Investigation of the Ternary System, Water/Hydrochloric Acid/Polyamide 66, for the Production of Polymeric Membranes by Phase Inversion
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Polymer Characterization: Water Adsorption
2.3. Membrane Preparation
2.4. Membrane Characterization
2.4.1. Fourier-Transform Infrared Spectroscopy Analysis
2.4.2. Differential Scanning Calorimetry Analysis
2.4.3. Scanning Electron Microscopy
2.5. Solution Characterization
2.6. Polymer Binary and Ternary Systems Determination
2.6.1. Determination of the Non-Solvent/Solvent Interaction Parameter (g12)
2.6.2. Determination of the Non-Solvent/Polymer Interaction Parameter (χ13)
2.6.3. Determination of the Interaction Solvent/Polymer Parameter (χ23)
3. Results and Discussion
3.1. PA66 Water Absorption
3.2. PA66 Membrane Characterization
3.2.1. Chemical Characterization Through Fourier-Transform Infrared Spectroscopy Analysis
3.2.2. Thermal Analysis Through Differential Scanning Calorimetry
3.2.3. Morphological Analysis of the PA66 Membranes
3.2.4. Polymer Binary and Ternary Systems
(g12) the Non-Solvent/Solvent Interaction Parameter
(χ13) Non-Solvent/Polymer Interaction Parameter
(χ23) Solvent/Polymer Interaction Parameter
Ternary Systems
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liao, G.; Li, Z.; Luan, C.; Wang, Z.; Yao, X.; Fu, J. Additive manufacturing of polyamide 66: Effect of process parameters on crystallinity and mechanical properties. J. Mater. Eng. Perform. 2022, 31, 191–200. [Google Scholar] [CrossRef]
- Kohan, M.I. Nylon Plastics Handbook; Hanser: New York, NY, USA, 1995. [Google Scholar]
- Lin, D.-J.; Chang, C.-L.; Lee, C.-K.; Cheng, L.-P. Fine structure and crystallinity of porous nylon 66 membranes prepared by phase inversion in the water/formic acid/nylon 66 system. Eur. Polym. J. 2006, 42, 356–367. [Google Scholar] [CrossRef]
- Yan, J.; Nie, L.; Li, G.; Zhu, Y.; Gao, M.; Wu, R.; Wang, B. Axial crystal growth evolution and crystallization characteristics of bi-continuous polyamide 66 membranes prepared via the cold non-solvent-induced phase separation technique. Polymers 2022, 14, 1706. [Google Scholar] [CrossRef] [PubMed]
- van de Witte, P.; Dijkstra, P.J.; van den Berg, J.W.A.; Feijen, J. Phase separation processes in polymer solutions in relation to membrane formation. J. Membr. Sci. 1996, 117, 1–31. [Google Scholar] [CrossRef]
- Mulder, M. Basic Principles of Membrane Technology; Springer Science & Business Media: London, UK, 2003. [Google Scholar]
- Baker, R.W. Membrane Technology and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2004. [Google Scholar]
- Tang, Y.; Lin, Y.; Ford, D.M.; Qian, X.; Cervellere, M.R.; Millett, P.C.; Wang, X. A review on models and simulations of membrane formation via phase inversion processes. J. Membr. Sci. 2021, 640, 119810. [Google Scholar] [CrossRef]
- Chan, K.-Y.; Li, C.-L.; Wang, D.-M.; Lai, J.-Y. Formation of porous structures and crystalline phases in poly(vinylidene fluoride) membranes prepared with nonsolvent-induced phase separation—Roles of solvent polarity. Polymers 2023, 15, 1314. [Google Scholar] [CrossRef]
- Reuvers, A.J. Membrane Formation: Diffusion Induced Demixing Processes in Ternary Polymeric Systems; University of Twente: Enschede, The Netherlands, 1987. [Google Scholar]
- Bulte, A.M.W.; Folkers, B.; Mulder, M.H.V.; Smolders, C.A. Membranes of semicrystalline aliphatic polyamide nylon 4,6: Formation by diffusion-induced phase separation. J. Appl. Polym. Sci. 1993, 50, 13–26. [Google Scholar] [CrossRef]
- Tager, A. Physical Chemistry of Polymers; Mir Publishers: Moscow, Russia, 1978. [Google Scholar]
