UiO-66 Metal-Organic Framework Membranes: Structural Engineering for Separation Applications
Abstract
:1. Introduction
2. Synthesis of UiO-66 Crystal and UiO-66-Based Membranes
2.1. Synthesis of UiO-66 Crystal
2.2. Synthesis of Polycrystalline UiO-66 Membrane
2.2.1. Substrate Modification
2.2.2. Seeded Growth
2.2.3. Interfacial Growth
3. Structural Manipulation of UiO-66 Membrane
3.1. Structure Influence on the Separation Performance
3.2. Structural Manipulation Strategy
3.2.1. Orientation and Thickness Engineering
3.2.2. Pore Engineering
- (1)
- Rational Design of Pore Size
- (2)
- Modifying Pore Surface Chemistry
- (3)
- Introducing Hierarchical Structures
3.2.3. Defects Engineering
3.3. Structural Design of UiO-66 Membranes Towards Different Applications
3.3.1. Gas Separation
3.3.2. Water Treatment
3.3.3. Ion Separation
4. Summary and Outlook
Funding
Data Availability Statement
Conflicts of Interest
References
- Baker, R.W. Future Directions of Membrane Gas Separation Technology. Ind. Eng. Chem. Res. 2002, 41, 1393–1411. [Google Scholar] [CrossRef]
- Baker, R.W.; Low, B.T. Gas Separation Membrane Materials: A Perspective. Macromolecules 2014, 47, 6999–7013. [Google Scholar] [CrossRef]
- Koros, W.J.; Zhang, C. Materials for next-generation molecularly selective synthetic membranes. Nat. Mater. 2017, 16, 289–297. [Google Scholar] [CrossRef]
- Robeson, L.M. The upper bound revisited. J. Membr. Sci. 2008, 320, 390–400. [Google Scholar] [CrossRef]
- Kitagawa, S. Metal–organic frameworks (MOFs). Chem. Soc. Rev. 2014, 43, 5415–5418. [Google Scholar]
- Furukawa, H.; Cordova, K.E.; O’Keeffe, M.; Yaghi, O.M. The chemistry and applications of metal-organic frameworks. Science 2013, 341, 1230444. [Google Scholar] [CrossRef] [PubMed]
- Qian, Q.; Asinger, P.A.; Lee, M.J.; Han, G.; Mizrahi Rodriguez, K.; Lin, S.; Benedetti, F.M.; Wu, A.X.; Chi, W.S.; Smith, Z.P. MOF-based membranes for gas separations. Chem. Rev. 2020, 120, 8161–8266. [Google Scholar] [CrossRef] [PubMed]
- Zheng, S.; Sun, Y.; Xue, H.; Braunstein, P.; Huang, W.; Pang, H. Dual-ligand and hard-soft-acid-base strategies to optimize metal-organic framework nanocrystals for stable electrochemical cycling performance. Nat. Sci. Rev. 2022, 9, nwab197. [Google Scholar] [CrossRef] [PubMed]
- Cavka, J.H.; Jakobsen, S.; Olsbye, U.; Guillou, N.; Lamberti, C.; Bordiga, S.; Lillerud, K.P. A New Zirconium Inorganic Building Brick Forming Metal Organic Frameworks with Exceptional Stability. J. Am. Chem. Soc. 2008, 130, 13850–13851. [Google Scholar] [CrossRef] [PubMed]
- Winarta, J.; Shan, B.; McIntyre, S.M.; Ye, L.; Wang, C.; Liu, J.; Mu, B. A Decade of UiO-66 Research: A Historic Review of Dynamic Structure, Synthesis Mechanisms, and Characterization Techniques of an Archetypal Metal–Organic Framework. Cryst. Growth Des. 2020, 20, 1347–1362. [Google Scholar] [CrossRef]
- Yang, T.; Gao, Y.; He, Q.; Chai, Y.; Qin, P.; Wu, Z.; Liu, C.; Gong, X.; Liang, Y. Preparation and application of UiO-66 (Zr) and its derivatives as catalysts in lignocellulosic biomass conversion. Chem. Eng. J. 2024, 486, 149971. [Google Scholar] [CrossRef]
