lab | Chemical |
I. Ruigómez et al. [120] | UF | Lab | Physical |
W. Zhang et al. [121] | AGS-MBR | Lab | Hydrodynamic |
W. Yang et al. [122] | UF | Pilot | Chemical |
4.1. Fouling Prevention
4.2. Fouling Prediction
4.3. Fouling Control and Automation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Umar, M.; Kambai, J.; Mohammed, I.B.; Oko, J.O.; Obafemi, A.A.; Murtala, I.; Ajiya, K.G.; Yaya, A.A.; Abdulkarim, I.M.; Akafyi, D.E.; et al. Bacteriological Quality Assessment and Antibiogram Profile of Bacteria Associated with Sachet Drinking Water Sold at Zaria, Northern Nigeria. Int. J. Pathog. Res. 2019, 2, 1–13. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Drinking-Water, Sanitation and Hygiene in the Western Pacific Region; World Health Organization: Geneva, Switzerland, 2018. [Google Scholar]
- Yoo, S.S.; Chu, K.H.; Choi, I.-H.; Mang, J.S.; Ko, K.B. Operating cost reduction of UF membrane filtration process for drinking water treatment attributed to chemical cleaning optimization. J. Environ. Manag. 2018, 206, 1126–1134. [Google Scholar] [CrossRef] [PubMed]
- Saleem, M.; Alibardi, L.; Lavagnolo, M.C.; Cossu, R.; Spagni, A. Effect of filtration flux on the development and operation of a dynamic membrane for anaerobic wastewater treatment. J. Environ. Manag. 2016, 180, 459–465. [Google Scholar] [CrossRef] [PubMed]
- Esplugas, S.; Bila, D.M.; Krause, L.G.T.; Dezotti, M. Ozonation and advanced oxidation technologies to remove endocrine disrupting chemicals (EDCs) and pharmaceuticals and personal care products (PPCPs) in water effluents. J. Hazard. Mater. 2007, 149, 631–642. [Google Scholar] [CrossRef]
- Zhang, Y.; Gao, X.; Smith, K.; Inial, G.; Liu, S.; Conil, L.B.; Pan, B. Integrating water quality and operation into prediction of water production in drinking water treatment plants by genetic algorithm enhanced artificial neural network. Water Res. 2019, 164, 114888. [Google Scholar] [CrossRef]
- Zhang, H.; Zheng, L.; Li, Z.; Pi, K.; Deng, Y. One-step Ferrate(VI) treatment as a core process for alternative drinking water treatment. Chemosphere 2019, 242, 125134. [Google Scholar] [CrossRef]
- Omar, I.A.; Aziz, S.Q. Research on Performance Evaluation and Improvement of Ifraz-2 Water Treatment Plant. Recent Res. Adv. Biol. 2021, 7, 9–22. [Google Scholar] [CrossRef]
- Abd Nasier, M.; Adel Abdulrazzaq, K. Conventional Water Treatment Plant, Principles, and Important Factors Influence on The Efficiency. Des. Eng. 2021, 8, 16009–16027. [Google Scholar]
- Heydarifard, S.; Taneja, K.; Bhanjana, G.; Dilbaghi, N.; Nazhad, M.M.; Kim, K.-H.; Kumar, S. Modification of cellulose foam paper for use as a high-quality biocide disinfectant filter for drinking water. Carbohydr. Polym. 2018, 181, 1086–1092. [Google Scholar] [CrossRef]
- Teodosiu, C.; Gilca, A.-F.; Barjoveanu, G.; Fiore, S. Emerging pollutants removal through advanced drinking water treatment: A review on processes and environmental performances assessment. J. Clean. Prod. 2018, 197, 1210–1221. [Google Scholar] [CrossRef]
- Lund, M.D.; Bording, T.; Andersen, T.R. Electrical resistivity tomography applied for monitoring backwash efficiency in drinking water filters. Water Supply 2022, 22, 6660–6671. [Google Scholar] [CrossRef]
- Jalil, A.T.; Emad, H.; Qurabiy, A.; Dilfy, S.H.; Surendar, A.; Kadhim, M.M.; Aljeboree, A.M. CuO/ZrO2 Nanocomposites: Facile Synthesis, Characterization and Photocatalytic Degradation of Tetracycline Antibiotic. J. Nanostruct. 2021, 11, 333–346. [Google Scholar] [CrossRef]
- Rigobello, E.S.; Dantas, A.D.B.; Di Bernardo, L.; Vieira, E.M. Removal of diclofenac by conventional drinking water treatment processes and granular activated carbon filtration. Chemosphere 2013, 92, 184–191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murugan, R.; Ram, C.G. Energy efficient drinking water purification system using TiO2 solar reactor with traditional methods. Mater. Today Proc. 2018, 5, 415–421. [Google Scholar] [CrossRef]
- Zheng, X.; Ernst, M.; Jekel, M. Pilot-scale investigation on the removal of organic foulants in secondary effluent by slow sand filtration prior to ultrafiltration. Water Res. 2010, 44, 3203–3213. [Google Scholar] [CrossRef]
- Sabogal-Paz, L.P.; Campos, L.C.; Bogush, A.; Canales, M. Household slow sand filters in intermittent and continuous flows to treat water containing low mineral ion concentrations and Bisphenol A. Sci. Total Environ. 2020, 702, 135078. [Google Scholar] [CrossRef]
- Ahammed, M.M.; Davra, K. Performance evaluation of biosand filter modified with iron oxide-coated sand for household treatment of drinking water. Desalination 2011, 276, 287–293. [Google Scholar] [CrossRef]
- Mizuta, K. Removal of nitrate-nitrogen from drinking water using bamboo powder charcoal. Bioresour. Technol. 2004, 95, 255–257. [Google Scholar] [CrossRef]
- Zhang, H.; Zhu, G.; Jia, X.; Ding, Y.; Zhang, M.; Gao, Q.; Hu, C.; Xu, S. Removal of microcystin-LR from drinking water using a bamboo-based charcoal adsorbent modified with chitosan. J. Environ. Sci. 2011, 23, 1983–1988. [Google Scholar] [CrossRef]
- Omarova, A.; Tussupova, K.; Berndtsson, R.; Kalishev, M.; Sharapatova, K. Protozoan parasites in drinking water: A system approach for improved water, sanitation and hygiene in developing countries. Int. J. Environ. Res. Public Health 2018, 15, 495. [Google Scholar] [CrossRef] [Green Version]
- Shirazi, S.; Lin, C.-J.; Chen, D. Inorganic fouling of pressure-driven membrane processes—A critical review. Desalination 2010, 250, 236–248. [Google Scholar] [CrossRef]
- Xiang, H.; Min, X.; Tang, C.-J.; Sillanpää, M.; Zhao, F. Recent advances in membrane filtration for heavy metal removal from wastewater: A mini review. J. Water Process. Eng. 2022, 49, 103023. [Google Scholar] [CrossRef]
- Chadha, U.; Selvaraj, S.K.; Thanu, S.V.; Cholapadath, V.; Abraham, A.M.; Zaiyan, M.; Manikandan, M.; Paramasivam, V. A review of the function of using carbon nanomaterials in membrane filtration for contaminant removal from wastewater. Mater. Res. Express 2022, 9, 012003. [Google Scholar] [CrossRef]
- Zhang, W.; Xu, X.; Zhang, G.; Jin, S.; Dong, L.; Gu, P. Treatment of Membrane Cleaning Wastewater from Thermal Power Plant Using Membrane Bioreactor. Membranes 2022, 12, 755. [Google Scholar] [CrossRef] [PubMed]