- Wohlfarth, C. Methods for the measurement of solvent activity of polymer solutions. In Handbook of Solvents; Wypych, G., Ed.; ChemTec Publishing: Toronto, ON, Canada, 2001. [Google Scholar]
- Karimi, M.; Albrecht, W.; Heuchel, M.; Weigel, T.; Lendlein, A. Determination of solvent/polymer interaction parameters of moderately concentrated polymer solutions by vapor pressure osmometry. Polymer 2008, 49, 2587–2594. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, L.; Sun, D.; An, Q.; Chen, H. Formation mechanism and crystallization of poly(vinylidene fluoride) membrane via immersion precipitation method. Desalination 2009, 236, 170–178. [Google Scholar] [CrossRef]
- Peng, N.; Widjojo, N.; Sukitpaneenit, P.; Teoh, M.M.; Lipscomb, G.G.; Chung, T.-S.; Lai, J.-Y. Evolution of polymeric hollow fibers as sustainable technologies: Past, present, and future. Prog. Polym. Sci. 2012, 37, 1401–1424. [Google Scholar] [CrossRef]
- Liu, Z.; Xiang, J.; Hu, X.; Cheng, P.; Zhang, L.; Du, W.; Wang, S.; Tang, N. Effects of coagulation-bath conditions on polyphenylsulfone ultrafiltration membranes. Chin. J. Chem. Eng. 2021, 34, 332–340. [Google Scholar] [CrossRef]
- Romay, M.; Diban, N.; Urtiaga, A. Thermodynamic modeling and validation of the temperature influence in ternary phase polymer systems. Polymers 2021, 13, 678. [Google Scholar] [CrossRef]
- Young, T.-H.; Huang, J.-H.; Chuang, W.-Y. Effect of evaporation temperature on the formation of particulate membranes from crystalline polymers by dry-cast process. Eur. Polym. J. 2002, 38, 63–72. [Google Scholar] [CrossRef]
- Wienk, I.M.; Boom, R.M.; Beerlage, M.A.M.; Bulte, A.M.W.; Smolders, C.A.; Strathmann, H. Recent advances in the formation of phase inversion membranes made from amorphous or semi-crystalline polymers. J. Membr. Sci. 1996, 113, 361–371. [Google Scholar] [CrossRef]
- Algebraistova, P.Y.; Basko, A.V.; Ilyasova, A.N.; Lebedeva, T.N.; Mironov, A.V.; Pochivalov, K.V.; Popov, V.K. Phase equilibria and structure formation in the polylactic-co-glycolic acid/tetraglycol/water ternary system. Polymers 2023, 15, 1281. [Google Scholar] [CrossRef] [PubMed]
- Pochivalov, K.V.; Basko, A.V.; Ilyasova, A.N.; Lebedeva, T.N.; Yurov, M.Y.; Bronnikov, S.V. Experimental phase diagram for the pvdf–dmac–water ternary system with new topology: Method of construction, thermodynamics, and structure formation of membranes. Polymer 2023, 282, 126152. [Google Scholar] [CrossRef]
- Bulte, A.M.W.; Naafs, E.M.; van Eeten, F.; Mulder, M.H.V.; Smolders, C.A.; Strathmann, H. Equilibrium thermodynamics of the ternary membrane-forming system nylon, formic acid and water. Polymer 1996, 37, 1647–1655. [Google Scholar] [CrossRef]
- Bulte, A.M.W.; Mulder, M.H.V.; Smolders, C.A.; Strathmann, H. Diffusion induced phase separation with crystallizable nylons. Ii. Relation to final membrane morphology. J. Membr. Sci. 1996, 121, 51–58. [Google Scholar] [CrossRef]
- Shih, C.-H.; Gryte, C.C.; Cheng, L.-P. Morphology of membranes formed by the isothermal precipitation of polyamide solutions from water/formic acid systems. J. Appl. Polym. Sci. 2005, 96, 944–960. [Google Scholar] [CrossRef]
- Thomas, J.L.; Olzog, M.; Drake, C.; Shih, C.-H.; Gryte, C.C. Polyamide membrane precipitation studied by confocal backscattering microscopy. Polymer 2002, 43, 4153–4157. [Google Scholar] [CrossRef]
- El-Gendi, A.; Abdalla, H.A.M.; Ali, S. Construction of ternary phase diagram and membrane morphology evaluation for polyamide/formic acid/water system. Aust. J. Basic Appl. Sci. 2012, 6, 62–68. [Google Scholar]