- Li, C.; Chandresh, A.; Zhang, Z.; Moulai, S.; Heinke, L. Stability and Degradation of Metal–Organic-Framework Films under Ambient Air Explored by Uptake and Diffusion Experiments. Adv. Mater. Interfaces 2022, 9, 2101947. [Google Scholar] [CrossRef]
- Hossain, M.I.; Cunningham, J.D.; Becker, T.M.; Grabicka, B.E.; Walton, K.S.; Rabideau, B.D.; Glover, T.G. Impact of MOF defects on the binary adsorption of CO2 and water in UiO-66. Chem. Eng. Sci. 2019, 203, 346–357. [Google Scholar] [CrossRef]
- Yang, Q.; Wiersum, A.D.; Jobic, H.; Guillerm, V.; Serre, C.; Llewellyn, P.L.; Maurin, G. Understanding the thermodynamic and kinetic behavior of the CO2/CH4 gas mixture within the porous zirconium terephthalate UiO-66 (Zr): A joint experimental and modeling approach. J. Phys. Chem. C 2011, 115, 13768–13774. [Google Scholar] [CrossRef]
- Ahmadijokani, F.; Molavi, H.; Rezakazemi, M.; Tajahmadi, S.; Bahi, A.; Ko, F.; Aminabhavi, T.M.; Li, J.-R.; Arjmand, M. UiO-66 metal–organic frameworks in water treatment: A critical review. Prog. Mater. Sci. 2022, 125, 100904. [Google Scholar] [CrossRef]
- Rego, R.M.; Sriram, G.; Ajeya, K.V.; Jung, H.-Y.; Kurkuri, M.D.; Kigga, M. Cerium based UiO-66 MOF as a multipollutant adsorbent for universal water purification. J. Hazard. Mater. 2021, 416, 125941. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Zhang, Y.; Tang, Y.; Wen, Y.; Lv, Z.; Liu, S.; Li, X.; Zhou, X. Propane-selective design of zirconium-based MOFs for propylene purification. Chem. Eng. Sci. 2020, 219, 115604. [Google Scholar] [CrossRef]
- Jiang, Z.; Xue, W.; Huang, H.; Zhu, H.; Sun, Y.; Zhong, C. Mechanochemistry-assisted linker exchange of metal-organic framework for efficient kinetic separation of propene and propane. Chem. Eng. J. 2023, 454, 140093. [Google Scholar] [CrossRef]
- Zhang, L.; Li, L.; Hu, E.; Yang, L.; Shao, K.; Yao, L.; Jiang, K.; Cui, Y.; Yang, Y.; Li, B. Boosting Ethylene/Ethane Separation within Copper (I)-Chelated Metal–Organic Frameworks through Tailor-Made Aperture and Specific π-Complexation. Adv. Sci. 2020, 7, 1901918. [Google Scholar] [CrossRef] [PubMed]
- Fan, W.; Peh, S.B.; Zhang, Z.; Yuan, H.; Yang, Z.; Wang, Y.; Chai, K.; Sun, D.; Zhao, D. Tetrazole-functionalized zirconium metal-organic cages for efficient C2H2/C2H4 and C2H2/CO2 separations. Angew. Chem. Int. Ed. 2021, 60, 17338–17343. [Google Scholar] [CrossRef]
- Mo, R.-J.; Chen, S.; Huang, L.-Q.; Ding, X.-L.; Rafique, S.; Xia, X.-H.; Li, Z.-Q. Regulating ion affinity and dehydration of metal-organic framework sub-nanochannels for high-precision ion separation. Nat. Commun. 2024, 15, 2145. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.Y.; Balderas-Xicohténcatl, R.; Zhang, L.; Kang, S.G.; Hirscher, M.; Oh, H.; Moon, H.R. Exploiting diffusion barrier and chemical affinity of metal–organic frameworks for efficient hydrogen isotope separation. J. Am. Chem. Soc. 2017, 139, 15135–15141. [Google Scholar] [CrossRef]
