Sn and Ge Complexes with Redox-Active Ligands as Efficient Interfacial Membrane-like Buffer Layers for p-i-n Perovskite Solar Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Compounds 1–6
2.3. Instrumentation
2.4. X-ray Crystallographic Data and Refinement Details
2.5. Device Fabrication and Characterization
3. Results and Discussion
3.1. Synthesis of Compounds 1–6
3.2. Optoelectronic and Physicochemical Properties of 1–6
3.3. Evaluation of the Complexes 1–6 as Buffer Layer Materials in p-i-n Perovskite Solar Cells
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Haas, K.L.; Franz, K.J. Application of Metal Coordination Chemistry to Explore and Manipulate Cell Biology. Chem. Rev. 2009, 109, 4921–4960. [Google Scholar] [CrossRef]
- Srivastva, A.N. (Ed.) Stability and Applications of Coordination Compounds; IntechOpen: London, UK, 2020. [Google Scholar] [CrossRef]
- Sharma, J.; Dogra, P.; Sharma, N.; Ajay. Applications of coordination compounds having Schiff bases: A review. AIP Conf. Proceed. 2019, 2142, 060002. [Google Scholar] [CrossRef]
- Malinowski, J.; Zych, D.; Jacewicz, D.; Gawdzik, B.; Drzeżdżon, J. Application of Coordination Compounds with Transition Metal Ions in the Chemical Industry—A Review. Int. J. Mol. Sci. 2020, 21, 5443. [Google Scholar] [CrossRef]
- Mohammed, H.S.; Tripathi, V.D. Medicinal Applications of Coordination Complexes. J. Phys. Conf. Ser. 2020, 1664, 012070. [Google Scholar] [CrossRef]
- Lichtenberg, C. Main-Group Metal Complexes in Selective Bond Formations Through Radical Pathways. Chem. Eur. J. 2020, 26, 9674–9687. [Google Scholar] [CrossRef]
- Morsali, A.; Hashemi, L. Main Group Metal Coordination Polymers: Structures and Nanostructures; John Wiley & Sons: Hoboken, NJ, USA, 2017; ISSN1 9781119370239. ISSN2 9781119370772. [Google Scholar] [CrossRef]
- Nikolaevskaya, E.N.; Druzhkov, N.O.; Syroeshkin, M.A.; Egorov, M.P. Chemistry of diazadiene type ligands with extra coordination groups. Prospects of reactivity. Coord. Chem. Rev. 2020, 417, 213353. [Google Scholar] [CrossRef]
- Roth, D.; Wadepohl, H.; Greb, L. Bis(perchlorocatecholato)germane: Hard and Soft Lewis Superacid with Unlimited Water Stability. Angew. Chem. Int. Ed. 2020, 59, 20930–20934. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Wang, W.; Ma, B.; Shen, W.; Liu, L.; Cao, K.; Chen, S.; Huang, W. Lead-Free Perovskite Materials for Solar Cells. Nano-Micro Lett. 2021, 13, 62. [Google Scholar] [CrossRef]
- Liu, X.; Wu, T.; Luo, X.; Wang, H.; Furue, M.; Bessho, T.; Zhang, Y.; Nakazaki, J.; Segawa, H.; Han, L. Lead-Free Perovskite Solar Cells with Over 10% Efficiency and Size 1 cm2 Enabled by Solvent–Crystallization Regulation in a Two-Step Deposition Method. ACS Energy Lett. 2022, 7, 425–431. [Google Scholar] [CrossRef]
- Kadomtseva, A.V.; Mochalov, G.M.; Kuzina, O.V. Biologically Active Coordination Compounds of Germanium. Synthesis and Physicochemical Properties. Russ. J. Org. Chem. 2021, 57, 879–888. [Google Scholar] [CrossRef]
- Saverina, E.A.; Sivasankaran, V.; Kapaev, R.R.; Galushko, A.S.; Ananikov, V.P.; Egorov, M.P.; Jouikov, V.V.; Troshin, P.A.; Syroeshkin, M.A. An environment-friendly approach to produce nanostructured germanium anodes for lithium-ion batteries. Green Chem. 2020, 22, 359–367. [Google Scholar] [CrossRef]
