A STEDable BF2-Azadipyrromethene Fluorophore for Nuclear Membrane and Associated Endoplasmic Reticulum Imaging
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Design, Synthesis and Photophysical Characterization of NM-ER 1
3.2. Photophysical Characterizations for STED Imaging
3.3. Characterization of NM-ER 1 in Live and Fixed Cells for Super Resolution STED Imaging
3.4. Identification of Cancer Cellular Nuclear Abnormalities
3.5. Co-Imaging of NM-ER with Nuclear Pores and Lamina
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Webster, M.; Witkin, K.L.; Cohen-Fix, O. Sizing up the nucleus: Nuclear shape, size and nuclear-envelope assembly. J. Cell Sci. 2009, 122, 1477–1486. [Google Scholar] [CrossRef]
- Chen, J.; Liu, H.; Xie, W.; Gu, M.; Mao, G.; Yang, S. Recent Progress in Endoplasmic Reticulum-Targetable Small-Molecule Probes for Fluorescence Sensing and Phototherapy. J. Anal. Test. 2023, 7, 304–324. [Google Scholar] [CrossRef]
- Singh, D.; Rajput, D.; Kanvah, S. Fluorescent probes for targeting endoplasmic reticulum: Design strategies and their applications. Chem. Commun. 2022, 58, 2413–2429. [Google Scholar] [CrossRef] [PubMed]
- Anand, D.; Chaudhuri, A. Grease in the Nucleus: Insights into the Dynamic Life of Nuclear Membranes. J. Membr. Biol. 2022, 256, 137–145. [Google Scholar] [CrossRef] [PubMed]
- Cohen-Fix, O. Cell biology: How does the nucleus get its membrane? Curr. Biol. 2021, 31, R1077–R1079. [Google Scholar] [CrossRef] [PubMed]
- Ungricht, R.; Kutay, U. Mechanisms and functions of nuclear envelope remodelling. Nat. Rev. Mol. Cell Biol. 2017, 18, 229–245. [Google Scholar] [CrossRef] [PubMed]
- Lin, D.H.; Hoelz, A. The Structure of the Nuclear Pore Complex (An Update). Annu. Rev. Biochem. 2019, 88, 725–783. [Google Scholar] [CrossRef]
- Schermelleh, L.; Carlton, P.M.; Haase, S.; Shao, L.; Winoto, L.; Kner, P.; Burke, B.; Cardoso, M.C.; Agard, D.A.; Gustafsson, M.G.; et al. Subdiffraction Multicolor Imaging of the Nuclear Periphery with 3D Structured Illumination Microscopy. Science 2008, 320, 1332–1336. [Google Scholar] [CrossRef] [PubMed]
- Kalukula, Y.; Stephens, A.D.; Lammerding, J.; Gabriele, S. Mechanics and functional consequences of nuclear deformations. Nat. Rev. Mol. Cell Biol. 2022, 23, 583–602. [Google Scholar] [CrossRef]
- Janssen, A.F.J.; Breusegem, S.Y.; Larrieu, D. Current Methods and Pipelines for Image-Based Quantitation of Nuclear Shape and Nuclear Envelope Abnormalities. Cells 2022, 11, 347. [Google Scholar] [CrossRef]
- Blom, H.; Widengren, J. Stimulated Emission Depletion Microscopy. Chem. Rev. 2017, 117, 7377–7427. [Google Scholar] [CrossRef] [PubMed]
- Vicidomini, G.; Bianchini, P.; Diaspro, A. STED super-resolved microscopy. Nat. Methods 2018, 15, 173–182. [Google Scholar] [CrossRef] [PubMed]
- Hong, G.; Antaris, A.L.; Dai, H. Near-infrared fluorophores for biomedical imaging. Nat. Biomed. Eng. 2017, 1, 0010. [Google Scholar] [CrossRef]