- Zhang, C.; Wu, B.-H.; Ma, M.-Q.; Wang, Z.; Xu, Z.-K. Ultrathin metal/covalent–organic framework membranes towards ultimate separation. Chem. Soc. Rev. 2019, 48, 3811–3841. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Su, P.; Li, Z.; Xu, Z.; Wang, F.; Ou, H.; Zhang, J.; Zhang, G.; Zeng, E. Ultrathin metal–organic framework membrane production by gel–vapour deposition. Nat. Commun. 2017, 8, 406. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Li, Y.; Ban, Y.; Jin, H.; Jiao, W.; Liu, X.; Yang, W. Metal-organic framework nanosheets as building blocks for molecular sieving membranes. Science 2014, 346, 1356–1359. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.S.; Bux, H.; Feldhoff, A.; Li, G.L.; Yang, W.S.; Caro, J. Controllable synthesis of metal–organic frameworks: From MOF nanorods to oriented MOF membranes. Adv. Mater. 2010, 22, 3322–3326. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Yan, J.; Gao, Y.; Ji, T.; Chen, S.; Wang, C.; Lu, P.; Li, Y.; Liu, Y. Fabrication of Highly Oriented Ultrathin Zirconium Metal-Organic Framework Membrane from Nanosheets towards Unprecedented Gas Separation. Angew. Chem. Int. Ed. 2023, 62, e202216697. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, Y.; Caro, J.; Guo, X.; Song, C.; Liu, Y. In-Plane Epitaxial Growth of Highly c-Oriented NH2-MIL-125(Ti) Membranes with Superior H2/CO2 Selectivity. Angew. Chem. Int. Ed. 2018, 57, 16088–16093. [Google Scholar] [CrossRef] [PubMed]
- Schaate, A.; Roy, P.; Godt, A.; Lippke, J.; Waltz, F.; Wiebcke, M.; Behrens, P. Modulated Synthesis of Zr-Based Metal–Organic Frameworks: From Nano to Single Crystals. Chem. Eur. J. 2011, 17, 6643–6651. [Google Scholar] [CrossRef] [PubMed]
- Morris, W.; Wang, S.; Cho, D.; Auyeung, E.; Li, P.; Farha, O.K.; Mirkin, C.A. Role of modulators in controlling the colloidal stability and polydispersity of the UiO-66 metal–organic framework. ACS Appl. Mater. Interfaces 2017, 9, 33413–33418. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Zhang, Q.; Li, Y.; Zhang, R.; Lu, G. Large-scale synthesis of monodisperse UiO-66 crystals with tunable sizes and missing linker defects via acid/base co-modulation. ACS Appl. Mater. Interfaces 2017, 9, 15079–15085. [Google Scholar] [CrossRef]
- Hu, Z.; Zhao, D. De facto methodologies toward the synthesis and scale-up production of UiO-66-type metal–organic frameworks and membrane materials. Dalton Trans. 2015, 44, 19018–19040. [Google Scholar] [CrossRef]
- Cao, J.; Xu, Z.; Chen, Y.; Li, S.; Jiang, Y.; Bai, L.; Yu, H.; Li, H.; Bian, Z. Tailoring the Asymmetric Structure of NH2-UiO-66 Metal-Organic Frameworks for Light-promoted Selective and Efficient Gold Extraction and Separation. Angew. Chem. Int. Ed. 2023, 62, e202302202. [Google Scholar] [CrossRef] [PubMed]
- Liu, X. Metal-organic framework UiO-66 membranes. Front. Chem. Sci. Eng. 2020, 14, 216–232. [Google Scholar] [CrossRef]
- Decker, G.E.; Stillman, Z.; Attia, L.; Fromen, C.A.; Bloch, E.D. Controlling size, defectiveness, and fluorescence in nanoparticle UiO-66 through water and ligand modulation. Chem. Mater. 2019, 31, 4831–4839. [Google Scholar] [CrossRef] [PubMed]
- Tai, S.; Zhang, W.; Zhang, J.; Luo, G.; Jia, Y.; Deng, M.; Ling, Y. Facile preparation of UiO-66 nanoparticles with tunable sizes in a continuous flow microreactor and its application in drug delivery. Micropor. Mesopor. Mat. 2016, 220, 148–154. [Google Scholar] [CrossRef]
- Abid, H.R.; Tian, H.; Ang, H.-M.; Tade, M.O.; Buckley, C.E.; Wang, S. Nanosize Zr-metal organic framework (UiO-66) for hydrogen and carbon dioxide storage. Chem. Eng. J. 2012, 187, 415–420. [Google Scholar] [CrossRef]