- Deng, L.; Guo, W.; Ngo, H.H.; Zhang, X.; Chen, C.; Chen, Z.; Cheng, D.; Ni, S.-Q.; Wang, Q. Recent advances in attached growth membrane bioreactor systems for wastewater treatment. Sci. Total Environ. 2021, 808, 152123. [Google Scholar] [CrossRef]
- Oh, Y.; Sim, D.; Jeong, S.; Lee, J.; Son, H.; Bae, H.; Jeong, S. Multifunctional in-situ ferrate treatment and its removal mechanisms of membrane bioreactor residual pollutants. Chem. Eng. J. 2022, 446, 136956. [Google Scholar] [CrossRef]
- Buse, H.Y.; Hall, J.S.; Hunter, G.L.; Goodrich, J.A. Differences in UV-C LED Inactivation of Legionella pneumophila Serogroups in Drinking Water. Microorganisms 2022, 10, 352. [Google Scholar] [CrossRef]
- Sultan, T.; Ahmad, Z.; Hayat, K.; Chaudhry, I.A. Computational analysis of three lamp close conduit water disinfection UV reactor. Int. J. Environ. Sci. Technol. 2021, 19, 4393–4406. [Google Scholar] [CrossRef]
- Schmalwieser, A.W.; Hirschmann, G.; Eggers, J.; Sommer, R. A standardized method to measure the longitudinal UV emittance of low-pressure-lamps in dependence of water temperature. Water Supply 2021, 22, 900–916. [Google Scholar] [CrossRef]
- Venkatesan, A.K.; Lee, C.-S.; Gobler, C.J. Hydroxyl-radical based advanced oxidation processes can increase perfluoroalkyl substances beyond drinking water standards: Results from a pilot study. Sci. Total Environ. 2022, 847, 157577. [Google Scholar] [CrossRef]
- Giwa, A.; Yusuf, A.; Balogun, H.A.; Sambudi, N.S.; Bilad, M.R.; Adeyemi, I.; Chakraborty, S.; Curcio, S. Recent advances in advanced oxidation processes for removal of contaminants from water: A comprehensive review. Process. Saf. Environ. Prot. 2020, 146, 220–256. [Google Scholar] [CrossRef]
- Wang, J.Z.; Summers, R.S.; Miltner, R.J. Biofiltration performance: Part 1, relationship to biomass. Am. Water Work. Assoc. 2016, 87, 55–63. [Google Scholar] [CrossRef]
- Warsinger, D.M.; Chakraborty, S.; Tow, E.W.; Plumlee, M.H.; Bellona, C.; Loutatidou, S.; Karimi, L.; Mikelonis, A.M.; Achilli, A.; Ghassemi, A.; et al. A review of polymeric membranes and processes for potable water reuse. Prog. Polym. Sci. 2018, 81, 209–237. [Google Scholar] [CrossRef] [PubMed]
- Sillanpää, M.; Ncibi, M.C.; Matilainen, A. Advanced oxidation processes for the removal of natural organic matter from drinking water sources: A comprehensive review. J. Environ. Manag. 2018, 208, 56–76. [Google Scholar] [CrossRef] [PubMed]
- Snyder, S.; Adham, S.; Redding, A.M.; Cannon, F.S.; Decarolis, J.; Oppenheimer, J.; Wert, E.C.; Yoon, Y. Role of membranes and activated carbon in the removal of endocrine disruptors and pharmaceuticals. Desalination 2007, 202, 156–181. [Google Scholar] [CrossRef]
- Oh, K.S.; Leong, J.Y.C.; Poh, P.E.; Chong, M.N.; Von Lau, E. A review of greywater recycling related issues: Challenges and future prospects in Malaysia. J. Clean. Prod. 2018, 171, 17–29. [Google Scholar] [CrossRef]
- Holloway, R.W.; Miller-Robbie, L.; Patel, M.; Stokes, J.R.; Munakata-Marr, J.; Dadakis, J.; Cath, T.Y. Life-cycle assessment of two potable water reuse technologies: MF/RO/UV-AOP treatment and hybrid osmotic membrane bioreactors. J. Membr. Sci. 2016, 507, 165–178. [Google Scholar] [CrossRef] [Green Version]
- Gupta, V.; Ali, I. Chapter 5—Water Treatment by Membrane Filtration Techniques. Environ. Water 2013, 2013, 135–154. [Google Scholar] [CrossRef]
- Chew, C.M.; Aroua, M.; Hussain, M.; Ismail, W.W. Practical performance analysis of an industrial-scale ultrafiltration membrane water treatment plant. J. Taiwan Inst. Chem. Eng. 2015, 46, 132–139. [Google Scholar] [CrossRef]
- Song, J.; Zhang, Z.; Zhang, X. A comparative study of pre-ozonation and in-situ ozonation on mitigation of ceramic UF membrane fouling caused by alginate. J. Membr. Sci. 2017, 538, 50–57. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, D.K.; Lopez, D.R.S.; da Costa, J.C.D. Fabrication of nanostructured TiO2 hollow fiber photocatalytic membrane and application for wastewater treatment. Chem. Eng. J. 2014, 236, 314–322. [Google Scholar] [CrossRef]
- Kimura, K.; Hane, Y.; Watanabe, Y.; Amy, G.; Ohkuma, N. Irreversible membrane fouling during ultrafiltration of surface water. Water Res. 2004, 38, 3431–3441. [Google Scholar] [CrossRef] [PubMed]
- Kingsbury, B.F.; Li, K. A morphological study of ceramic hollow fibre membranes. J. Membr. Sci. 2009, 328, 134–140. [Google Scholar] [CrossRef]
- Le, N.L.; Nunes, S.P. Materials and membrane technologies for water and energy sustainability. Sustain. Mater. Technol. 2016, 7, 1–28. [Google Scholar] [CrossRef] [Green Version]
- Im, D.; Nakada, N.; Fukuma, Y.; Tanaka, H. Effects of the inclusion of biological activated carbon on membrane fouling in combined process of ozonation, coagulation and ceramic membrane filtration for water reclamation. Chemosphere 2018, 220, 20–27. [Google Scholar] [CrossRef]
- Sandoval, A.D.O.; Brião, V.B.; Fernandes, V.M.C.; Hemkemeier, A.; Friedrich, M.T. Stormwater management by microfiltration and ultrafiltration treatment. J. Water Process. Eng. 2019, 30, 100453. [Google Scholar] [CrossRef]
- Bagga, A.; Chellam, S.; Clifford, D.A. Evaluation of iron chemical coagulation and electrocoagulation pretreatment for surface water microfiltration. J. Membr. Sci. 2008, 309, 82–93. [Google Scholar] [CrossRef]
- Hsu, B.-M.; Yeh, H.-H. Removal of Giardia and Cryptosporidium in drinking water treatment: A pilot-scale study. Water Res. 2003, 37, 1111–1117. [Google Scholar] [CrossRef]
- Bray, R.; Jankowska, K.; Kulbat, E.; Łuczkiewicz, A.; Sokołowska, A. Ultrafiltration process in disinfection and advanced treatment of tertiary treated wastewater. Membranes 2021, 11, 221. [Google Scholar] [CrossRef]
- Brehant, A.; Bonnelye, V.; Perez, M. Comparison of MF/UF pretreatment with conventional filtration prior to RO membranes for surface seawater desalination. Desalination 2002, 144, 353–360. [Google Scholar] [CrossRef]
- Shirakawa, D.; Shirasaki, N.; Matsushita, T.; Matsui, Y.; Yamashita, R.; Matsumura, T.; Koriki, S. Evaluation of reduction efficiencies of pepper mild mottle virus and human enteric viruses in full-scale drinking water treatment plants employing coagulation-sedimentation–rapid sand filtration or coagulation–microfiltration. Water Res. 2022, 213, 118160. [Google Scholar] [CrossRef] [PubMed]
