Chemical and Sensory Evaluation of Blackberry (Rubus sp.) Juice Concentrated by Reverse Osmosis and Osmotic Evaporation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Blackberry Juice Preparation
2.2. Processing Design
2.3. Juice Clarification
2.4. Concentration
2.5. Process Evaluation
2.6. Membrane Cleaning
2.7. Physicochemical Analysis
2.8. Sensory Evaluation
2.9. Statistical Analysis
3. Results
3.1. Juice Clarification
3.2. Juice Concentration
3.3. Sensory Evaluation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bower, C. Postharvest handling, storage, and treatment of fresh market berries. In Berry Fruit: Value-Added Products for Health Promotion; Zhao, Y., Ed.; CRC: Boca Raton, FL, USA, 2007; pp. 262–288. [Google Scholar]
- Segantinia, D.M.; Threlfallb, R.; Clarka, J.R.; Brownmillerc, C.R.; Howardc, L.R.; Lawlessc, L.J.R. Changes in fresh-market and sensory attributes of blackberry genotypes after postharvest storage. J. Berry Res. 2017, 7, 129–145. [Google Scholar] [CrossRef]
- Eibond, L.S.; Reynertson, K.A.; Luo, X.D.; Basile, M.J.; Kennelly, E.J. Anthocyanin antioxidants from edible fruits. Food Chem. 2004, 84, 23–28. [Google Scholar] [CrossRef]
- Seeram, N.P.; Adams, L.S.; Zhang, Y.; Lee, R.; Sand, D.; Scheuller, H.S.; Heber, D. Blackberry, black raspberry, blueberry, cranberry, red raspberry, and strawberry extracts inhibit growth and stimulate apoptosis of human cancer cells in vitro. J. Agric. Food Chem. 2006, 54, 9329–9339. [Google Scholar] [CrossRef] [PubMed]
- Ding, M.; Feng, R.; Wang, S.Y.; Bowman, L.; Lu, Y.; Qian, Y.; Catranova, V.; Jiang, B.-H.; Shi, X. Cyanidin-3-glucoside, a natural product derived from blackberry, exhibits chemopreventive and chemotherapeutic activity. J. Biol. Chem. 2006, 281, 17359–17368. [Google Scholar] [CrossRef]
- Kaume, L.; Howard, L.R.; Devareddy, L. The Blackberry Fruit: A Review on Its Composition and Chemistry, Metabolism and Bioavailability, and Health Benefits. J. Agric. Food Chem. 2012, 60, 5716–5727. [Google Scholar] [CrossRef] [PubMed]
- Gowd, V.; Bao, T.; Wang, L.; Huang, Y.; Chen, S.; Zheng, X.; Chen, W. Antioxidant and antidiabetic activity of blackberry after gastrointestinal digestion and human gut microbiota fermentation. Food Chem. 2018, 269, 618–627. [Google Scholar] [CrossRef] [PubMed]
- Moraes, D.P.; Lozano-Sanchez, J.; Machado, M.L.; Vizzotto, M.; Lazzaretti, M.; Leyva-Jimenez, F.J.J.; Barcia, M.T. Characterization of a new blackberry cultivar BRS Xingu: Chemical composition, phenolic compounds, and antioxidant capacity in vitro and in vivo. Food Chem. 2020, 322, 126783. [Google Scholar] [CrossRef] [PubMed]
- Kechinski, C.P.; Guimarães, P.V.R.; Noreña, C.P.Z.; Tessaro, I.C.; Marczak, L.D.F. Degradation Kinetics of Anthocyanin in Blueberry Juice during Thermal Treatment. J. Food Sci. 2010, 75, 173–176. [Google Scholar] [CrossRef]
- Sarbatly, R.; Sariau, J.; Krishnaiah, D. Recent Developments of Membrane Technology in the Clarification and Concentration of Fruit Juices. Food Eng. Rev. 2023, 15, 420–437. [Google Scholar] [CrossRef]
- Dincer, C.; Tontul, I.; Topuz, A. A comparative study of black mulberry juice concentrates by thermal evaporation and osmotic distillation as influenced by storage. Innov. Food Sci. Emerg. Technol. 2016, 38, 57–64. [Google Scholar] [CrossRef]
- Bhattacharjee, C.; Saxena, V.K.; Dutta, S. Fruit juice processing using membrane technology: A review. Innov. Food Sci. Emerg. Technol. 2017, 43, 136–153. [Google Scholar] [CrossRef]
