Review of Recent Nuclear Magnetic Resonance Studies of Ion Transport in Polymer Electrolytes
Abstract
:1. Introduction
2. PEO and Ceramic Composite Electrolytes
3. Copolymers, Block Copolymers, and Polymer Blends
4. Crystalline Polymer Electrolytes
5. Sodium-Conducting Electrolytes
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Quartarone, E.; Mustarelli, P. Electrolytes for solid-state lithium rechargeable batteries: Recent advances and perspectives. Chem. Soc. Rev. 2011, 40, 2525–2540. [Google Scholar] [CrossRef] [PubMed]
- MacCallum, E.J.R.; Vincent, C.A. Polymer Electrolyte Reviews; Elsevier Applied Science: London, UK, 1989. [Google Scholar]
- Kamaya, N.; Homma, K.; Yamakawa, Y.; Hirayama, M.; Kanno, R.; Yonemura, M.; Kamiyama, T.; Kato, Y.; Hama, S.; Kawamoto, K.; et al. A lithium superionic conductor. Nat. Mater. 2011, 10, 682–686. [Google Scholar] [CrossRef] [PubMed]
- Bron, P.; Johansson, S.; Zick, K.; Schmedt auf der Günne, J.; Dehnen, S.; Roling, B. Li10SnP2S12: An Affordable Lithium Superionic Conductor. J. Am. Chem. Soc. 2013, 135, 15694–15697. [Google Scholar] [CrossRef] [PubMed]
- Braga, M.; Grundish, N.; Murchison, A.; Goodenough, J. Alternative strategy for a safe rechargeable battery. Energy Environ. Sci. 2017, 10, 331–336. [Google Scholar] [CrossRef]
- Yu, X.; Bates, J.; Jellison, G.; Hart, F. A Stable Thin—Film Lithium Electrolyte: Lithium Phosphorus Oxynitride. J. Electrochem. Soc. 1997, 144, 524–532. [Google Scholar] [CrossRef]
- Fergus, J.W. Ceramic and polymeric solid electrolytes for lithium-ion batteries. J. Power Sources 2010, 195, 4554–4569. [Google Scholar] [CrossRef]
- Fenton, D.E.; Parker, J.M.; Wright, P.V. Complexes of alkali metal ions with poly(ethylene oxide). Polymer 1973, 14, 589. [Google Scholar] [CrossRef]
- Armand, M.B.; Chabagno, J.M.; Duclot, M.J. Fast Ion Transport in Solids. In Proceedings of the International Conference on Fast Ion Transport in Solids, Electrodes and Electrolytes., Lake Geneva, WI, USA, 21–25 May 1979; p. 131. [Google Scholar]
- Berthier, C.; Gorecki, W.; Minier, M.; Armand, M.B.; Chabagno, J.M.; Rigaud, P. Microscopic investigation of ionic conductivity in alkali metal salts-poly(ethylene oxide) adducts. Solid State Ionics 1983, 11, 91–95. [Google Scholar] [CrossRef]
- Adamić, K.J.; Greenbaum, S.G.; Wintersgill, M.C.; Fontanella, J.J. Ionic conductivity in solid, crosslinked dimethylsiloxane-ethylene oxide copolymer networks containing sodium. J. Appl. Phys. 1986, 60, 1342–1345. [Google Scholar] [CrossRef] [Green Version]
- Chung, S.H.; Wang, Y.; Persi, L.; Croce, F.; Greenbaum, S.G.; Scrosati, B.; Plichta, E. Enhancement of ion transport in polymer electrolytes by addition of nanoscale inorganic oxides. J. Power Sources 2001, 97–98, 644–648. [Google Scholar] [CrossRef]
- Armand, M.; Tarascon, J.-M. Building better batteries. Nature 2008, 451, 652–657. [Google Scholar] [CrossRef] [PubMed]
- Armand, M.B.; Bruce, P.G.; Forsyth, M.; Scrosati, B.; Wieczorek, W. Polymer Electrolytes. In Energy Materials; Bruce, D.W., Dermot, O.H., Wlton, R.I., Eds.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2011. [Google Scholar]
- Kovarsky, R.; Golodnitsky, D.; Peled, E.; Khatun, S.; Stallworth, P.E.; Greenbaum, S.; Greenbaum, A. Conductivity enhancement induced by casting of polymer electrolytes under a magnetic field. Electrochimica Acta 2011, 57, 27–35. [Google Scholar] [CrossRef]
- Wetjen, M.; Kim, G.-T.; Joost, M.; Winter, M.; Passerini, S. Temperature dependence of electrochemical properties of cross-linked poly(ethylene oxide)–lithium bis(trifluoromethanesulfonyl)imide–N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide solid polymer electrolytes for lithium batteries. Electrochimica Acta 2013, 87, 779–787. [Google Scholar] [CrossRef]
- Maranski, K.; Andreev, Y.G.; Bruce, P.G. Synthesis of Poly(ethylene oxide) Approaching Monodispersity. Angew. Chem. Int. Ed. 2014, 53, 6411–6413. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Chen, F.; Jin, L.; O’Dell, L.A.; Forsyth, M. Insight into Local Structure and Molecular Dynamics in Organic Solid-State Ionic Conductors. ChemPhysChem 2014, 15, 3720–3724. [Google Scholar] [CrossRef] [PubMed]
- Mizuno, F.; Belieres, J.P.; Kuwata, N.; Pradel, A.; Ribes, M.; Angell, C.A. Highly decoupled ionic and protonic solid electrolyte systems, in relation to other relaxing systems and their energy landscapes. J. Non-Cryst. Solids 2006, 352, 5147–5155. [Google Scholar] [CrossRef]