- Sinclair, T.; Robles, D.; Raza, B.; Hengel, S.V.D.; Rutjes, S.; Husman, A.D.R.; de Grooth, J.; de Vos, W.; Roesink, H.D. Virus reduction through microfiltration membranes modified with a cationic polymer for drinking water applications. Colloids Surf. A 2018, 551, 33–41. [Google Scholar] [CrossRef]
- He, Z.; Xia, D.; Huang, Y.; Tan, X.; He, C.; Hu, L.; He, H.; Zeng, J.; Xu, W.; Shu, D. 3D MnO2 hollow microspheres ozone-catalysis coupled with flat-plate membrane filtration for continuous removal of organic pollutants: Efficient heterogeneous catalytic system and membrane fouling control. J. Hazard. Mater. 2018, 344, 1198–1208. [Google Scholar] [CrossRef] [PubMed]
- Chew, C.M.; Aroua, M.K.; Hussain, M.A.; Ismail, W.M.Z.W. Evaluation of ultrafiltration and conventional water treatment systems for sustainable development: An industrial scale case study. J. Clean. Prod. 2016, 112, 3152–3163. [Google Scholar] [CrossRef]
- Sengur-Tasdemir, R.; Urper-Bayram, G.M.; Turken, T.; Ates-Genceli, E.; Tarabara, V.V.; Koyuncu, I. Hollow fiber nanofiltration membranes for surface water treatment: Performance evaluation at the pilot scale. J. Water Process. Eng. 2021, 42, 102100. [Google Scholar] [CrossRef]
- Al-Amoudi, A.S. Factors affecting natural organic matter (NOM) and scaling fouling in NF membranes: A review. Desalination 2010, 259, 1–10. [Google Scholar] [CrossRef]
- Weber, R.; Chmiel, H.; Mavrov, V. Characteristics and application of new ceramic nanofiltration membranes. Desalination 2003, 157, 113–125. [Google Scholar] [CrossRef]
- Mohsen, M.S.; Jaber, J.O.; Afonso, M.D. Desalination of brackish water by nanofiltration and reverse osmosis. Desalination 2003, 157, 167. [Google Scholar] [CrossRef]
- Vatankhah, H.; Murray, C.C.; Brannum, J.W.; Vanneste, J.; Bellona, C. Effect of pre-ozonation on nanofiltration membrane fouling during water reuse applications. Sep. Purif. Technol. 2018, 205, 203–211. [Google Scholar] [CrossRef]
- del Pino, M.P.; Durham, B. Wastewater Reuse Through Dual Membrane Processes: Opportunities for sustainable water resources. Desalination 1999, 124, 271–277. [Google Scholar] [CrossRef]
- Touati, K.; Gzara, L.; Mahfoudhi, S.; Bourezgui, S.; Hafiane, A.; Elfil, H. Treatment of coastal well water using ultrafiltration-nanofiltration-reverse osmosis to produce isotonic solutions and drinking water: Fouling behavior and energy efficiency. J. Clean. Prod. 2018, 200, 1053–1064. [Google Scholar] [CrossRef]
- Ortiz, J.; Sotoca, J.; Expósito, E.; Gallud, F.; García-García, V.; Montiel, V.; Aldaz, A. Brackish water desalination by electrodialysis: Batch recirculation operation modeling. J. Membr. Sci. 2005, 252, 65–75. [Google Scholar] [CrossRef]
- Liu, R.; Wang, Y.; Wu, G.; Luo, J.; Wang, S. Development of a selective electrodialysis for nutrient recovery and desalination during secondary effluent treatment. Chem. Eng. J. 2017, 322, 224–233. [Google Scholar] [CrossRef]
- Sirivedhin, T.; McCue, J.; Dallbauman, L. Reclaiming produced water for beneficial use: Salt removal by electrodialysis. J. Membr. Sci. 2004, 243, 335–343. [Google Scholar] [CrossRef]
- Walha, K.; Ben Amar, R.; Firdaous, L.; Quéméneur, F.; Jaouen, P. Brackish groundwater treatment by nanofiltration, reverse osmosis and electrodialysis in Tunisia: Performance and cost comparison. Desalination 2007, 207, 95–106. [Google Scholar] [CrossRef]
- Bogler, A.; Lin, S.; Bar-Zeev, E. Biofouling of membrane distillation, forward osmosis and pressure retarded osmosis: Principles, impacts and future directions. J. Membr. Sci. 2017, 542, 378–398. [Google Scholar] [CrossRef]
- Lee, S.; Boo, C.; Elimelech, M.; Hong, S. Comparison of fouling behavior in forward osmosis (FO) and reverse osmosis (RO). J. Membr. Sci. 2010, 365, 34–39. [Google Scholar] [CrossRef]
- Li, D.; Yan, Y.; Wang, H. Recent advances in polymer and polymer composite membranes for reverse and forward osmosis processes. Prog. Polym. Sci. 2016, 61, 104–155. [Google Scholar] [CrossRef] [Green Version]
- Suwaileh, W.A.; Johnson, D.J.; Sarp, S.; Hilal, N. Advances in forward osmosis membranes: Altering the sub-layer structure via recent fabrication and chemical modification approaches. Desalination 2018, 436, 176–201. [Google Scholar] [CrossRef] [Green Version]
- Tow, E.W.; Warsinger, D.M.; Trueworthy, A.M.; Swaminathan, J.; Thiel, G.P.; Zubair, S.M.; Myerson, A.S.; V, J.H.L. Comparison of fouling propensity between reverse osmosis, forward osmosis, and membrane distillation. J. Membr. Sci. 2018, 556, 352–364. [Google Scholar] [CrossRef] [Green Version]
- Hamid, K.I.A.; Sanciolo, P.; Gray, S.; Duke, M.; Muthukumaran, S. Comparison of the effects of ozone, biological activated carbon (BAC) filtration and combined ozone-BAC pre-treatments on the microfiltration of secondary effluent. Sep. Purif. Technol. 2019, 215, 308–316. [Google Scholar] [CrossRef]
- Gao, W.; Liang, H.; Ma, J.; Han, M.; Chen, Z.-L.; Han, Z.-S.; Li, G.-B. Membrane fouling control in ultrafiltration technology for drinking water production: A review. Desalination 2011, 272, 1–8. [Google Scholar] [CrossRef]
- Tow, E.W.; V, J.H.L. Unpacking compaction: Effect of hydraulic pressure on alginate fouling. J. Membr. Sci. 2017, 544, 221–233. [Google Scholar] [CrossRef]
- Saffarini, R.B.; Summers, E.K.; Arafat, H.A.; V, J.H.L. Economic evaluation of stand-alone solar powered membrane distillation systems. Desalination 2012, 299, 55–62. [Google Scholar] [CrossRef]
- Gil, J.D.; Roca, L.; Ruiz-Aguirre, A.; Zaragoza, G.; Berenguel, M. Optimal operation of a Solar Membrane Distillation pilot plant via Nonlinear Model Predictive Control. Comput. Chem. Eng. 2017, 109, 151–165. [Google Scholar] [CrossRef] [Green Version]
- Ullah, R.; Khraisheh, M.; Esteves, R.J.; Jr, J.T.M.; AlGhouti, M.; Gad-El-Hak, M.; Tafreshi, H.V. Energy efficiency of direct contact membrane distillation. Desalination 2018, 433, 56–67. [Google Scholar] [CrossRef]
- Wang, W.; Yue, Q.; Guo, K.; Bu, F.; Shen, X.; Gao, B. Application of Al species in coagulation/ultrafiltration process: Influence of cake layer on membrane fouling. J. Membr. Sci. 2018, 572, 161–170. [Google Scholar] [CrossRef]
- Nerger, B.A.; Peiris, R.H.; Moresoli, C. Fluorescence analysis of NOM degradation by photocatalytic oxidation and its potential to mitigate membrane fouling in drinking water treatment. Chemosphere 2015, 136, 140–144. [Google Scholar] [CrossRef]