- Takano, K.; Takahashi, M.; Fukushima, T.; Takezaki, M.; Tominaga, T.; Akashi, H.; Takagi, H.; Shibahara, T. Fluorescent Tin(IV) Complexes with Schiff Base Ligands: Synthesis, Structures, and Fluorescence Lifetime. Bull. Chem. Soc. Jpn. 2012, 85, 1210–1221. [Google Scholar] [CrossRef]
- Sánchez-Vergara, M.E.; Hamui, L.; Gómez, E.; Chans, G.M.; Galván-Hidalgo, J.M. Design of Promising Heptacoordinated Organotin (IV) Complexes-PEDOT: PSS-Based Composite for New-Generation Optoelectronic Devices Applications. Polymers 2021, 13, 1023. [Google Scholar] [CrossRef] [PubMed]
- Endo, A.; Ogasawara, M.; Takahashi, A.; Yokoyama, D.; Kato, Y.; Adachi, C. Thermally Activated Delayed Fluorescence from Sn4+-Porphyrin Complexes and Their Application to Organic Light-Emitting Diodes—A Novel Mechanism for Electroluminescence. Adv. Mater. 2009, 21, 4802–4806. [Google Scholar] [CrossRef] [PubMed]
- Cantón-Díaz, A.M.; Muñoz-Flores, B.M.; Moggio, I.; Arias, E.; León, A.D.; García-López, M.C.; Santillán, R.; Ochoa, M.E.; Jiménez-Pérez, V.M. One-pot microwave-assisted synthesis of organotin Schiff bases: An optical and electrochemical study towards their effects in organic solar cells. New J. Chem. 2018, 42, 14586–14596. [Google Scholar] [CrossRef]
- Jiménez-Pérez, V.M.; García-López, M.C.; Muñoz-Flores, B.M.; Chan-Navarro, R.; Berrones-Reyes, J.C.; Dias, H.V.R.; Moggio, I.; Arias, E.; Serrano-Mireles, J.A.; Chavez-Reyes, A. New application of fluorescent organotin compounds derived from Schiff bases: Synthesis, X-ray structures, photophysical properties, cytotoxicity and fluorescent bioimaging. J. Mater. Chem. B 2015, 3, 5731–5745. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Espejel, M.; Gomez-Trevino, A.; Munoz-Flores, B.M.; Treto-Suarez, M.A.; Schott, E.; Paez-Hernandez, D.; Zarate, X.; Jimenez-Perez, V.M. Organotin Schiff bases as halofluorochromic dyes: Green synthesis, chemio-photophysical characterization, DFT, and their fluorescent bioimaging in vitro. J. Mater. Chem. B 2021, 9, 7698–7712. [Google Scholar] [CrossRef]
- Nikolaevskaya, E.N.; Saverina, E.A.; Starikova, A.A.; Farhati, A.; Kiskin, M.A.; Syroeshkin, M.A.; Egorov, M.P.; Jouikov, V.V. Halogen-free GeO2 conversion: Electrochemical reduction vs. complexation in (DTBC)2Ge[Py(CN)n] (n = 0..2) complexes. Dalton Trans. 2018, 47, 17127–17133. [Google Scholar] [CrossRef]
- Nikolaevskaya, E.N.; Shangin, P.G.; Starikova, A.A.; Jouikov, V.V.; Egorov, M.P.; Syroeshkin, M.A. Easily electroreducible halogen-free germanium complexes with biologically active pyridines. Inorg. Chim. Acta 2019, 495, 119007. [Google Scholar] [CrossRef]
- Shangin, P.G.; Krylova, I.V.; Lalov, A.V.; Kozmenkova, A.Y.; Saverina, E.A.; Buikin, P.A.; Korlyukov, A.A.; Starikova, A.A.; Nikolaevskaya, E.N.; Egorov, M.P.; et al. Supramolecular D⋯A-layered structures based on germanium complexes with 2,3-dihydroxynaphthalene and N,N′-bidentate ligands. RSC Adv. 2021, 11, 21527. [Google Scholar] [CrossRef]
- Nanjo, M.; Yoneda, T.; Iwamatsu, K. Hypercoordinate germanium complexes with phenanthrene-9,10-diolate ligands: Synthesis, structure, and electronic properties. Mendeleev Commun. 2022, 32, 12–15. [Google Scholar] [CrossRef]