- Stephan, T.; Roesch, A.; Riedel, D.; Jakobs, S. Live-cell STED nanoscopy of mitochondrial cristae. Sci. Rep. 2019, 9, 12419. [Google Scholar] [CrossRef] [PubMed]
- Stiekema, M.; Ramaekers, F.C.S.; Kapsokalyvas, D.; van Zandvoort, M.A.M.J.; Veltrop, R.J.A.; Broers, J.L.V. Super-Resolution Imaging of the A-and B-Type Lamin Networks: A Comparative Study of Different Fluorescence Labeling Procedures. J. Mol. Sci. 2021, 22, 10194. [Google Scholar] [CrossRef] [PubMed]
- Kamkaew, A.; Thavornpradit, S.; Puangsamlee, T.; Xin, D.; Wanichacheva, N.; Burgess, K. Oligoethylene glycol-substituted aza-BODIPY dyes as red emitting ER-probes. Org. Biomol. Chem. 2015, 13, 8271–8276. [Google Scholar] [CrossRef]
- Allegretti, M.; Zimmerli, C.E.; Rantos, V.; Wilfling, F.; Ronchi, P.; Fung, H.K.H.; Lee, C.-W.; Hagen, W.; Turoňová, B.; Karius, K.; et al. In-cell architecture of the nuclear pore and snapshots of its turnover. Nature 2020, 586, 796–800. [Google Scholar] [CrossRef]
- Bucevičius, J.; Lukinavičius, G.; Gerasimaitė, R. The use of hoechst dyes for DNA staining and beyond. Chemosensors 2018, 6, 18. [Google Scholar] [CrossRef]
- Pim, S.; Bourgès, A.C.; Wu, D.; Durán-Sampedro, G.; Garre, M.; O’Shea, D.F. Observing bioorthogonal macrocyclizations in the nuclear envelope of live cells using on/on fluorescence lifetime microscopy. Chem. Sci. 2024, 15, 14913–14923. [Google Scholar] [CrossRef]
- Kilian, N.; Goryaynov, A.; Lessard, M.D.; Hooker, G.; Toomre, D.; Rothman, J.E.; Bewersdorf, J. Assessing photodamage in live-cell STED microscopy. Nat. Methods 2018, 15, 755–756. [Google Scholar] [CrossRef]
- Bolte, S.; Cordelières, F.P. A guided tour into subcellular colocalization analysis in light microscopy. J. Microsc. 2006, 224, 213–232. [Google Scholar] [CrossRef] [PubMed]
- Digman, M.A.; Caiolfa, V.R.; Zamai, M.; Gratton, E. The Phasor Approach to Fluorescence Lifetime Imaging Analysis. Biophys. J. 2008, 94, L14–L16. [Google Scholar] [CrossRef]
- Torrado, B.; Malacrida, L.; Ranjit, S. Linear Combination Properties of the Phasor Space in Fluorescence Imaging. Sensors 2022, 22, 999. [Google Scholar] [CrossRef] [PubMed]
- Becker, W. Fluorescence lifetime imaging—Techniques and applications. J. Microsc. 2012, 247, 119–136. [Google Scholar] [CrossRef]
- Shi, Z.; Han, X.; Hu, W.; Bai, H.; Peng, B.; Ji, L.; Fan, Q.; Li, L.; Huang, W. Bioapplications of small molecule Aza-BODIPY: From rational structural design to in vivo investigations. Chem. Soc. Rev. 2020, 49, 7533–7567. [Google Scholar] [CrossRef]
- Sonkaya, Ö.; Soylukan, C.; Algi, M.P.; Algi, F. Aza-BODIPY-based Fluorescent and Colorimetric Sensors and Probes. Curr. Org. Synth. 2023, 20, 20–60. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Cheung, S.; Devocelle, M.; Zhang, L.-J.; Chen, Z.-L.; O’Shea, D.F. Synthesis and assessment of a maleimide functionalized BF2 azadipyrromethene near-infrared fluorochrome. Chem. Commun. 2015, 51, 16667–16670. [Google Scholar] [CrossRef]