- Li, W.; Su, X.; Palazzolo, A.; Ahmed, S. Numerical modeling of concentration polarization and inorganic fouling growth in the pressure-driven membrane filtration process. J. Membr. Sci. 2018, 569, 71–82. [Google Scholar] [CrossRef]
- Lee, T.-M.; Oh, H.; Choung, Y.-K.; Oh, S.; Jeon, M.; Kim, J.H.; Nam, S.H.; Lee, S. Prediction of membrane fouling in the pilot-scale microfiltration system using genetic programming. Desalination 2009, 247, 285–294. [Google Scholar] [CrossRef]
- Zahari, A.M.; Shuo, C.W.; Sathishkumar, P.; Yusoff, A.R.M.; Gu, F.L.; Buang, N.A.; Lau, W.-J.; Gohari, R.J.; Yusop, Z. A reusable electrospun PVDF-PVP-MnO2 nanocomposite membrane for bisphenol A removal from drinking water. J. Environ. Chem. Eng. 2018, 6, 5801–5811. [Google Scholar] [CrossRef]
- Lopes, M.P.; Xin, G.; Crespo, J.G. Energy saving membrane treatment of high organic load industrial effluents: From lab to pilot scale. J. Environ. Manag. 2013, 131, 161–169. [Google Scholar] [CrossRef] [PubMed]
- Yoon, T.I.; Lee, H.S.; Kim, C.G. Comparison of pilot scale performances between membrane bioreactor and hybrid conventional wastewater treatment systems. J. Membr. Sci. 2004, 242, 5–12. [Google Scholar] [CrossRef]
- Guo, W.; Ngo, H.-H.; Li, J. A mini-review on membrane fouling. Bioresour. Technol. 2012, 122, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.H.; Kim, H.S.; Kweon, J.H. Role of hydrophobic natural organic matter flocs on the fouling in coagulation-membrane processes. Sep. Purif. Technol. 2008, 62, 529–534. [Google Scholar] [CrossRef]
- Fabris, R.; Lee, E.K.; Chow, C.W.; Chen, V.; Drikas, M. Pre-treatments to reduce fouling of low pressure micro-filtration (MF) membranes. J. Membr. Sci. 2007, 289, 231–240. [Google Scholar] [CrossRef]
- López-Roldán, R.; Rubalcaba, A.; Martin-Alonso, J.; González, S.; Martí, V.; Cortina, J.L. Assessment of the water chemical quality improvement based on human health risk indexes: Application to a drinking water treatment plant incorporating membrane technologies. Sci. Total Environ. 2016, 540, 334–343. [Google Scholar] [CrossRef] [Green Version]
- Jang, Y.; Kim, H.-S.; Ham, S.-Y.; Park, J.-H.; Park, H.-D. Investigation of critical sludge characteristics for membrane fouling in a submerged membrane bioreactor: Role of soluble microbial products and extracted extracellular polymeric substances. Chemosphere 2021, 271, 129879. [Google Scholar] [CrossRef]
- Lu, C.; Bao, Y.; Huang, J.-Y. Fouling in membrane filtration for juice processing. Curr. Opin. Food Sci. 2021, 42, 76–85. [Google Scholar] [CrossRef]
- Mozia, S.; Szymański, K.; Michalkiewicz, B.; Tryba, B.; Toyoda, M.; Morawski, A.W. Effect of process parameters on fouling and stability of MF/UF TiO2 membranes in a photocatalytic membrane reactor. Sep. Purif. Technol. 2015, 142, 137–148. [Google Scholar] [CrossRef]
- Kola, A.; Ye, Y.; Ho, A.; Le-Clech, P.; Chen, V. Application of low frequency transverse vibration on fouling limitation in submerged hollow fibre membranes. J. Membr. Sci. 2012, 409–410, 54–65. [Google Scholar] [CrossRef]
- Zhao, F.; Chu, H.; Su, Y.; Tan, X.; Zhang, Y.; Yang, L.; Zhou, X. Microalgae harvesting by an axial vibration membrane: The mechanism of mitigating membrane fouling. J. Membr. Sci. 2016, 508, 127–135. [Google Scholar] [CrossRef]
- Jaffrin, M.Y. Dynamic shear-enhanced membrane filtration: A review of rotating disks, rotating membranes and vibrating systems. J. Membr. Sci. 2008, 324, 7–25. [Google Scholar] [CrossRef]
- Li, J.; Wang, B.; Chen, Z.; Ma, B.; Chen, J. Ultrafiltration membrane fouling by microplastics with raw water: Behaviors and alleviation methods. Chem. Eng. J. 2020, 410, 128174. [Google Scholar] [CrossRef]
- Zhang, W.; Hao, T. Insights into the role of concentration polarization on the membrane fouling and cleaning during the aerobic granular sludge filtration process. Sci. Total Environ. 2021, 813, 151871. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Zhang, J.; Luo, J.; Wan, Y. A novel paradigm of photocatalytic cleaning for membrane fouling removal. J. Membr. Sci. 2021, 641, 119859. [Google Scholar] [CrossRef]
- Wang, L.; Wu, Y.; You, Z.; Bao, H.; Zhang, L.; Wang, J. Electrochemical impedance spectroscopy (EIS) reveals the role of microbial fuel cell-ceramic membrane bioreactor (MFC-CMBR): Electricity utilization and membrane fouling. Water Res. 2022, 222, 118854. [Google Scholar] [CrossRef]
- Pan, Z.; Zeng, B.; Yu, G.; Teng, J.; Zhang, H.; Shen, L.; Yang, L.; Lin, H. Mechanistic insights into Ca-alginate gel-associated membrane fouling affected by ethylene diamine tetraacetic acid (EDTA). Sci. Total Environ. 2022, 842, 156912. [Google Scholar] [CrossRef]
- Gao, Q.; Demissie, H.; Lu, S.; Xu, Z.; Ritigala, T.; Yingying, S.; Yang, W.; Wang, D.; Xu, H. Impact of preformed composite coagulants on alleviating colloids and organics-based ultrafiltration membrane fouling: Role of polymer composition and permeate quality. J. Environ. Chem. Eng. 2021, 9, 105264. [Google Scholar] [CrossRef]
- Li, Y.; Gao, R.; Zhang, J.; Zhang, Y.; Liang, S. Antifouling Conductive Composite Membrane with Reversible Wettability for Wastewater Treatment. Membranes 2022, 12, 626. [Google Scholar] [CrossRef]
- Zhao, F.; Han, X.; Shao, Z.; Li, Z.; Li, Z.; Chen, D. Effects of different pore sizes on membrane fouling and their performance in algae harvesting. J. Membr. Sci. 2021, 641, 119916. [Google Scholar] [CrossRef]
- Lay, H.T.; Wang, R.; Chew, J.W. Membrane fouling by mixtures of oppositely charged particles. J. Membr. Sci. 2021, 625, 119093. [Google Scholar] [CrossRef]
- Charcosset, C. Classical and Recent Developments of Membrane Processes for Desalination and Natural Water Treatment. Membranes 2022, 12, 267. [Google Scholar] [CrossRef] [PubMed]
- He, H.; Xin, X.; Qiu, W.; Li, D.; Liu, Z.; Ma, J. Role of nano-Fe3O4 particle on improving membrane bioreactor (MBR) performance: Alleviating membrane fouling and microbial mechanism. Water Res. 2021, 209, 117897. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Tao, X.; Zhu, H.; Tang, Z.; Xu, S.; Li, B.; Song, Z.; Pan, L.; Zhang, Y.; Duan, J. Effect of operation mode on membrane fouling from traditional Chinese medicine water extracts. J. Water Process. Eng. 2022, 48, 102943. [Google Scholar] [CrossRef]
- Enfrin, M.; Hachemi, C.; Callahan, D.L.; Lee, J.; Dumée, L.F. Membrane fouling by nanofibres and organic contaminants—Mechanisms and mitigation via periodic cleaning strategies. Sep. Purif. Technol. 2021, 278, 119592. [Google Scholar] [CrossRef]