- Kools, W.F.C. Membrane formation by phase inversion in multicomponent polymer systems. In Mechanisms and Morphologies; University of Twente: Enschede, The Netherlands, 1998. [Google Scholar]
- Lobo, L.Q.; Ferreira, A.G.M. Termodinâmica e Propriedades Termofísicas; Imprensa da Universidade de Coimbra/Coimbra University Press: Coimbra, Portugal, 2006; Volume 1. [Google Scholar]
- Flory, P.J. Principles of Polymer Chemistry; Cornell University Press: New York, NY, USA, 1953. [Google Scholar]
- Sperling, L.H. Introduction to Physical Polymer Science, 4th ed.; John Wiley & Sons: New Jersey, NJ, USA, 2006. [Google Scholar]
- Danner, R.P.; High, M.S. Handbook of Polymer Solution Thermodynamics; Wiley: New York, NY, USA, 1993. [Google Scholar]
- Cheng, L.-P.; Dwan, A.-H.; Gryte, C.C. Isothermal phase behavior of nylon-6, -66, and -610 polyamides in formic acid–water systems. J. Polym. Sci. Part B Polym. Phys. 1994, 32, 1183–1190. [Google Scholar] [CrossRef]
- Shih, C.-H.; Gryte, C.C.; Cheng, L.-P. Precipitation dynamics for the formation of nylon-6 polyamide membranes by isothermal precipitation in water/formic acid solutions. J. Appl. Sci. Eng. 2012, 15, 361–370. [Google Scholar]
- Aulova, A.; Cvenkel, A.; Žakelj, S.; Planinšek, O.; Kristl, A.; Emri, I. Mechanical properties and drug permeability of the pa6 membranes prepared by immersion precipitation from pa6–formic acid–water system. J. Membr. Sci. 2018, 562, 67–75. [Google Scholar] [CrossRef]
- Brandrup, J.; Immergut, E.H. (Eds.) Polymer Handbook, 3rd ed.; John Wiley and Sons: New York, NY, USA, 1989. [Google Scholar]
- ISO 307:2007(e); Determination of Viscosity Number of Polyamides in Dilute Solutions. ISO: Geneva, Switzerland, 2007.
- Duarte, J.; Santos, V.d.; Zeni, M. Comportamento viscosimétro da poliamida 66 comercial em ácido fórmico y ácido clorídrico. Rev. Iberoam. Polím. 2016, 17, 293–303. [Google Scholar]
- ASTM D570-98; Standard Test Method for Water Absorption of Plastics. E1. ASTM International: West Conshohocken, PA, USA, 2010.
- Poletto, P.; Duarte, J.; Lunkes, M.S.; Santos, V.d.; Zeni, M.; Meireles, C.S.; Filho, G.R.; Bottino, A. Avaliação das características de transporte em membranas de poliamida 66 preparadas com diferentes solventes. Polímeros 2012, 22, 273–277. [Google Scholar] [CrossRef]
- Poletto, P.; Duarte, J.; Thürmer, M.B.; Santos, V.d.; Zeni, M. Characterization of polyamide 66 membranes prepared by phase inversion using formic acid and hydrochloric acid such as solvents. Mater. Res. 2011, 14, 547–551. [Google Scholar] [CrossRef]
- Cheval, N.; Xu, F.; Gindy, N.; Brooks, R.; Zhu, Y.; Fahmi, A. Morphology, crystallinity and thermal properties of polyamide 66/polyoxometalate nanocomposites synthesised via an in situ sol/gel process. Macromol. Chem. Phys. 2011, 212, 180–190. [Google Scholar] [CrossRef]
- Duarte, J.; Santos, V.d.; Zeni, M. Behavior classification physical/chemistry pa66/hcl binary system utilized to obtain separation membranes. Glob. J. Sci. Front. Res. 2016, 16, 11–18. [Google Scholar]
- Barzin, J.; Sadatnia, B. Theoretical phase diagram calculation and membrane morphology evaluation for water/solvent/polyethersulfone systems. Polymer 2007, 48, 1620–1631. [Google Scholar] [CrossRef]
- Altena, F.W.; Smolders, C.A. Calculation of liquid-liquid phase separation in a ternary system of a polymer in a mixture of a solvent and a nonsolvent. Macromolecules 1982, 15, 1491–1497. [Google Scholar] [CrossRef]