- Wu, D.; O’shea, D.F. Fluorogenic NIR-probes based on 1,2,4,5-tetrazine substituted BF2-azadipyrromethenes. Chem. Commun. 2017, 53, 10804–10807. [Google Scholar] [CrossRef]
- Cheung, S.; Wu, D.; Daly, H.C.; Busschaert, N.; Morgunova, M.; Simpson, J.C.; Scholz, D.; Gale, P.A.; O’Shea, D.F. Real-Time Recording of the Cellular Effects of the Anion Transporter Prodigiosin. Chem 2018, 4, 879–895. [Google Scholar] [CrossRef]
- Palma, A.; Gallagher, J.F.; Müller-Bunz, H.; Wolowska, J.; McInnes, E.J.; O’Shea, D.F. Co(II), Ni(II), Cu(II) and Zn(II) complexes of tetraphenylazadipyrromethene. Dalton Trans. 2009, 273–279. [Google Scholar] [CrossRef]
- Wu, D.; Daly, H.C.; Grossi, M.; Conroy, E.; Li, B.; Gallagher, W.M.; Elmes, R.; O’Shea, D.F. RGD conjugated cell uptake off to on responsive NIR-AZA fluorophores: Applications toward intraoperative fluorescence guided surgery. Chem. Sci. 2019, 10, 6944–6956. [Google Scholar] [CrossRef] [PubMed]
- Curtin, N.; Garre, M.; Bodin, J.-B.; Solem, N.; Méallet-Renault, R.; O’Shea, D.F. Exploiting directed self-assembly and disassembly for off-to-on fluorescence responsive live cell imaging. RSC Adv. 2022, 12, 35655–35665. [Google Scholar] [CrossRef] [PubMed]
- Curtin, N.; Garre, M.; Wu, D.; O’shea, D.F. Identifying STEDable BF2-Azadipyrromethene Fluorophores. Molecules 2023, 28, 1415. [Google Scholar] [CrossRef]
- Wu, D.; Durán-Sampedro, G.; O’shea, D.F. Synthesis and properties of water-soluble 1,9-dialkyl-substituted BF2 azadipyrromethene fluorophores. Front. Chem. Sci. Eng. 2020, 14, 97–104. [Google Scholar] [CrossRef]
- Vicidomini, G.; Moneron, G.; Eggeling, C.; Rittweger, E.; Hell, S.W. STED with wavelengths closer to the emission maximum. Opt. Express 2012, 20, 5225. [Google Scholar] [CrossRef]
- Ma, Y.; Ha, T. Fight against background noise in stimulated emission depletion nanoscopy. Phys. Biol. 2019, 16, 051002. [Google Scholar] [CrossRef]
- Hernàndez, I.C.; Peres, C.; Zanacchi, F.C.; D’Amora, M.; Christodoulou, S.; Bianchini, P.; Diaspro, A.; Vicidomini, G. A new filtering technique for removing anti-Stokes emission background in gated CW-STED microscopy. J. Biophotonics 2014, 7, 376–380. [Google Scholar] [CrossRef] [PubMed]
- Gauthier, B.R.; Comaills, V. Nuclear envelope integrity in health and disease: Consequences on genome instability and inflammation. Int. J. Mol. Sci. 2021, 22, 7281. [Google Scholar] [CrossRef] [PubMed]
- Hintzsche, H.; Hemmann, U.; Poth, A.; Utesch, D.; Lott, J.; Stopper, H. Fate of micronuclei and micronucleated cells. Mutat. Res. Mol. Mech. Mutagen. 2017, 771, 85–98. [Google Scholar] [CrossRef]
- Kwon, M.; Leibowitz, M.L.; Lee, J.-H. Small but mighty: The causes and consequences of micronucleus rupture. Exp. Mol. Med. 2020, 52, 1777–1786. [Google Scholar] [CrossRef] [PubMed]
- Xiang, L.; Chen, K.; Yan, R.; Li, W.; Xu, K. Single-molecule displacement mapping unveils nanoscale heterogeneities in intracellular diffusivity. Nat. Methods 2020, 17, 524–530. [Google Scholar] [CrossRef]