- Jang, H.; Park, S.-J.; Kim, J. Response surface methodology to investigate the effects of operational parameters on membrane fouling and organic matter rejection in hard-shell encased hollow-fiber membrane. Chemosphere 2021, 287, 132132. [Google Scholar] [CrossRef]
- Park, N.; Kim, Y.L.H.; Kim, H.; Lee, Y.; Choi, Y.; Lee, S. Prediction of ultrafiltration membrane fouling using statistical models in pilot and full-scale operations. Desalin. Water Treat. 2021, 227, 86–92. [Google Scholar] [CrossRef]
- Nthunya, L.N.; Bopape, M.F.; Mahlangu, O.T.; Mamba, B.B.; Van der Bruggen, B.; Quist-Jensen, C.A.; Richards, H. Fouling, performance and cost analysis of membrane-based water desalination technologies: A critical review. J. Environ. Manag. 2021, 301, 113922. [Google Scholar] [CrossRef]
- Shamsuddin, N.; Das, D.B.; Starov, V.M. Filtration of natural organic matter using ultrafiltration membranes for drinking water purposes: Circular cross-flow compared with stirred dead end flow. Chem. Eng. J. 2015, 276, 331–339. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.; Nguyen, T.-T.; Adha, R.S.; Shon, H.K.; Kim, I.S. Influence of hydrodynamic operating conditions on organic fouling of spiral-wound forward osmosis membranes: Fouling-induced performance deterioration in FO-RO hybrid system. Water Res. 2020, 185, 116154. [Google Scholar] [CrossRef] [PubMed]
- Rho, H.; Kim, S.; Shin, J.; Cho, J.; Lee, Y.-G.; Chon, K. Effects of two-step cleaning sequences on foulant extraction from multibore ultrafiltration membranes in a pilot-scale membrane filtration system for surface water treatment. Chemosphere 2022, 297, 134164. [Google Scholar] [CrossRef] [PubMed]
- Bert, R.; Manes, C.; Tiraferri, A. New Facility for Membrane Fouling Investigations under Customizable Hydrodynamics: Validation and Preliminary Experiments with Pulsating Cross-Flow. Membranes 2022, 12, 334. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Park, C. Fouling behavior and cleaning strategies of ceramic ultrafiltration membranes for the treatment and reuse of laundry wastewater. J. Water Process. Eng. 2022, 48, 102840. [Google Scholar] [CrossRef]
- Almoalimi, K.; Liu, Y.-Q. Fouling and cleaning of thin film composite forward osmosis membrane treating municipal wastewater for resource recovery. Chemosphere 2021, 288, 132507. [Google Scholar] [CrossRef] [PubMed]
- Unal, B.O. Membrane autopsy study to characterize fouling type of RO membrane used in an industrial zone wastewater reuse plant. Desalination 2022, 529, 115648. [Google Scholar] [CrossRef]
- Martinelli, L.; Guigui, C.; Line, A. Characterisation of hydrodynamics induced by air injection related to membrane fouling behaviour. Desalination 2010, 250, 587–591. [Google Scholar] [CrossRef]
- Yang, M.; Yu, D.; Liu, M.; Zheng, L.; Zheng, X.; Wei, Y.; Wang, F.; Fan, Y. Optimization of MBR hydrodynamics for cake layer fouling control through CFD simulation and RSM design. Bioresour. Technol. 2017, 227, 102–111. [Google Scholar] [CrossRef]
- Ruigómez, I.; González, E.; Rodríguez-Gómez, L.; Vera, L. Fouling control strategies for direct membrane ultrafiltration: Physical cleanings assisted by membrane rotational movement. Chem. Eng. J. 2022, 436, 135161. [Google Scholar] [CrossRef]
- Zhang, W.; Liang, W.; Zhang, Z.; Hao, T. Aerobic granular sludge (AGS) scouring to mitigate membrane fouling: Performance, hydrodynamic mechanism and contribution quantification model. Water Res. 2020, 188, 116518. [Google Scholar] [CrossRef]
- Yang, W.; Guo, Q.; Duan, D.; Wang, T.; Liu, J.; Du, X.; Liu, Y.; Xia, S. Characteristics of flat-sheet ceramic ultrafiltration membranes for lake water treatment: A pilot study. Sep. Purif. Technol. 2022, 289, 120677. [Google Scholar] [CrossRef]
- Shi, X.; Tal, G.; Hankins, N.P.; Gitis, V. Fouling and cleaning of ultrafiltration membranes: A review. J. Water Process. Eng. 2014, 1, 121–138. [Google Scholar] [CrossRef]
- Zhang, M.; Leung, K.-T.; Lin, H.; Liao, B. Evaluation of membrane fouling in a microalgal-bacterial membrane photobioreactor: Effects of SRT. Sci. Total Environ. 2022, 839, 156414. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.; Graham, N.; Liu, T. Prevention of UF membrane fouling in drinking water treatment by addition of H2O2 during membrane backwashing. Water Res. 2018, 149, 394–405. [Google Scholar] [CrossRef] [PubMed]
- Blanpain-Avet, P.; Migdal, J.; Bénézech, T. The effect of multiple fouling and cleaning cycles on a tubular ceramic microfiltration membrane fouled with a whey protein concentrate. Membrane performance and cleaning efficiency. Food Bioprod. Process. 2004, 82, 231–243. [Google Scholar] [CrossRef]
- Peter-Varbanets, M.; Margot, J.; Traber, J.; Pronk, W. Mechanisms of membrane fouling during ultra-low pressure ultrafiltration. J. Membr. Sci. 2011, 377, 42–53. [Google Scholar] [CrossRef]
- Kuzmenko, D.; Arkhangelsky, E.; Belfer, S.; Freger, V.; Gitis, V. Chemical cleaning of UF membranes fouled by BSA. Desalination 2005, 179, 323–333. [Google Scholar] [CrossRef]
- Regula, C.; Carretier, E.; Wyart, Y.; Gésan-Guiziou, G.; Vincent, A.; Boudot, D.; Moulin, P. Chemical cleaning/disinfection and ageing of organic UF membranes: A review. Water Res. 2014, 56, 325–365. [Google Scholar] [CrossRef]
- Yu, W.; Campos, L.C.; Graham, N. Application of pulsed UV-irradiation and pre-coagulation to control ultrafiltration membrane fouling in the treatment of micro-polluted surface water. Water Res. 2016, 107, 83–92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aydin, M.; Yuzer, B.; Ongen, A.; Okten, H.; Selcuk, H. Comparison of ozonation and coagulation decolorization methods in real textile wastewater. Desalin. Water Treat. 2018, 103, 55–64. [Google Scholar] [CrossRef]
- Bu, F.; Gao, B.; Shen, X.; Wang, W.; Yue, Q. The combination of coagulation and ozonation as a pre-treatment of ultrafiltration in water treatment. Chemosphere 2019, 231, 349–356. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wang, Y.; Liao, M.; Su, F.; Zhang, Y.; Peng, L. Effects of electroflocculation/oxidation pretreatment on the fouling characteristics of ultrafiltration membranes. Water Sci. Technol. 2022, 85, 1079–1089. [Google Scholar] [CrossRef]