- Wei, Y.-M.; Xu, Z.-L.; Yang, X.-T.; Liu, H.-L. Mathematical calculation of binodal curves of a polymer/solvent/nonsolvent system in the phase inversion process. Desalination 2006, 192, 91–104. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, Y.; Zhao, J. Thermodynamic study of non-solvent/dimethyl sulfoxide/polyacrylonitrile ternary systems: Effects of the non-solvent species. Polym. Bull. 2011, 67, 1073–1089. [Google Scholar] [CrossRef]
- Fredenslund, A.; Jones, R.L.; Prausnitz, J.M. Group-contribution estimation of activity coefficients in nonideal liquid mixtures. AIChE J. 1975, 21, 1086–1099. [Google Scholar] [CrossRef]
- Magnussen, T.; Rasmussen, P.; Fredenslund, A. Unifac parameter table for prediction of liquid-liquid equilibriums. Ind. Eng. Chem. Process Des. Dev. 1981, 20, 331–339. [Google Scholar] [CrossRef]
- Skoog, D.A.; West, D.M.; Holler, F.J.; Crouch, S.R. Fundamentals of Analytical Chemistry, 8th ed.; Brooks/Cole, Cengage Learning: Belmont, CA, USA, 2004. [Google Scholar]
- Florence, A.T.; Attwood, D. Physicochemical Principles of Pharmacy, 3rd ed.; The MacMillan Press: London, UK, 2003. [Google Scholar]
- Le Huy, H.M.; Rault, J. Remarks on the α and β transitions in swollen polyamides. Polymer 1994, 35, 136–139. [Google Scholar] [CrossRef]
- Yao, C.W.; Burford, R.P.; Fane, A.G.; Fell, C.J.D. Effect of coagulation conditions on structure and properties of membranes from aliphatic polyamides. J. Membr. Sci. 1988, 38, 113–125. [Google Scholar] [CrossRef]
- Zeni, M.; Riveros, R.; de Souza, J.F.; Mello, K.; Meireles, C.; Filho, G.R. Morphologic analysis of porous polyamide 6,6 membranes prepared by phase inversion. Desalination 2008, 221, 294–297. [Google Scholar] [CrossRef]
- Al-Rawajfeh, A.E. Polyamide-based composite membranes: Part 1. Preparation and characterization. Desalination 2005, 179, 265–272. [Google Scholar] [CrossRef]
- Vasanthan, N.; Salem, D.R. Infrared spectroscopic characterization of oriented polyamide 66: Band assignment and crystallinity measurement. J. Polym. Sci. Part B Polym. Phys. 2000, 38, 516–524. [Google Scholar] [CrossRef]
- Liu, Y.; Shao, Z.; Zhou, P.; Chen, X. Thermal and crystalline behaviour of silk fiborin/nylon 66 blend films. Polymer 2004, 45, 7705–7710. [Google Scholar] [CrossRef]
- Canevarolo, S.V. Ciência dos Polímeros: Um Texto Básico para Tecnólogos e Engenheiros, 2nd ed.; Artliber: São Paulo, Brazil, 2010. [Google Scholar]
- Guan, R.; Dai, H.; Li, C.; Liu, J.; Xu, J. Effect of casting solvent on the morphology and performance of sulfonated polyethersulfone membranes. J. Membr. Sci. 2006, 277, 148–156. [Google Scholar] [CrossRef]
- Lai, J.-Y.; Lin, S.-F.; Lin, F.-C.; Wang, D.-M. Construction of ternary phase diagrams in nonsolvent/solvent/pmma systems. J. Polym. Sci. Part B Polym. Phys. 1998, 36, 607–615. [Google Scholar] [CrossRef]
- Boom, R.M.; van den Boomgaard, T.; van den Berg, J.W.A.; Smolders, C.A. Linearized cloudpoint curve correlation for ternary systems consisting of one polymer, one solvent and one non-solvent. Polymer 1993, 34, 2348–2356. [Google Scholar] [CrossRef]
- Gundert, F.; Wolf, B.A. Polymer–solvent interaction parameter. In Polymer Handbook, 3rd ed.; Brandrup, J., Immergut, E.H., Eds.; Wiley: New York, NY, USA, 1989; pp. 173–182. [Google Scholar]
- Huggins, M.L. Solutions of long chain compounds. J. Chem. Phys. 1941, 9, 440. [Google Scholar] [CrossRef]
- Huggins, M.L. Theory of solutions of high polymers. J. Am. Chem. Soc. 1942, 64, 1712–1719. [Google Scholar] [CrossRef]
- Perry, R.H.G.; Don, W. Perry’s Chemical Engineers’ Handbook, 7th ed.; McGraw-Hill Professional: New York, NY, USA, 1997; p. 2640. [Google Scholar]
- Handbook of Chemistry and Physics, 44th ed.; CRC Press: Florida, FL, USA, 1962.