- Meng, L.; You, J.B.; Guo, T.F.; Yang, Y. Recent Advances in the Inverted Planar Structure of Perovskite Solar Cells. Acc. Chem. Res. 2016, 49, 155–165. [Google Scholar] [CrossRef]
- Yang, J.; Luo, X.; Zhou, Y.; Li, Y.; Qiu, Q.; Xie, T. Recent Advances in Inverted Perovskite Solar Cells: Designing and Fabrication. Int. J. Mol. Sci. 2022, 23, 11792. [Google Scholar] [CrossRef] [PubMed]
- Bao, X.; Wang, J.; Li, Y.; Zhu, D.; Wu, Y.; Guo, P.; Wang, X.; Zhang, Y.; Wang, J.; Yip, H.-L.; et al. Interface Engineering of a Compatible PEDOT Derivative Bilayer for High-Performance Inverted Perovskite Solar Cells. Adv. Mater. Interfaces 2017, 4, 1600948. [Google Scholar] [CrossRef]
- Liu, L.; Mei, A.; Liu, T.; Jiang, P.; Sheng, Y.; Zhang, L.; Han, H. Well-Defined Thiolated Nanographene as Hole-Transporting Material for Efficient and Stable Perovskite Solar Cells. J. Am. Chem. Soc. 2015, 137, 1790. [Google Scholar] [CrossRef]
- Wu, S.; Li, Z.; Li, M.-Q.; Diao, Y.; Lin, F.; Liu, T.; Zhang, J.; Tieu, P.; Gao, W.; Qi, F.; et al. 2D metal-organic framework for stable perovskite solar cells with minimized lead leakage. Nat. Nanotechnol. 2020, 15, 934–940. [Google Scholar] [CrossRef]
- Jeng, J.-Y.; Chen, K.-C.; Chiang, T.-Y.; Lin, P.-Y.; Tsai, T.-D.; Chang, Y.-C.; Guo, T.-F.; Chen, P.; Wen, T.-C.; Hsu, Y.-J. Nickel Oxide Electrode Interlayer in CH3NH3PbI3 Perovskite/PCBM Planar-Heterojunction Hybrid Solar Cells. Adv. Mater. 2014, 26, 4107. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Page, Z.A.; Russell, T.P.; Emrick, T. Finely Tuned Polymer Interlayers Enhance Solar Cell Efficiency. Angew. Chem. Int. Ed. 2015, 54, 11485. [Google Scholar] [CrossRef]
- Yeo, J.-S.; Kang, R.; Lee, S.; Jeon, Y.-J.; Myoung, N.; Lee, C.-L.; Kim, D.-Y.; Yun, J.-M.; Seo, Y.-H.; Kim, S.-S.; et al. Highly efficient and stable planar perovskite solar cells with reduced graphene oxide nanosheets as electrode interlayer. Nano Energy 2015, 12, 96. [Google Scholar] [CrossRef]
- Zhang, H.; Xue, L.; Han, J.; Fu, Y.Q.; Shen, Y.; Zhang, Z.-G.; Li, Y.; Wang, M. New generation perovskite solar cells with solution-processed amino-substituted perylene diimide derivative as electron-transport layer. J. Mater. Chem. A 2016, 4, 8724. [Google Scholar] [CrossRef]
- Perrin, D.D.; Armarego, W.L.F.; Perrin, D.R. Purification of Laboratory Chemicals; Pergamon Press: Oxford, UK, 1980. [Google Scholar]
- Raptopoulou, C.P.; Sanakis, Y.; Psycharis, V.; Pissas, M. Zig-zag [MnIII4] clusters from polydentate Schiff base ligands. Polyhedron 2013, 64, 181–188. [Google Scholar] [CrossRef]
- Romadina, E.I.; Komarov, D.S.; Stevenson, K.J.; Troshin, P.A. New phenazine based anolyte material for high voltage organic redox flow batteries. Chem. Commun. 2021, 57, 2986–2989. [Google Scholar] [CrossRef] [PubMed]
- Casey, K.G.; Quitevis, E.L. Effect of solvent polarity on nonradiative processes in xanthene dyes: Rhodamine B in normal alcohols. J. Phys. Chem. 1988, 92, 6590–6594. [Google Scholar] [CrossRef]
- CrysAlisPro. Rigaku Oxford Diffraction; Rigaku Corporation: Wroclaw, Poland, 2022. [Google Scholar]