- Byun, S.; Taurozzi, J.S.; Tarabara, V.V. Ozonation as a pretreatment for nanofiltration: Effect of oxidation pathway on the permeate flux. Sep. Purif. Technol. 2015, 149, 174–182. [Google Scholar] [CrossRef]
- Ouyang, Q.; Gui, Q.; Liu, C.; Zhang, J.; Chen, X. A novel strategy for making adsorptive membranes with high-capacity and excellent antifouling performance. Chem. Eng. J. 2023, 451, 138596. [Google Scholar] [CrossRef]
- Arenas, L.R.; Le Coustumer, P.; Gentile, S.R.; Zimmermann, S.; Stoll, S. Removal efficiency and adsorption mechanisms of CeO2 nanoparticles onto granular activated carbon used in drinking water treatment plants. Sci. Total Environ. 2023, 856, 159261. [Google Scholar] [CrossRef]
- Gusain, R.; Kumar, N.; Ray, S.S. Recent advances in carbon nanomaterial-based adsorbents for water purification. Coord. Chem. Rev. 2019, 405, 213111. [Google Scholar] [CrossRef]
- Dotto, G.L.; McKay, G. Current scenario and challenges in adsorption for water treatment. J. Environ. Chem. Eng. 2020, 8, 103988. [Google Scholar] [CrossRef]
- Oloibiri, V.; Ufomba, I.; Chys, M.; Audenaert, W.T.; Demeestere, K.; Van Hulle, S.W. A comparative study on the efficiency of ozonation and coagulation-flocculation as pretreatment to activated carbon adsorption of biologically stabilized landfill leachate. Waste Manag. 2015, 43, 335–342. [Google Scholar] [CrossRef]
- Loganathan, P.; Kandasamy, J.; Jamil, S.; Ratnaweera, H.; Vigneswaran, S. Ozonation/adsorption hybrid treatment system for improved removal of natural organic matter and organic micropollutants from water—A mini review and future perspectives. Chemosphere 2022, 296, 133961. [Google Scholar] [CrossRef]
- Wang, X.; Ma, B.; Bai, Y.; Lan, H.; Liu, H.; Qu, J. The effects of hydrogen peroxide pre-oxidation on ultrafiltration membrane biofouling alleviation in drinking water treatment. J. Environ. Sci. 2018, 73, 117–126. [Google Scholar] [CrossRef]
- Park, M.; Anumol, T.; Simon, J.; Zraick, F.; Snyder, S.A. Pre-ozonation for high recovery of nanofiltration (NF) membrane system: Membrane fouling reduction and trace organic compound attenuation. J. Membr. Sci. 2017, 523, 255–263. [Google Scholar] [CrossRef]
- Wang, H.; Park, M.; Liang, H.; Wu, S.; Lopez, I.J.; Ji, W.; Li, G.; Snyder, S.A. Reducing ultrafiltration membrane fouling during potable water reuse using pre-ozonation. Water Res. 2017, 125, 42–51. [Google Scholar] [CrossRef] [PubMed]
- Ma, B.; Qi, J.; Wang, X.; Ma, M.; Miao, S.; Li, W.; Liu, R.; Liu, H.; Qu, J. Moderate KMnO4-Fe(II) pre-oxidation for alleviating ultrafiltration membrane fouling by algae during drinking water treatment. Water Res. 2018, 142, 96–104. [Google Scholar] [CrossRef] [PubMed]
- Xing, J.; Liang, H.; Cheng, X.; Yang, H.; Xu, D.; Gan, Z.; Luo, X.; Zhu, X.; Li, G. Combined effects of coagulation and adsorption on ultrafiltration membrane fouling control and subsequent disinfection in drinking water treatment. Environ. Sci. Pollut. Res. 2019, 26, 33770–33780. [Google Scholar] [CrossRef]
- Guo, Y.; Bai, L.; Tang, X.; Huang, Q.; Xie, B.; Wang, T.; Wang, J.; Li, G.; Liang, H. Coupling continuous sand filtration to ultrafiltration for drinking water treatment: Improved performance and membrane fouling control. J. Membr. Sci. 2018, 567, 18–27. [Google Scholar] [CrossRef]
- Imbrogno, A.; Tiraferri, A.; Abbenante, S.; Weyand, S.; Schwaiger, R.; Luxbacher, T.; Schäfer, A.I. Organic fouling control through magnetic ion exchange-nanofi ltration (MIEX-NF) in water treatment. J. Membr. Sci. 2018, 549, 474–485. [Google Scholar] [CrossRef]
- Tian, J.; Wu, C.; Yu, H.; Gao, S.; Li, G.; Cui, F.; Qu, F. Applying ultraviolet/persulfate (UV/PS) pre-oxidation for controlling ultrafiltration membrane fouling by natural organic matter (NOM) in surface water. Water Res. 2018, 132, 190–199. [Google Scholar] [CrossRef]
- Cheng, X.; Liang, H.; Ding, A.; Qu, F.; Shao, S.; Liu, B.; Wang, H.; Wu, D.; Li, G. Effects of pre-ozonation on the ultrafiltration of different natural organic matter (NOM) fractions: Membrane fouling mitigation, prediction and mechanism. J. Membr. Sci. 2016, 505, 15–25. [Google Scholar] [CrossRef]
- Wang, Z.; Ma, J.; Tang, C.Y.; Kimura, K.; Wang, Q.; Han, X. Membrane cleaning in membrane bioreactors: A review. J. Membr. Sci. 2014, 468, 276–307. [Google Scholar] [CrossRef]
- Yusuf, Z.; Wahab, N.A.; Sahlan, S. Fouling control strategy for submerged membrane bioreactor filtration processes using aeration airflow, backwash, and relaxation: A review. Desalin. Water Treat. 2015, 57, 17683–17695. [Google Scholar] [CrossRef]
- Krzeminski, P.; Leverette, L.; Malamis, S.; Katsou, E. Membrane bioreactors—A review on recent developments in energy reduction, fouling control, novel con fi gurations, LCA and market prospects. J. Membr. Sci. 2017, 527, 207–227. [Google Scholar] [CrossRef] [Green Version]
- De Souza, N.P.; Basu, O.D. Comparative analysis of physical cleaning operations for fouling control of hollow fiber membranes in drinking water treatment. J. Membr. Sci. 2013, 436, 28–35. [Google Scholar] [CrossRef]
- Vigneswaran, S.; Chaudhary, D.S.; Ngo, H.H.; Shim, W.G.; Moon, H. Application of a PAC-membrane hybrid system for removal of organics from secondary sewage effluent: Experiments and modelling. Sep. Sci. Technol. 2003, 38, 2183–2199. [Google Scholar] [CrossRef]
- Kovács, Z.; Discacciati, M.; Samhaber, W. Modeling of batch and semi-batch membrane filtration processes. J. Membr. Sci. 2009, 327, 164–173. [Google Scholar] [CrossRef]
- Ghandehari, S.; Montazer-Rahmati, M.M.; Asghari, M. A comparison between semi-theoretical and empirical modeling of cross-flow microfiltration using ANN. Desalination 2011, 277, 348–355. [Google Scholar] [CrossRef]
- Ling, G.; Wang, Z.; Shi, Y.; Wang, J.; Lu, Y.; Li, L. Membrane Fouling Prediction Based on Tent-SSA-BP. Membranes 2022, 12, 691. [Google Scholar] [CrossRef]
- Kovacs, D.J.; Li, Z.; Baetz, B.W.; Hong, Y.; Donnaz, S.; Zhao, X.; Zhou, P.; Ding, H.; Dong, Q. Membrane fouling prediction and uncertainty analysis using machine learning: A wastewater treatment plant case study. J. Membr. Sci. 2022, 660, 120817. [Google Scholar] [CrossRef]
- Yao, W.; Hou, L.; Wang, F.; Wang, Z.; Zhang, H. Dual-objective for the mechanism of membrane fouling in the early stage of filtration and determination of cleaning frequency: A novel combined model. J. Membr. Sci. 2022, 647, 120315. [Google Scholar] [CrossRef]