- Liu, X.; Demir, N.K.; Wu, Z.; Li, K. Highly Water-Stable Zirconium Metal–Organic Framework UiO-66 Membranes Supported on Alumina Hollow Fibers for Desalination. J. Am. Chem. Soc. 2015, 137, 6999–7002. [Google Scholar] [CrossRef]
- Li, P.; Sun, Y.; Zhang, Z.; Gu, Z.; Qiao, Z.; Zhong, C. Preparation of UiO-66 membrane through heterogeneous nucleation assisted growth strategy for efficient CO2 capture under humid conditions. Sep. Purif. Technol. 2024, 351, 128067. [Google Scholar] [CrossRef]
- Tan, K.; Pandey, H.; Wang, H.; Velasco, E.; Wang, K.-Y.; Zhou, H.-C.; Li, J.; Thonhauser, T. Defect Termination in the UiO-66 Family of Metal–Organic Frameworks: The Role of Water and Modulator. J. Am. Chem. Soc. 2021, 143, 6328–6332. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Cao, Y.; Liu, H.; Zhang, X. High-performance UiO-66-NH2 tubular membranes by zirconia-induced synthesis for desulfurization of model gasoline via pervaporation. J. Membr. Sci. 2018, 556, 54–65. [Google Scholar] [CrossRef]
- Rong, R.; Sun, Y.; Ji, T.; Liu, Y. Fabrication of highly CO2/N2 selective polycrystalline UiO-66 membrane with two-dimensional transition metal dichalcogenides as zirconium source via tertiary solvothermal growth. J. Membr. Sci. 2020, 610, 118275. [Google Scholar] [CrossRef]
- Shan, B.; James, J.B.; Armstrong, M.R.; Close, E.C.; Letham, P.A.; Nikkhah, K.; Lin, Y.S.; Mu, B. Influences of Deprotonation and Modulation on Nucleation and Growth of UiO-66: Intergrowth and Orientation. J. Phys. Chem. C 2018, 122, 2200–2206. [Google Scholar] [CrossRef]
- Wu, W.; Hong, X.; Fan, J.; Wei, Y.; Wang, H. Research progress on the substrate for metal–organic framework (MOF) membrane growth for separation. Chin. J. Chem. Eng. 2023, 56, 299–313. [Google Scholar] [CrossRef]
- Athar, M.; Rzepka, P.; Thoeny, D.; Ranocchiari, M.; Anton van Bokhoven, J. Thermal degradation of defective high-surface-area UiO-66 in different gaseous environments. RSC Adv. 2021, 11, 38849–38855. [Google Scholar] [CrossRef]
- Ruan, H.; Pan, N.; Wang, C.; Yu, L.; Liao, J.; Shen, J. Functional UiO-66 Series Membranes with High Perm Selectivity of Monovalent and Bivalent Anions for Electrodialysis Applications. Ind. Eng. Chem. Res. 2021, 60, 4086–4096. [Google Scholar] [CrossRef]
- Luo, C.; Cong, S.; Luan, L.; Wang, C.; Guo, Z.; Li, M.; Wang, J.; Wang, Z.; Liu, X. High performance MOF UiO-66 membranes for MeOH/MTBE separation. J. Membr. Sci. 2024, 693, 122335. [Google Scholar] [CrossRef]
- Fan, J.; Wu, W.; Lu, Z.; Wei, Y. Rapid synthesis strategy of ultrathin UiO-66 separation membranes: Ultrasonic-assisted nucleation followed with microwave-assisted growth. J. Membr. Sci. 2022, 664, 121085. [Google Scholar] [CrossRef]
- Xu, T.; Shehzad, M.A.; Wang, X.; Wu, B.; Ge, L.; Xu, T. Engineering Leaf-Like UiO-66-SO3H Membranes for Selective Transport of Cations. Nano-Micro Lett. 2020, 12, 51. [Google Scholar] [CrossRef] [PubMed]
- Friebe, S.; Geppert, B.; Steinbach, F.; Caro, J. Metal–Organic Framework UiO-66 Layer: A Highly Oriented Membrane with Good Selectivity and Hydrogen Permeance. ACS Appl. Mater. Interfaces 2017, 9, 12878–12885. [Google Scholar] [CrossRef]