- Schoen, I.; Aires, L.; Ries, J.; Vogel, V. Nanoscale invaginations of the nuclear envelope: Shedding new light on wormholes with elusive function. Nucleus 2017, 8, 506–514. [Google Scholar] [CrossRef] [PubMed]
- Beck, M.; Hurt, E. The nuclear pore complex: Understanding its function through structural insight. Nat. Rev. Mol. Cell Biol. 2016, 18, 73–89. [Google Scholar] [CrossRef] [PubMed]
- Pisfil, M.G.; Nadelson, I.; Bergner, B.; Rottmeier, S.; Thomae, A.W.; Dietzel, S. Stimulated emission depletion microscopy with a single depletion laser using five fluorochromes and fluorescence lifetime phasor separation. Sci. Rep. 2022, 12, 14027. [Google Scholar] [CrossRef]
- Shen, W.; Gong, B.; Xing, C.; Zhang, L.; Sun, J.; Chen, Y.; Yang, C.; Yan, L.; Chen, L.; Yao, L.; et al. Comprehensive maturity of nuclear pore complexes regulates zygotic genome activation. Cell 2022, 185, 4954–4970.e20. [Google Scholar] [CrossRef] [PubMed]
- Heine, J.; Reuss, M.; Harke, B.; D’este, E.; Sahl, S.J.; Hell, S.W. Adaptive-illumination STED nanoscopy. Proc. Natl. Acad. Sci. USA 2017, 114, 9797–9802. [Google Scholar] [CrossRef] [PubMed]
Fluorophore (i) | Exc 1 (nm) | Em 1 (nm) | Fluorophore (ii) | Exc 2 (nm) | Em 2 (nm) |
---|---|---|---|---|---|
NM-ER | 594 | 610–740 | |||
WGA-Alexa647 | 647 | 660–750 | |||
WGA-CF594 | 594 | 605–690 | |||
LaminB-CF594 | 594 | 605–690 | |||
Hoechst | 405 | 415–520 | |||
NM-ER | 594 | 605–655 | WGA-Alexa647 | 680 | 690–750 |
NM-ER | 594 | 605–655 | NucSpot650 | 680 | 690–750 |
WGA-CF594 | 594 | 605–645 | NucSpot650 | 650 | 665–700 |
LaminB-CF594 | 594 | 605–660 | NucSpot650 | 665 | 685–750 |
Fluorophore | Excitation (nm) | Detection Range (ns) | Phase Lifetime (ns) |
---|---|---|---|
NM-ER 1 | 594 | 610–740 | 3 |
NIR-AZA 2 | 685 | 700–750 | 2.8 |
WGA-Alexa647 | 647 | 660–750 | 1.2 |
WGA-CF594 | 594 | 605–690 | 2.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bourgès, A.C.; Garre, M.; Wu, D.; O’Shea, D.F. A STEDable BF2-Azadipyrromethene Fluorophore for Nuclear Membrane and Associated Endoplasmic Reticulum Imaging. Membranes 2025, 15, 9. https://doi.org/10.3390/membranes15010009
Bourgès AC, Garre M, Wu D, O’Shea DF. A STEDable BF2-Azadipyrromethene Fluorophore for Nuclear Membrane and Associated Endoplasmic Reticulum Imaging. Membranes. 2025; 15(1):9. https://doi.org/10.3390/membranes15010009
Chicago/Turabian StyleBourgès, Anaïs C., Massimiliano Garre, Dan Wu, and Donal F. O’Shea. 2025. "A STEDable BF2-Azadipyrromethene Fluorophore for Nuclear Membrane and Associated Endoplasmic Reticulum Imaging" Membranes 15, no. 1: 9. https://doi.org/10.3390/membranes15010009
APA StyleBourgès, A. C., Garre, M., Wu, D., & O’Shea, D. F. (2025). A STEDable BF2-Azadipyrromethene Fluorophore for Nuclear Membrane and Associated Endoplasmic Reticulum Imaging. Membranes, 15(1), 9. https://doi.org/10.3390/membranes15010009