- Chew, C.M.; Aroua, M.; Hussain, M. A practical hybrid modelling approach for the prediction of potential fouling parameters in ultrafiltration membrane water treatment plant. J. Ind. Eng. Chem. 2017, 45, 145–155. [Google Scholar] [CrossRef]
- Liu, Q.-F.; Kim, S.H.; Lee, S. Prediction of microfiltration membrane fouling using artificial neural network models. Sep. Purif. Technol. 2009, 70, 96–102. [Google Scholar] [CrossRef]
- Hazrati, H.; Moghaddam, A.H.; Rostamizadeh, M. The influence of hydraulic retention time on cake layer specifications in the membrane bioreactor: Experimental and artificial neural network modeling. J. Environ. Chem. Eng. 2017, 5, 3005–3013. [Google Scholar] [CrossRef]
- Abbas, A.; Al-Bastaki, N. Modeling of an RO water desalination unit using neural networks. Chem. Eng. J. 2005, 114, 139–143. [Google Scholar] [CrossRef]
- Chen, H.; Kim, A.S. Prediction of permeate flux decline in crossflow membrane filtration of colloidal suspension: A radial basis function neural network approach. Desalination 2006, 192, 415–428. [Google Scholar] [CrossRef] [Green Version]
- Schmitt, F.; Banu, R.; Yeom, I.-T.; Do, K.-U. Development of artificial neural networks to predict membrane fouling in an anoxic-aerobic membrane bioreactor treating domestic wastewater. Biochem. Eng. J. 2018, 133, 47–58. [Google Scholar] [CrossRef]
- Mirbagheri, S.A.; Bagheri, M.; Bagheri, Z.; Kamarkhani, A.M. Evaluation and prediction of membrane fouling in a submerged membrane bioreactor with simultaneous upward and downward aeration using artificial neural network-genetic algorithm. Process. Saf. Environ. Prot. 2015, 96, 111–124. [Google Scholar] [CrossRef]
- Shetty, G.R.; Chellam, S. Predicting membrane fouling during municipal drinking water nanofiltration using artificial neural networks. J. Membr. Sci. 2003, 217, 69–86. [Google Scholar] [CrossRef]
- Delgrange, N.; Cabassud, C.; Durand-Bourlier, L.; Lainé, J. Neural networks for prediction of ultrafiltration transmembrane pressure—Application to drinking water production. J. Membr. Sci. 1998, 150, 111–123. [Google Scholar] [CrossRef]
- Li, C.; Wang, X. Application of MBR Membrane Flux Prediction Based on Elman Neural Network. In Proceedings of the 2nd International Conference on Civil Engineering and Rock Engineering, Shenzhen, China, 10–11 May 2017; pp. 365–372. [Google Scholar]
- Cai, G.; Li, C. Application of Improved Wavelet Neural Network in MBR Flux Prediction. In Proceedings of the 2017 IEEE/ACIS 16th International Conference on Computer and Information Science (ICIS), Wuhan, China, 24–26 May 2017; pp. 359–363. [Google Scholar] [CrossRef]
- Jepsen, K.L.; Pedersen, S.; Yang, Z. Control pairings of a deoiling membrane crossflow filtration process based on theoretical and experimental results. J. Process Control 2019, 81, 98–111. [Google Scholar] [CrossRef]
- Azman, A.A.; Rahiman, M.H.F.; Mohammad, N.N.; Marzaki, M.H.; Taib, M.N.; Ali, M.F. Modeling and Comparative Study of PID Ziegler Nichols (ZN) and Cohen–Coon (CC) tuning method for Multi-Tube Aluminum Sulphate Water Filter (MTAS). In Proceedings of the 2017 IEEE 2nd International Conference on Automatic Control and Intelligent Systems (I2CACIS 2017), Kota Kinabalu, Malaysia, 21 October 2017; pp. 25–30. [Google Scholar]
- Dongsheng, W.; Yongjie, L.; Lei, Z. A Case Study on the MPC for Ozone Dosing Process Based on SVM. In Proceedings of the 2017 29th Chinese Control And Decision Conference (CCDC), Chongqing, China, 28–30 May 2017; pp. 1772–1776. [Google Scholar] [CrossRef]
- Bartman, A.R.; McFall, C.W.; Christofides, P.D.; Cohen, Y. Model-predictive control of feed flow reversal in a reverse osmosis desalination process. J. Process Control 2009, 19, 433–442. [Google Scholar] [CrossRef]
- Bello, O.; Hamam, Y.; Djouani, K. Coagulation process control in water treatment plants using multiple model predictive control. Alex. Eng. J. 2014, 53, 939–948. [Google Scholar] [CrossRef] [Green Version]
- Perez, R.; Sotomayor-Moriano, J.; Pérezzuñiga; Soto-Angles, M. E. Real-Time Implementation of an Expert Model Predictive Controller in a Pilot-Scale Reverse Osmosis Plant for Brackish and Seawater Desalination. Appl. Sci. 2019, 9, 2932. [Google Scholar] [CrossRef] [Green Version]
- Chew, C.M.; Aroua, M.K.; Hussain, M.A. Advanced process control for ultrafiltration membrane water treatment system. J. Clean. Prod. 2018, 179, 63–80. [Google Scholar] [CrossRef]
Size (mm) | 0.0001 | 0.001 | 0.01 | 0.1 | 1.0 | 10 | 100 | 1000 | |
---|---|---|---|---|---|---|---|---|---|
Filtration Type | Reverse osmosis | ||||||||
Nanofiltration | |||||||||
Ultrafiltration | |||||||||
Contaminant | Microfiltration | ||||||||
Conventional | |||||||||
Metal Ions | √ | √ | |||||||
Aqueous Salts | √ | √ | |||||||
Humic Acids | √ | √ | |||||||
Viruses | √ | ||||||||
Clays | √ | √ | |||||||
Assestor Fiber | √ | √ | √ | ||||||
Bacteria | √ | √ | √ | ||||||
Cycst | √ | √ | |||||||
Algae | √ | √ | √ | ||||||
Sand | √ | √ |
Types of Foulant | ||||
---|---|---|---|---|
Particulates/Colloidal | Organics | Inorganics | Micro-Biological Organisms | |
Example | Organic and inorganic particles like corrosion products, sand, and clay. | Dissolved components of natural organic matter (NOM) like proteins, carbohydrates, and humid acid. | Dissolved components like iron, silica, metal oxides, calcium phosphate, and aluminium hydroxides. | Viruses, bacteria, algae, fungi, and microorganisms. |
Modes of membrane fouling | Development of pore blocking and formation of cake layer that can physically blind the membrane surface. | Foulant will adsorb to the membrane. | Foulant will precipitate on the membrane surface. | Arise of biofouling either by attachment and/or growth. |
Reference | Parameter Influence Fouling | Example |
---|---|---|
J. Li et al. [95], W. Zhang and T. Hao [96] | Feed water type | River, lake, sea, raw, synthetic, micro-polluted, municipal WWTP |
H. Zhang et al. [97], L. Wang et al. [98], Z. Pan et al. [99], Q. Gao et al. [100] | Feed water properties | Particle size distribution, colloidal, organic, and inorganic matter |
Y. Li et al. [101], F. Zhao et al. [102], H. Lay et al. [103] | Membrane properties | Pore size distribution, pore shape, surface and bulk porosity, thickness, surface charge, contact angle, surface roughness, hydrophobicity, shear rate |