- Xie, S.; Monnens, W.; Zhang, W.; Guo, W.; Han, N.; Zhou, Z.; Xue, Z.; Vankelecom, I.F.J.; Zhang, X.; Fransaer, J. Control over cathodic deposition of continuous UiO-66 films for ion-selective transport. Cell Rep. Phys. Sci. 2023, 4, 101412. [Google Scholar] [CrossRef]
- Yan, J.; Sun, Y.; Ji, T.; Liu, Y.; Zhang, N.; Sun, B.; Meng, S.; Yin, B.H.; Wu, M.; Hu, H. Facile synthesis of oriented Zr–MOF membrane under complete room-temperature condition with superb selectivity for carbon capture. Ind. Eng. Chem. Res. 2023, 62, 5973–5983. [Google Scholar] [CrossRef]
- Wang, X.; Lyu, Q.; Tong, T.; Sun, K.; Lin, L.-C.; Tang, C.Y.; Yang, F.; Guiver, M.D.; Quan, X.; Dong, Y. Robust ultrathin nanoporous MOF membrane with intra-crystalline defects for fast water transport. Nat. Commun. 2022, 13, 266. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Guo, Y.; Chen, C.; Lu, Y.; Chen, G.; Liu, G.; Han, Y.; Jin, W.; Xu, N. Eliminating lattice defects in metal–organic framework molecular-sieving membranes. Nat. Mater. 2023, 22, 769–776. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Li, H.; Chen, T.; Duan, Y.; Shi, D.; Kang, C.; Zhang, Z.; Zhao, D. Selective liquid-phase molecular sieving via thin metal–organic framework membranes with topological defects. Nat. Chem. Eng. 2024, 1, 483–493. [Google Scholar] [CrossRef]
- Liang, Y.; Zhang, B.; Wu, L.; Jiang, K.; Wang, Z.; Liu, X. Simultaneous enhancement of flux and selectivity of UiO-66 membranes for pervaporation via post-synthetic defect healing. J. Membr. Sci. 2025, 716, 123535. [Google Scholar] [CrossRef]
- Sun, Y.; Yan, J.; Jiang, J.; Wu, M.; Xia, T.; Liu, Y. Hierarchical defect-rich UiO-66 membrane towards superior flue gas and butane isomer separations. Sci. Bull. 2024, 69, 2174–2178. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Xu, T.; Sheng, F.; Wang, Y.; Li, Y.; Xia, Y.; Wu, B.; Li, X.; Xu, T. UiO-66 membranes with confined naphthalene disulfonic acid for selective monovalent ion separation. J. Membr. Sci. 2024, 703, 122829. [Google Scholar] [CrossRef]
- Ghalei, B.; Wakimoto, K.; Wu, C.Y.; Isfahani, A.P.; Yamamoto, T.; Sakurai, K.; Higuchi, M.; Chang, B.K.; Kitagawa, S.; Sivaniah, E. Rational Tuning of Zirconium Metal–Organic Framework Membranes for Hydrogen Purification. Angew. Chem. Int. Ed. 2019, 58, 19034–19040. [Google Scholar] [CrossRef] [PubMed]
- Cong, S.; Zhou, Y.; Luo, C.; Wang, C.; Wang, J.; Wang, Z.; Liu, X. Designing Metal–Organic Framework (MOF) Membranes for Isomer Separation. Angew. Chem. Int. Ed. 2024, 63, e202319894. [Google Scholar] [CrossRef]
- Xu, T.; Wu, B.; Li, W.; Li, Y.; Zhu, Y.; Sheng, F.; Li, Q.; Ge, L.; Li, X.; Wang, H.; et al. Perfect confinement of crown ethers in MOF membrane for complete dehydration and fast transport of monovalent ions. Sci. Adv. 2024, 10, eadn0944. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Liang, Y.; Zhang, B.; Cong, S.; Tang, S.; Jiang, K.; Luan, L.; Wang, Z.; Liu, X. Post-synthetic modification of MOF UiO-66-NH₂ membranes for efficient methanol/organic separation. J. Membr. Sci. 2025, 715, 123475. [Google Scholar] [CrossRef]