- Conidi, C.; Castro-Muñoz, R.; Cassano, A. Membrane-Based Operations in the Fruit Juice Processing Industry: A Review. Beverages 2020, 6, 18. [Google Scholar] [CrossRef]
- Katibi, K.K.; Mohd Nor, M.Z.; Yunos, K.F.M.; Jaafar, J.; Show, P.L. Strategies to Enhance the Membrane-Based Processing Performance for Fruit Juice Production: A Review. Membranes 2023, 13, 679. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.; Noor, I.I.; Wang, X.; Ren, Y.; Wang, J.; Wang, Q.; Gao, J.; Gao, X.; Liu, H. A comprehensive review on the recent advances in membrane-based processes for fruit juice concentration. Food Bioprod. Process. 2024, 145, 42–66. [Google Scholar] [CrossRef]
- Oancea, S. A Review of the Current Knowledge of Thermal Stability of Anthocyanins and Approaches to Their Stabilization to Heat. Antioxidants 2021, 10, 1337. [Google Scholar] [CrossRef]
- Milczarek, R.R.; Sedej, I. Aroma profiling of forward-osmosis watermelon juice concentrate and comparison to fresh fruit and thermal concentrate. LWT 2021, 151, 112147. [Google Scholar] [CrossRef]
- Jesus, D.F.; Leite, M.F.; Silva, L.F.M.; Modesta, R.D.; Matta, V.M.; Cabral, L.M.C. Orange (Citrus sinensis) juice concentration by reverse osmosis. J. Food Eng. 2007, 81, 287–291. [Google Scholar] [CrossRef]
- Gunathilakea, K.D.P.P.; Yua, L.J.; Vasantha-rupasinghe, H.P. Reverse osmosis as a potential technique to improve antioxidant properties of fruit juices used for functional beverages. Food Chem. 2014, 148, 335–341. [Google Scholar] [CrossRef] [PubMed]
- Salleh, M.H.; Chen, W.S.; Abidin, M.Z.; Razak, A.A.; Razak, A.F.A.; Mohd Syafiq Abdullah, M.S. Physicochemical and Minerals Analysis of the Pineapple Juice Concentrated by Reverse Osmosis Process. Borneo J. Sci. Technol. 2018, 5, 40–46. [Google Scholar]
- Courel, M.; Dornier, M.; Herry, J.M.; Rios, G.M.; Reynes, M. Effect of operating conditions on water transport during the concentration of sucrose solutions by osmotic distillation. J. Membr. Sci. 2000, 170, 281–289. [Google Scholar] [CrossRef]
- Hongvaleerat, C.; Cabral, L.M.C.; Dornier, M.; Reynes, M.; Ningsanond, S. Concentration of pineapple juice by osmotic evaporation. J. Food Eng. 2008, 88, 548–552. [Google Scholar] [CrossRef]
- Ruby-Figueroa, R.; Morelli, R.; Conidi, C.; Cassano, A. Red Fruit Juice Concentration by Osmotic Distillation: Optimization of Operating Conditions by Response Surface Methodology. Membranes 2023, 13, 496. [Google Scholar] [CrossRef] [PubMed]
- Bagci, P.O.; Akbas, M.; Gulec, H.A.; Bagci, H. Coupling reverse osmosis and osmotic distillation for clarified pomegranate juice concentration: Use of plasma modified reverse osmosis membranes for improved performance. Innov. Food Sci. Emerg. Technol. 2019, 52, 213–220. [Google Scholar] [CrossRef]
- Bánvölgyi, S.; Horváth, S.; Stefanovits-Bányai, É.; Békássy-Molnár, E.; Vatai, G. Integrated membrane process for blackcurrant (Ribes nigrum L.) juice concentration. Desalination 2009, 241, 281–287. [Google Scholar] [CrossRef]
- Souza, A.L.R.; Pagani, M.M.; Dornier, M.; Gomes, F.S.; Tonon, R.V.; Cabral, L.M.C. Concentration of camu–camu juice by the coupling of reverse osmosis and osmotic evaporation processes. J. Food Eng. 2013, 119, 7–12. [Google Scholar] [CrossRef]
- Torun, M.; Rácz, G.; Fogarassy, E.; Vatai, G.; Dinçer, C.; Topuz, A.; Özdemir, F. Concentration of sage (Salvia fruticosa Miller) extract by using integrated membrane process. Sep. Purif. Technol. 2014, 132, 244–251. [Google Scholar] [CrossRef]