C. Charcosset [104], H.He et al. [105] | Membrane material | PVDF, PTFE, acrylic copolymer, nitro-cellulose, cellulose acetate, nylon, polycarbonate |
H. Liu et al. [106], M. Enfrin et al. [107], H. Jang et al. [108] | Filtration strategy | Submerged, crossflow, chemical cleaning (acids, bases, oxidants), physical cleaning (air scouring, backwashing, relaxation), hydrodynamic method, optimize the operating condition |
N. Park et al. [109], L. Nthunya et al. [110] | Process operating condition | TMP, temperature, permeate flux, feed cross-flow velocity, sludge retention time, hydraulic retention time, turbidity |
Reference | Feed Water | Filtration and Membrane Type | Measured Parameter | Applied Technique |
---|---|---|---|---|
Yu et al. [125] | Synthetic raw water | UF-Hollow fiber | TMP, EPS (protein and polysaccharide), the fluorescence of organic matter | Coagulation pre-treatment and addition of hydrogen peroxide (H2O2) during the backwash process |
Wang et al. [141] | Mix of domestic sewage and tap water | UF-Hollow fiber | TMP, microorganisms, EPS (proteins and polysaccharides) | Pre-oxidation of H2O2 and coagulation of aluminum sulfate |
Ma et al. [144] | Raw water from the reservoir | UF-Hollow fiber | TMP, flux, turbidity, chromaticity, the concentration of Mn and Fe | Pre-oxidation of KMnO4-Fe(II) and compared to coagulation of Fe(III) |
Xing et al. [145] | Raw water from the reservoir | UF-Hollow fiber | TMP, irreversible TMP, DOC, ammonia (NH4+-N), UV254, turbidity, the fluorescence of organic matter, disinfectant curve | Combination of polyaluminium chloride (PACl) coagulation-sedimentation and powdered activated carbon (PAC) adsorption |
Guo et al. [146] | Raw water from the river | UF-Hollow fiber | TMP, DOC, NH4+-N, UV254, CODMn | Coupled continuous sand filtration (CSF) and UF process |
Imbrogno et al. [147] | Natural/ pure water (pH8) | NF-Flat sheet | Flux, irreversible flux | Combination of magnetic ion exchange resins (MIEX) and NF in one single process |
Tian et al. [148] | Raw water from the river | UF-Hollow fiber | TMP, DOC, fluorescent spectrum, molecular weight distribution, hydrophobicity | Pre-oxidation of ultraviolet/persulfate (UV/PS) |
Cheng et al. [149] | Raw water from the river | UF-Not mentioned | Flux, fouling resistance | Pre-ozonation with three different doses |
Reference | Feed Water | Filtration and Membrane Type | Input Parameter | Output Parameter | Model/Training | Activation/Layer/Performance |
---|---|---|---|---|---|---|
Liu et al. [161] | Three types of synthetic water | MF-Hollow fiber | Permeate flux, feed water turbidity, UV254, operating time, backwash types | TMP | LM/BP | Sigmoidal/ 4/ R2 = 0.98 |
Schmitt et al. [165] | Domestic wastewater | RO-Flat sheet | pH, alkalinity, MLSS, COD, total nitrogen, ammoniacal nitrogen, nitrate, total phosphorus, DO, MLVSS | TMP | LM/BP | Sigmoidal/ 3/ R2 = 0.850 |
Mirbagheri et al. [166] | Wastewater treatment plants | UF-Hollow fiber | Operational time, TSS, influent COD, SRT, MLSS | TMP and membrane permeability | MLP/RBF/BP/BBP/LM | Radially symmetric basis/ 3/ Perfect match |
Shetty and Chellam [167] | Ground and surface waters of eleven sources | NF-Flat sheet and spiral wound | Operational time, influent water flow rate, pH, feed water TDS concentration, UV254, permeate water flux or TMP, temperature, feed water flow rate | Membrane resistance | MLP/ LM | Sigmoidal/ 3/ RE = 5% |
Delgrange et al. [168] | Natural water | UF-Hollow fiber | Permeate flow rate, turbidity, turbidity previous cycle, mean TMP at filtration start, mean TMP before previous backwash | TMP | QN | Sigmoidal/ 3/ Good accuracy |
Zhang et al. [6] | Monthly data from 45 DWTPs across China | – | Temperature, COD of raw water, total electricity consumption, turbidity, NH4, pH, residual free chlorine of treated water, lime hydrate dosage, PAC, active chlorine, the tertiary process cost | Monthly average drinking water production (m3) | ENN/FNN/LM/BR/QN/GD/OSS/RP | Genetic algorithm/ 3-5/ R2 = 0.93 |
Li and Wang [169] | Wastewater | – | MLSS, operating pressure, total resistance, pH, COD, temperature | Membrane flux | ENN/BP/GD | Sigmoidal/ 3/ RE = 5.8% |
Cai and Li [170] | Sewage treatment plant | – | MLSS, total resistance, operating pressure | Membrane flux | WNN/BP/GC | Morlet/ 3/ RE = 3.8% |
Reference | Filtration Type | Modeling/Control Strategy | Control Parameter | Manipulate Parameter |
---|---|---|---|---|
Bello et al. [175] | Coagulation | Differential and algebraic equations/ Multiple MPC | Surface charge and pH | Chemical reagents flow rates |
Rivas-perez et al. [176] | RO | Systems identification tools/Expert MPC | Permeate flow rate and permeate conductivity | Feed pressure and brine flow rate |
Chew et al. [177] | UF | ANN predictive model/ANN | Filtration and backwash time | Turbidity, specific cake resistance, TMP, reverse TMP, and backwash water volume |
Dongsheng et al. [173] | Ozonation | Support vector machine model/ MPC | Ozone dosing | Dissolved ozone residual |
Bartman et al. [174] | RO | Overall mass balance and local energy balances/MPC | Pressure | Retentate and bypass stream velocities |
Gil et al. [76] | Solar membrane distillation | Lumped-parameters Model/ MPC | Temperature and flow rate | Frequency |
Azman et al. [172] | Coagulation and flocculation | First order plus dead time/PID | Turbidity | Voltage |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Razali, M.C.; Wahab, N.A.; Sunar, N.; Shamsudin, N.H. Existing Filtration Treatment on Drinking Water Process and Concerns Issues. Membranes 2023, 13, 285. https://doi.org/10.3390/membranes13030285
Razali MC, Wahab NA, Sunar N, Shamsudin NH. Existing Filtration Treatment on Drinking Water Process and Concerns Issues. Membranes. 2023; 13(3):285. https://doi.org/10.3390/membranes13030285
Chicago/Turabian StyleRazali, Mashitah Che, Norhaliza Abdul Wahab, Noorhazirah Sunar, and Nur Hazahsha Shamsudin. 2023. "Existing Filtration Treatment on Drinking Water Process and Concerns Issues" Membranes 13, no. 3: 285. https://doi.org/10.3390/membranes13030285
APA StyleRazali, M. C., Wahab, N. A., Sunar, N., & Shamsudin, N. H. (2023). Existing Filtration Treatment on Drinking Water Process and Concerns Issues. Membranes, 13(3), 285. https://doi.org/10.3390/membranes13030285