- Khalil, I.E.; Fonseca, J.; Reithofer, M.R.; Eder, T.; Chin, J.M. Tackling orientation of metal-organic frameworks (MOFs): The quest to enhance MOF performance. Coordin. Chem. Rev. 2023, 481, 215043. [Google Scholar] [CrossRef]
- Feng, Y.; Wang, Z.; Fan, W.; Kang, Z.; Feng, S.; Fan, L.; Hu, S.; Sun, D. Engineering the pore environment of metal–organic framework membranes via modification of the secondary building unit for improved gas separation. J. Mater. Chem. A 2020, 8, 13132–13141. [Google Scholar] [CrossRef]
- Feng, X.; Jena, H.S.; Krishnaraj, C.; Leus, K.; Wang, G.; Chen, H.; Jia, C.; Van Der Voort, P. Generating Catalytic Sites in UiO-66 through Defect Engineering. ACS Appl. Mater. Interfaces 2021, 13, 60715–60735. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Song, C.; Guo, X.; Liu, Y. Concurrent manipulation of out-of-plane and regional in-plane orientations of NH2-UiO-66 membranes with significantly reduced anisotropic grain boundary and superior H2/CO2 separation performance. ACS Appl. Mater. Interfaces 2019, 12, 4494–4500. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Ji, T.; Sun, Y.; Meng, S.; Wang, C.; Liu, Y. Room temperature fabrication of oriented Zr-MOF membrane with superior gas selectivity with zirconium-oxo cluster source. J. Membr. Sci. 2022, 661, 120959. [Google Scholar] [CrossRef]
- Wu, W.; Fan, J.; Wang, D.; Zhao, Y.; Zhao, X.; Wei, Y. Ultrathin UiO-66-NH2 polycrystalline membrane for CO2/CH4 separation. Carbon Capture Sci. Technol. 2024, 11, 100183. [Google Scholar] [CrossRef]
- Yan, J.; Sun, Y.; Ji, T.; Liu, L.; Zhang, M.; Liu, Y. Cooperative defect tailoring: A promising protocol for exceeding performance limits of state-of-the-art MOF membranes. J. Membr. Sci. 2021, 635, 119515. [Google Scholar] [CrossRef]
- Yu, Q.; Zhou, Y.; Gao, C. UiO-66 regulated thin-film nanocomposite membranes for water treatment. Desalination 2024, 587, 117917. [Google Scholar] [CrossRef]
- Cui, X.; Kong, G.; Wei, S.; Cui, Y.; Yu, P.; Kang, Z.; Guo, H. Amino-grafted MOF-based composite membranes for improving Li+/Mg2+ separation performance. Sep. Purif. Technol. 2024, 330, 125485. [Google Scholar] [CrossRef]
Materials | Structure Character | Synthetic Approaches | Application | Separation Performance | Ref. |
---|---|---|---|---|---|
UiO-66 | 2.0 μm thick Randomly oriented | In situ synthesis | Nanofiltration (K+, Na+, Ca2+, Mg2+, Al3+) | Mg2+ rejection = 98.0%, Al3+ rejection = 99.3% Water permeance: 0.14 L m−2 h−1 bar−1 | [38] |
UiO-66-NH2 | 4 µm thick Randomly oriented | In situ synthesis (modified substrates) | Pervaporation (thiophene, n-octane) | n-octane flux: 2.16 kg m−2 h−1 thiophene/n-octane = 17.86 | [42] |
UiO-66-NH2 | 4–6 μm thick Randomly oriented | Contra diffusion | Electrodialysis (Cl−, SO42−) | Cl−/SO42− = 36.23 | [46] |
UiO-66 | 400 nm thick | Secondary growth | Pervaporation (MeOH, MTBE) | MeOH flux: 5.68 kg m−2 h−1 MeOH/MTBE = 28,000 | [47] |
UiO-66 | 210 nm thick | Microwave-assisted secondary growth | Ions rejection (Li+, Na+, Ca2+, Mg2+, Al3+) | Na+ rejection = 99.6% water flux: 0.16 L m−2 h−1 bar−1 | [48] |
UiO-66-SO3H | 600 nm thick | in situ growth | Electrodialysis (K+, Na+, Mg2+) | Na+/Mg2+ = 170 | [49] |
UiO-66 | (111)-Orientated 165 nm thick | Confined contra-diffusion -assisted epitaxial growth | Gas separation (H2, CO2, N2, CH4) | CO2 permeance: 2070 GPU CO2/N2 = 35.4 | [24] |