- Zambra, C.; Romero, J.; Pino, L.; Saavedra, A.; Sanchez, J. Concentration of cranberry juice by osmotic distillation process. J. Food Eng. 2015, 144, 58–65. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis; AOAC International: Gaithersburg, MD, USA, 2006; p. 18. [Google Scholar]
- Giusti, M.M.; Wrolstad, R.E. Characterization and mesasurement of anthocyanins by UV-visible spectroscopy. In Current Protocols in Food Analytical Chemistry; Wrolstad, R.E., Ed.; Wiley: New York, NY, USA, 2001; pp. 1–2. [Google Scholar]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free. Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- Downes, F.P.; Ito, K. Compendium of Methods for the Microbiological Examination of Foods, 4th ed.; American Public Health Association: Washington, WA, USA, 2001; 676p. [Google Scholar]
- Cissé, M.; Vaillant, F.; Perez, A.; Dornier, M.; Reynes, M. The quality of orange juice processed by coupling crossflow microfiltration and osmotic evaporation. Inter. J. Food Sci. Technol. 2005, 40, 105–116. [Google Scholar] [CrossRef]
- Lu, C.; Bao, Y.; Huang, J.Y. Fouling in membrane filtration for juice processing. Curr. Opin. Food Sci. 2021, 42, 76–85. [Google Scholar] [CrossRef]
- Omar, J.M.; Nor, M.Z.M.; Basri, M.S.M.; Che Pa, N.F. Clarification of guava juice by an ultrafiltration process: Analysis on the operating pressure, membrane fouling and juice qualities. Food Res. 2020, 4, 85–92. [Google Scholar] [CrossRef]
- Avram, A.M.; Morin, P.; Brownmiller, C.; Howard, L.R.; Sengupta, A.; Wickramasinghe, S.R. Concentrations of polyphenols from blueberry pomace extract using nanofiltration. Food Bioprod. Process. 2017, 106, 91–101. [Google Scholar] [CrossRef]
- He, Q.; Liang, S.; Luo, J.; Yin, X.; Sun, J.; Bai, W. Stabilization effect and interaction mechanism of mannoprotein on anthocyanins in mulberry juice. Int. J. Biol. Macromol. 2024, 273, 133133. [Google Scholar] [CrossRef] [PubMed]
- Ivić, I.; Kopjar, M.; Pichler, D.; Buljeta, I.; Pichler, A. Concentration with Nanofiltration of Red Wine Cabernet Sauvignon Produced from Conventionally and Ecologically Grown Grapes: Effect on Phenolic Compounds and Antioxidant Activity. Membranes 2021, 11, 322. [Google Scholar] [CrossRef] [PubMed]
- Kavian, F.; Nateghi, L. Investigation of effect of different concentration methods on physicochemical properties, phenolic compounds and anthocyanins of barberry juice. Iran. J. Chem. Chem. Eng. 2024, 43, 2295–2305. [Google Scholar]
- Matta, V.M.; Moretti, R.H.; Cabral, L.M.C. Microfiltration and reverse osmosis for clarification and concentration of acerola juice. J. Food Eng. 2004, 61, 477–482. [Google Scholar] [CrossRef]
- Quezada, C.; Estay, H.; Cassano, A.; Troncoso, E.; Ruby-Figueroa, R. Prediction of Permeate Flux in Ultrafiltration Processes: A Review of Modeling Approaches. Membranes 2021, 11, 368. [Google Scholar] [CrossRef]
- Rodrigues, R.B.; Menezes, H.C.; Cabral, L.M.C.; Dornier, M.; Rios, G.M.; Reynes, M. Evaluation of reverse osmosis and osmotic evaporation to con-centrate camu-camu juice (Myrciaria dubia). J. Food Eng. 2004, 63, 97–102. [Google Scholar] [CrossRef]
- Shaw, P.E.; Lebrun, M.; Ducamp, M.N.; Jordán, M.J.; Goodner, K.L. Pineapple juice concentrated by osmotic evaporation. J. Food Qual. 2003, 25, 39–49. [Google Scholar] [CrossRef]