- Sheldrick, G.M. SHELXT—Integrated space-group and crystal-structure determination. Acta Cryst. 2015, A71, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Cryst. 2015, C71, 3–8. [Google Scholar] [CrossRef]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Cryst. 2009, 42, 229–341. [Google Scholar] [CrossRef]
- Sheldrick, G.M. A short history of SHELX. Acta Cryst. Sect. A 2008, A64, 112–122. [Google Scholar] [CrossRef]
- Macrae, C.F.; Sovago, I.; Cottrell, S.J.; Galek, P.T.A.; McCabe, P.; Pidcock, E.; Platings, M.; Shields, G.P.; Stevens, J.S.; Towler, M.; et al. Mercury 4.0: From visualization to analysis, design and prediction. J. Appl. Cryst. 2020, 53, 226–235. [Google Scholar] [CrossRef]
- Ansari, I.A.; Sama, F.; Raizada, M.; Shahid, M.; Rajpoot, R.K.; Siddiqi, Z.A. Synthesis and spectral characterization of 2-((2-hydroxybenzylidene) amino)-2-methylpropane-1,3-diol derived complexes: Molecular docking and antimicrobial studies. J. Mol. Struct. 2017, 1127, 479–488. [Google Scholar] [CrossRef]
- Dey, M.; Rao, C.P.; Saarenketo, P.K.; Rissanen, K.; Kolehmainen, E.; Guionneau, P. Mn(IV) and Co(III)-complexes of -OH-rich ligands possessing O2N, O3N and O4N cores: Syntheses, characterization and crystal structures. Polyhedron 2003, 22, 3515–3521. [Google Scholar] [CrossRef]
- Barman, T.R.; Sutradhar, M.; Drew, M.G.B.; Rentschler, E. 2-Amino-2-methyl-1,3-propanediol (ampdH2) as ligand backbone for the synthesis of cobalt complexes: Mononuclear Co(II), binuclear Co(II,III) and hexanuclear Co(II,III). Polyhedron 2013, 51, 192–200. [Google Scholar] [CrossRef]
- Liimatainen, J.; Lehtonen, A.; Sillanpaa, R. cis-Dioxomolybdenum(VI) complexes with tridentate and tetradentate Schiff base ligands. Preparation, structures and inhibition of aerial oxidation of aldehydes. Polyhedron 2000, 19, 1133–1138. [Google Scholar] [CrossRef]
- Kato, M.; Nakajima, K.; Yoshikawa, Y.; Hirotsu, M.; Kojima, M. Preparation and properties of dinuclear dioxomolybdenum(VI) complexes with ONO–ONO-type hexadentate Schiff base ligands. Inorg. Chim. Acta 2000, 311, 69–74. [Google Scholar] [CrossRef]
- Dey, M.; Rao, C.P.; Saarenketo, P.; Rissanen, K.; Kolehmainen, E. Four-, Five- and Six-Coordinated ZnII Complexes of OH-Containing Ligands: Syntheses, Structure and Reactivity. Eur. J. Inorg. Chem. 2002, 2002, 2207–2215. [Google Scholar] [CrossRef]
- Asgedom, G.; Sreedhara, A.; Kivikoski, J.; Valkonen, J.; Kolehmainen, E.; Rao, C.P. Alkoxo Bound Monooxo- and Dioxovanadium(V) Complexes: Synthesis, Characterization, X-ray Crystal Structures, and Solution Reactivity Studies. Inorg. Chem. 1996, 35, 5674–5683. [Google Scholar] [CrossRef] [PubMed]
- Rao, C.P.; Sreedhara, A.; Rao, P.V.; Lokanath, N.K.; Sridhar, M.A.; Prasad, J.S.; Rissanen, K. Recognition of oxovanadium(V) species and its separation from other metal species through selective complexation by some acyclic ligands. Polyhedron 1999, 18, 289–297. [Google Scholar] [CrossRef]
- Krylova, I.V.; Saverina, E.A.; Rynin, S.S.; Lalov, A.V.; Minyaev, M.E.; Nikolaevskaya, E.N.; Syroeshkin, M.A.; Egorov, M.P. Synthesis, characterization and redox properties of Ar–C=N→Ge←N=C–Ar containing system. Mendeleev Commun. 2020, 30, 563–566. [Google Scholar] [CrossRef]
- Yearwood, B.; Parkin, S.; Atwood, D.A. Synthesis and characterization of organotin Schiff base chelates. Inorg. Chim. Acta 2002, 333, 124–131. [Google Scholar] [CrossRef]