UiO-66 | (002)-Orientated 2.0 μm thick | Secondary growth | Gas separation (H2, CO2, N2, CH4, C2H6, C3H8) | H2/CO2 = 5.1, H2/N2 = 4.7, H2/CH4 = 12.9, H2/C2H6 = 22.4, H2/C3H8 = 28.5 | [50] |
UiO-66 | 300 nm thick | Cathodic deposition | Electro-chemical ion separation (Li+, K+, Na+, Ca2+, Mg2+) | Li+/Mg2+= 286 Li+ permeance: 11.2 mol m−2 h−1 | [51] |
UiO-66 | Introducing missing-cluster defects | Secondary growth | Gas separation (H2, CO2, N2, CH4) | CO2/N2 = 37.8, CO2 permeance: 2.11 × 10−8 mol m−2 s−1 Pa−1 | [52] |
UiO-66 | Introducing missing-cluster defects | In situ growth | Desalination (Na+, Cl−) | NaCl rejection > 99.8% water flux: 29.8 L m−2 h−1 | [53] |
UiO-66 | Eliminating lattice defects | Contra diffusion | Desalination/pervaporation (K+, Na+, Ca2+, Mg2+) (MeOH, DMC) | water/salt selectivity 9000, water flux: 10 L m−2 h−1 DMC rejection > 99.5% MeOH flux: 17.71 kg m−2 h−1 | [54] |
reo-UiO-66 | Introducing missing-cluster defects | In situ growth | Pervaporation (MeOH, DMC) | MeOH permeance: 11.2 L m−2 h−1 bar−1 EB rejection > 97.8% | [55] |
UiO-66 | Healing lattice defects | Tertiary growth | Pervaporation (MeOH, MTBE, EtOH, ETBE) | MeOH/MTBE = 10,000 MeOH flux: 2.14 kg m−2 h−1 | [56] |
UiO-66 | Hierarchical defect-rich pore | Microwave-assisted secondary growth | Gas separation (H2, CO2, N2, CH4) | CO2/N2 = 38.1 CO2 permeance: 2170 GPU | [57] |
UiO-66@NTDS | Molecules incorporated pore | In-situ growth | Ion separation (Li+, K+, Na+, Mg2+) | K+/Mg2+ = 73 Na+/Mg2+ = 57 Li+/Mg2+ = 46 | [58] |
UiO-66-(OCH3)2 | Molecularly tailored functional group and pore size | In-situ growth | Electro-chemical ion separation (Li+, K+, Na+, Ca2+, Mg2+) | K+/Mg2+ = 1657.8 K+ permeance: 0.05 mol m−2 h−1 | [21] |
UiO-66 | Bulkier organic ligands incorporated pore (NDC, ADC) | In-situ growth | Gas separation (H2, CO2, N2, CH4) | H2/CO2 = 26 | [59] |
UiO-66-33Br | Molecularly tailored functional group and pore size | In-situ growth | Gas separation (n-hexane, 2-methylpentane) | n-hexane/2-methylpentane = 9.10 n-hexane permeance: 49.1 GPU | [60] |
DB18C6@UiO-66 | Crown ether confined pore | In-situ growth | Ion separation (Li+, K+, Na+, Mg2+) | K+/Mg2+ = 57 K+ permeance: 1.2 mol m−2 h−1 | [61] |
UiO-66-NH2-SA | Pore modification with salicylaldehyde (SA) | Secondary growth | Pervaporation (MeOH, Tol, MTBE) | MeOH/Tol = 3220 MeOH/MTBE = 28,000 | [62] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Y. UiO-66 Metal-Organic Framework Membranes: Structural Engineering for Separation Applications. Membranes 2025, 15, 8. https://doi.org/10.3390/membranes15010008
Sun Y. UiO-66 Metal-Organic Framework Membranes: Structural Engineering for Separation Applications. Membranes. 2025; 15(1):8. https://doi.org/10.3390/membranes15010008
Chicago/Turabian StyleSun, Yanwei. 2025. "UiO-66 Metal-Organic Framework Membranes: Structural Engineering for Separation Applications" Membranes 15, no. 1: 8. https://doi.org/10.3390/membranes15010008
APA StyleSun, Y. (2025). UiO-66 Metal-Organic Framework Membranes: Structural Engineering for Separation Applications. Membranes, 15(1), 8. https://doi.org/10.3390/membranes15010008