- Vaillant, F.; Cisse, M.; Chaverri, M.; Perez, A.; Dornier, M.; Viquez, F.; Dhuique-Mayer, C. Clarification and concentration of melon juice using membrane processes. Innov. Food Sci. Emerg. Technol. 2005, 6, 213–220. [Google Scholar] [CrossRef]
- Favre, E. The Future of Membrane Separation Processes: A Prospective Analysis. Front. Chem. Eng. 2022, 4, 916054. [Google Scholar] [CrossRef]
- Rousmans, S.; Robin, O.; Dittmar, A.; Vernet-Maury, E. Autonomic nervous system responses associated with primary tastes. Chem. Sens. 2000, 25, 709–718. [Google Scholar] [CrossRef] [PubMed]
- De Marchi, R.; McDaniel, M.R.; Bolini, H.M.A. Formulating a new passion fruit juice beverage with different sweetener systems. J. Sens. Stud. 2009, 24, 698–711. [Google Scholar] [CrossRef]
Sample | pH | Titratable Acidity (g∙kg−1) * | Total Soluble Solids (°Brix) | Total Solids (g∙kg−1) | Total Anthocyanins (mg∙kg−1) ** | Antioxidant Activity (μmol Trolox∙g−1) |
---|---|---|---|---|---|---|
Fresh pulp | 3.00 ± 0.00 | 12.40 ± 0.50 a | 7.00 ± 0.00 b | 84.50 ± 0.40 b | 47.68 ± 2.15 b | 9.08 ± 0.12 b |
Feed | 2.99 ± 0.00 | 12.00 ± 0.10 a | 7.00 ± 0.10 b | 84.90 ± 0.30 b | 49.05 ± 1.25 b | 9.43 ± 0.05 b |
Retentate | 3.00 ± 0.00 | 11.70 ± 0.10 a | 8.00 ± 0.10 a | 99.30 ± 0.90 a | 67.58 ± 1.80 a | 12.31 ± 1.40 a |
Clarified juice | 3.00 ± 0.00 | 11.30 ± 0.40 a | 6.50 ± 0.00 c | 77.30 ± 0.50 c | 31.21 ± 0.05 c | 5.54 ± 0.10 c |
Analysis | Feed (Clarified Juice) | Reverse Osmosis | Osmotic Evaporation |
---|---|---|---|
pH | 3.00 ± 0.00 a | 2.97 ± 0.00 a | 2.96 ± 0.00 a |
Total soluble solids (°Brix) | 6.50 ± 0.00 c | 24.60 ± 0.00 b | 55.50 ± 0.00 a |
Total solids (g∙kg−1) | 77.30 ± 0.50 c | 277.60 ± 0.80 b | 569.40 ± 1.10 a |
Titratable acidity (g∙kg−1) * | 11.30 ± 0.00 c | 38.40 ± 0.40 b | 77.50 ± 0.00 a |
Total anthocyanins (mg∙kg−1) ** | 31.21 ± 0.05 c | 130.32 ± 0.53 b | 192.87 ± 0.52 a |
Antioxidant activity (µmol TE∙g−1) | 5.54 ± 0.10 c | 22.32 ± 0.72 b | 42.85 ± 0.19 a |
Samples | Overall Liking | Appearance |
---|---|---|
Fresh pulp | 6.0 bc | 6.8 b |
Clarified juice | 5.6 c | 6.7 b |
Juice concentrated by reverse osmosis | 6.2 b | 6.7 b |
Juice concentrated by osmotic evaporation | 6.9 a | 7.4 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vilar, J.; Monteiro, F.; Corrêa-Filho, L.; Gomes, F.; Tonon, R.; Freitas-Sá, D.; Freitas, S.; Cabral, L. Chemical and Sensory Evaluation of Blackberry (Rubus sp.) Juice Concentrated by Reverse Osmosis and Osmotic Evaporation. Membranes 2025, 15, 10. https://doi.org/10.3390/membranes15010010
Vilar J, Monteiro F, Corrêa-Filho L, Gomes F, Tonon R, Freitas-Sá D, Freitas S, Cabral L. Chemical and Sensory Evaluation of Blackberry (Rubus sp.) Juice Concentrated by Reverse Osmosis and Osmotic Evaporation. Membranes. 2025; 15(1):10. https://doi.org/10.3390/membranes15010010
Chicago/Turabian StyleVilar, Juliana, Flavia Monteiro, Luiz Corrêa-Filho, Flávia Gomes, Renata Tonon, Daniela Freitas-Sá, Suely Freitas, and Lourdes Cabral. 2025. "Chemical and Sensory Evaluation of Blackberry (Rubus sp.) Juice Concentrated by Reverse Osmosis and Osmotic Evaporation" Membranes 15, no. 1: 10. https://doi.org/10.3390/membranes15010010
APA StyleVilar, J., Monteiro, F., Corrêa-Filho, L., Gomes, F., Tonon, R., Freitas-Sá, D., Freitas, S., & Cabral, L. (2025). Chemical and Sensory Evaluation of Blackberry (Rubus sp.) Juice Concentrated by Reverse Osmosis and Osmotic Evaporation. Membranes, 15(1), 10. https://doi.org/10.3390/membranes15010010