- Jastrzebski, J.T.B.H.; Van Koten, G. Intramolecular Coordination in Organotin Chemistry. Adv. Organomet. Chem. 1993, 35, 241–294. [Google Scholar] [CrossRef]
- Baul, T.S.B.; Addepalli, M.R.; Lyčka, A.; van Terwingen, S.; Guedes da Silva, M.F.C. Synthesis and structural characterization of diorganotin(IV) complexes with heteroditopic pyridyl-ONO′-ligands. Inorg. Chim. Acta 2020, 512, 119892. [Google Scholar] [CrossRef]
- Gock, M.; Wiedemann, B.; Dietz, C.; Bai, C.; Lutter, M.; Abeyawarathan, V.; Jurkschat, K. Simplicity Meets Beauty. Trapping Molecular Dimethyltin Oxide in the Novel Organotinoxo Cluster [MeN(CH2CH2O)2SnMe2·Me2SnO]3. Organometallics 2013, 32, 4262–4269. [Google Scholar] [CrossRef]
- Rabiee, N.; Safarkhani, M.; Amini, M.M. Investigating the structural chemistry of organotin(IV) compounds: Recent advances. Rev. Inorg. Chem. 2019, 39, 13–45. [Google Scholar] [CrossRef]
- Broere, D.L.J.; Plessius, R.; van der Vlugt, J.I. New avenues for ligand-mediated processes—Expanding metal reactivity by the use of redox-active catechol, o-aminophenol and o-phenylenediamine ligands. Chem. Soc. Rev. 2015, 44, 6886–6915. [Google Scholar] [CrossRef] [PubMed]
- Hoijtink, G.J. Oxidation potentials of conjugated hydrocarbons. Recueil des Travaux Chimiques des Pays-Bas 1958, 77, 555–558. [Google Scholar] [CrossRef]
- Berlman, I. Handbook of Fluorescence Spectra of Aromatic Molecules; Academic Press: New York, NY, USA, 1971; ISBN 9780323161671. [Google Scholar]
- Fobbe, H.; Neumann, W.P. Organozinnverbindungen: XXXII. Zur photochemischen reaktion von ketonen mit tetramethyl-1,2-bis(phenylthio)distannan. J. Organomet. Chem. 1986, 303, 87–98. [Google Scholar] [CrossRef]
- Scherping, K.H.; Neumann, W.P. Chemistry of heavy carbene analogs, R2M (M = Si, Ge, Sn). 7. A new and convenient source for stannylenes, R2Sn: 1,2-bis(phenylthio)tetramethyldistannane Me2(PhS)SnSn(SPh)Me2. Organometallics 1982, 1, 1017–1020. [Google Scholar] [CrossRef]
- Che, Y.-X.; Qi, X.-N.; Qu, W.-J.; Shi, B.-B.; Lin, Q.; Yao, H.; Zhang, Y.-M.; Wei, T.-B. Synthetic strategies of phenazine derivatives: A review. J. Heterocycl. Chem. 2022, 59, 969–996. [Google Scholar] [CrossRef]
- Mavrodi, D.V.; Blankenfeldt, W.; Thomashow, L.S. Phenazine compounds in fluorescent Pseudomonas spp. biosynthesis and regulation. Annu. Rev. Phytopathol. 2006, 44, 417–445. [Google Scholar] [CrossRef]
- Wei, T.-B.; Li, W.-T.; Li, Q.; Su, J.-X.; Qu, W.-J.; Lin, Q.; Yao, H.; Zhang, Y.-M. A turn-on fluorescent chemosensor selectively detects cyanide in pure water and food sample. Tetrahedron Lett. 2016, 57, 2767–2771. [Google Scholar] [CrossRef]
- Elgrishi, N.; Rountree, K.J.; McCarthy, B.D.; Rountree, E.S.; Eisenhart, T.T.; Dempsey, J.L. A Practical Beginner’s Guide to Cyclic Voltammetry. J. Chem. Educ. 2018, 95, 197–206. [Google Scholar] [CrossRef]
- Akbulatov, A.F.; Frolova, L.A.; Griffin, M.P.; Gearba, I.R.; Dolocan, A.; Vanden Bout, D.A.; Tsarev, S.; Katz, E.A.; Shestakov, A.F.; Stevenson, K.J.; et al. Effect of Electron-Transport Material on Light-Induced Degradation of Inverted Planar Junction Perovskite Solar Cells. Adv. Energy Mater. 2017, 7, 1700476. [Google Scholar] [CrossRef]