- Budavari, S. The Merck Index: An Encyclopedia of Chemicals, Drugs, and Biologicals, 11th ed.; Merck & Co.: Rahway, NJ, USA, 1989. [Google Scholar]
- Lucas, E.F.S.; Bluma, G.; Monteiro, E.E.C. Caracterização de Polímeros: Determinação de peso Molecular e Análise Térmica; E-Papers: Rio de Janeiro, Brazil, 2001. [Google Scholar]
- Laurati, M.; Arbe, A.; Rios de Anda, A.; Fillot, L.A.; Sotta, P. Effect of polar solvents on the crystalline phase of polyamides. Polymer 2014, 55, 2867–2881. [Google Scholar] [CrossRef]
- Al-Rawajfeh, A.E.; Al-Salah, H.A.; AlShamaileh, E.; Donchev, D. Polyamide-based composite membranes: Part 2. Interaction, crystallization and morphology. Desalination 2008, 227, 120–131. [Google Scholar] [CrossRef]
- Maghsoud, Z.; Famili, M.H.N.; Madaeni, S.S. Phase diagram calculations of water/tetrahydrofuran/poly (vinyl chloride)ternary system based on a compressible regular solution model. Iran. Polym. J. 2010, 19, 581–588. [Google Scholar]
Materials | Molar Volume (cm3∙mol−1) | Molar Mass (g∙mol−1) | Density (g∙cm−3) |
---|---|---|---|
PA 66 | 10,642.20 | 11,600 a | 1.22 b/1.09 c |
HCℓ (37–38%) | 30.67 | 36.5 | 1.19 |
FA (98–100%) | 37.7 | 46 | 1.22 |
Membrane Solvent | Evaporation | Precipitation Bath | ||
---|---|---|---|---|
Time (min) | Temperature (°C) | Time (min) | Temperature (°C) | |
FA | 10 | 20 | 120 | 25 ± 2 |
HCℓ | 60 | 60 | 120 | 25 ± 2 |
Polymer/Membranes | Tf (°C) | ΔHf (J·g−1) | Xc (%) |
---|---|---|---|
PA66 | 256.80 | 68.86 | 35 |
PA66/FA | 265.20 | 88.78 | 45 |
PA66/HCℓ | 255.51 | 69.72 | 35 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duarte, J.; Raota, C.S.; Baldasso, C.; dos Santos, V.; Zeni, M. Investigation of the Ternary System, Water/Hydrochloric Acid/Polyamide 66, for the Production of Polymeric Membranes by Phase Inversion. Membranes 2025, 15, 7. https://doi.org/10.3390/membranes15010007
Duarte J, Raota CS, Baldasso C, dos Santos V, Zeni M. Investigation of the Ternary System, Water/Hydrochloric Acid/Polyamide 66, for the Production of Polymeric Membranes by Phase Inversion. Membranes. 2025; 15(1):7. https://doi.org/10.3390/membranes15010007
Chicago/Turabian StyleDuarte, Jocelei, Camila Suliani Raota, Camila Baldasso, Venina dos Santos, and Mara Zeni. 2025. "Investigation of the Ternary System, Water/Hydrochloric Acid/Polyamide 66, for the Production of Polymeric Membranes by Phase Inversion" Membranes 15, no. 1: 7. https://doi.org/10.3390/membranes15010007
APA StyleDuarte, J., Raota, C. S., Baldasso, C., dos Santos, V., & Zeni, M. (2025). Investigation of the Ternary System, Water/Hydrochloric Acid/Polyamide 66, for the Production of Polymeric Membranes by Phase Inversion. Membranes, 15(1), 7. https://doi.org/10.3390/membranes15010007