- Elnaggar, M.; Boldyreva, A.G.; Elshobaki, M.; Tsarev, S.A.; Fedotov, Y.S.; Yamilova, O.R.; Bredikhin, S.I.; Stevenson, K.J.; Aldoshin, S.M.; Troshin, P.A. Decoupling Contributions of Charge-Transport Interlayers to Light-Induced Degradation of P-i-n Perovskite Solar Cells. Sol. RRL 2020, 4, 2000191. [Google Scholar] [CrossRef]
Compound | Epox, V * | ΔE, V * | λabs, nm | λfl, nm | Stokes Shift, cm−1 | Φfl |
---|---|---|---|---|---|---|
Epred, V * | Wabs, eV | Wfl, eV | ||||
1 | 0.936 | 3.019 | 368 | 443 | 4601 | 0.45 |
−2.083 | 3.37 | 2.80 | ||||
2 | 0.490 | 3.155 | 340 | 386 | 3505 | 0.34 |
−2.665 | 3.65 | 3.21 | ||||
3 | 0.858 | 2.379 | 419 | 527 | 4891 | 0.84 |
−1.521 | 2.96 | 2.35 | ||||
4 | ≈0.908 | ≈1.817 | 418 | 478 | 3003 | 0.60 |
≈−0.909 | 2.97 | 2.60 | ||||
5 | ≈0.956 | ≈1.762 | 342 | 357 | 1229 | 0.19 |
≈−0.806 | 3.63 | 3.48 |
Interlayer | Optimal Material Concentration, mg/mL | VOC, mV | JSC, mA/cm2 | FF, % | PCE, % |
---|---|---|---|---|---|
none | - | 994 ± 26 (1020) | 22.2 ± 0.9 (23.1) | 69 ± 3 (70) | 15.8 ± 0.6 (16.4) |
1 | 0.125 | 1000 ± 35 (1035) | 22.0 ± 1.0 (22.5) | 78 ± 2 (80) | 17.6 ± 1.0 (18.6) |
2 | 1 | 1035 ± 11 (1035) | 22.2 ± 0.7 (22.2) | 79 ± 1 (80) | 18.0 ± 0.5 (18.5) |
3 | 1 | 1012 ± 10(1022) | 21.5 ± 0.5 (21.6) | 71 ± 3 (74) | 15.8 ± 0.5 (16.3) |
4 | 1 | 1013 ± 11 (1010) | 22.3 ± 0.7 (23.0) | 75 ± 3 (77) | 17.2 ± 0.8 (18.0) |
5 | 0.25 | 998 ± 14 (1012) | 22.9 ± 0.3 (23.2) | 67 ± 2 (69) | 15.6 ± 0.5 (16.1) |
6 | 0.25 | 999 ± 19 (988) | 20.3 ± 0.9 (20.1) | 67 ± 4 (70) | 13.2 ± 0.7 (13.9) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akbulatov, A.F.; Akyeva, A.Y.; Shangin, P.G.; Emelianov, N.A.; Krylova, I.V.; Markova, M.O.; Labutskaya, L.D.; Mumyatov, A.V.; Tuzharov, E.I.; Bunin, D.A.; et al. Sn and Ge Complexes with Redox-Active Ligands as Efficient Interfacial Membrane-like Buffer Layers for p-i-n Perovskite Solar Cells. Membranes 2023, 13, 439. https://doi.org/10.3390/membranes13040439
Akbulatov AF, Akyeva AY, Shangin PG, Emelianov NA, Krylova IV, Markova MO, Labutskaya LD, Mumyatov AV, Tuzharov EI, Bunin DA, et al. Sn and Ge Complexes with Redox-Active Ligands as Efficient Interfacial Membrane-like Buffer Layers for p-i-n Perovskite Solar Cells. Membranes. 2023; 13(4):439. https://doi.org/10.3390/membranes13040439
Chicago/Turabian StyleAkbulatov, Azat F., Anna Y. Akyeva, Pavel G. Shangin, Nikita A. Emelianov, Irina V. Krylova, Mariya O. Markova, Liliya D. Labutskaya, Alexander V. Mumyatov, Egor I. Tuzharov, Dmitry A. Bunin, and et al. 2023. "Sn and Ge Complexes with Redox-Active Ligands as Efficient Interfacial Membrane-like Buffer Layers for p-i-n Perovskite Solar Cells" Membranes 13, no. 4: 439. https://doi.org/10.3390/membranes13040439
APA StyleAkbulatov, A. F., Akyeva, A. Y., Shangin, P. G., Emelianov, N. A., Krylova, I. V., Markova, M. O., Labutskaya, L. D., Mumyatov, A. V., Tuzharov, E. I., Bunin, D. A., Frolova, L. A., Egorov, M. P., Syroeshkin, M. A., & Troshin, P. A. (2023). Sn and Ge Complexes with Redox-Active Ligands as Efficient Interfacial Membrane-like Buffer Layers for p-i-n Perovskite Solar Cells. Membranes, 13(4), 439. https://doi.org/10.3390/membranes13040439