- Wang, Y.; Agapov, A.L.; Fan, F.; Hong, K.; Yu, X.; Mays, J.; Sokolov, A.P. Decoupling of Ionic Transport from Segmental Relaxation in Polymer Electrolytes. Phys. Rev. Lett. 2012, 108, 088303. [Google Scholar] [CrossRef] [PubMed]
- Croce, F.; Appetecchi, G.B.; Persi, L.; Scrosati, B. Nanocomposite polymer electrolytes for lithium batteries. Nature 1998, 394, 456–458. [Google Scholar] [CrossRef]
- Hovington, P.; Lagacé, M.; Guerfi, A.; Bouchard, P.; Mauger, A.; Julien, C.M.; Armand, M.; Zaghib, K. New Lithium Metal Polymer Solid State Battery for an Ultrahigh Energy: Nano C-LiFePO4 versus Nano Li1.2V3O8. Nano Lett. 2015, 15, 2671–2678. [Google Scholar] [CrossRef] [PubMed]
- Lago, N.; Garcia-Calvo, O.; Lopez del Amo, J.M.; Rojo, T.; Armand, M. All-Solid-State Lithium-Ion Batteries with Grafted Ceramic Nanoparticles Dispersed in Solid Polymer Electrolytes. ChemSusChem 2015, 8, 3039–3043. [Google Scholar] [CrossRef] [PubMed]
- Bouchet, R.; Maria, S.; Meziane, R.; Aboulaich, A.; Lienafa, L.; Bonnet, J.-P.; Phan, T.N.T.; Bertin, D.; Gigmes, D.; Devaux, D.; et al. Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries. Nat. Mater. 2013, 12, 452–457. [Google Scholar] [CrossRef] [PubMed]
- Javier, A.E.; Patel, S.N.; Hallinan, D.T.; Srinivasan, V.; Balsara, N.P. Simultaneous Electronic and Ionic Conduction in a Block Copolymer: Application in Lithium Battery Electrodes. Angew. Chem. Int. Ed. 2011, 50, 9848–9851. [Google Scholar] [CrossRef] [PubMed]
- Sakuda, J.; Hosono, E.; Yoshio, M.; Ichikawa, T.; Matsumoto, T.; Ohno, H.; Zhou, H.; Kato, T. Liquid Crystals: Liquid-Crystalline Electrolytes for Lithium-Ion Batteries: Ordered Assemblies of a Mesogen-Containing Carbonate and a Lithium Salt (Adv. Funct. Mater. 8/2015). Adv. Funct. Mater. 2015, 25, 1205. [Google Scholar] [CrossRef]
- Kobayashi, Y.; Seki, S.; Mita, Y.; Ohno, Y.; Miyashiro, H.; Charest, P.; Guerfi, A.; Zaghib, K. High reversible capacities of graphite and SiO/graphite with solvent-free solid polymer electrolyte for lithium-ion batteries. J. Power Sources 2008, 185, 542–548. [Google Scholar] [CrossRef]
- Seki, S.; Kobayashi, Y.; Miyashiro, H.; Mita, Y.; Iwahori, T. Fabrication of High-Voltage, High-Capacity All-Solid-State Lithium Polymer Secondary Batteries by Application of the Polymer Electrolyte/Inorganic Electrolyte Composite Concept. Chem. Mater. 2005, 17, 2041–2045. [Google Scholar] [CrossRef]
- He, R.; Echeverri, M.; Ward, D.; Zhu, Y.; Kyu, T. Highly conductive solvent-free polymer electrolyte membrane for lithium-ion batteries: Effect of prepolymer molecular weight. J. Membr. Sci. 2016, 498, 208–217. [Google Scholar] [CrossRef]
- Porcarelli, L.; Gerbaldi, C.; Bella, F.; Nair, J.R. Super Soft All-Ethylene Oxide Polymer Electrolyte for Safe All-Solid Lithium Batteries. Sci. Rep. 2016, 6, 19892. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Porcarelli, L.; Aboudzadeh, M.A.; Rubatat, L.; Nair, J.R.; Shaplov, A.S.; Gerbaldi, C.; Mecerreyes, D. Single-ion triblock copolymer electrolytes based on poly(ethylene oxide) and methacrylic sulfonamide blocks for lithium metal batteries. J. Power Sources 2017, 364, 191–199. [Google Scholar] [CrossRef]
- He, W.; Cui, Z.; Liu, X.; Cui, Y.; Chai, J.; Zhou, X.; Liu, Z.; Cui, G. Carbonate-linked poly(ethylene oxide) polymer electrolytes towards high performance solid state lithium batteries. Electrochim. Acta 2017, 225, 151–159. [Google Scholar] [CrossRef] [Green Version]
- Wong, S.; Vaia, R.A.; Giannelis, E.P.; Zax, D.B. Dynamics in a poly(ethylene oxide)-based nanocomposite polymer electrolyte probed by solid state NMR. Solid State Ionics 1996, 86–88, 547–557. [Google Scholar] [CrossRef]
- Bloembergen, N.; Purcell, E.M.; Pound, R.V. Relaxation Effects in Nuclear Magnetic Resonance Absorption; World Scientific Publishing Co. Pte. Ltd.: Singapore, 1990; pp. 411–444. [Google Scholar]
- Stejskal, E.O.; Tanner, J.E. Spin Diffusion Measurements: Spin Echoes in the Presence of a Time-Dependent Field Gradient. J. Chem. Phys. 1965, 42, 288–292. [Google Scholar] [CrossRef]
- Böhmer, R.; Jeffrey, K.R.; Vogel, M. Solid-state Li NMR with applications to the translational dynamics in ion conductors. Prog. Nucl. Magn. Reson. Spectrosc. 2007, 50, 87–174. [Google Scholar] [CrossRef]
- Dai, Y.; Wang, Y.; Greenbaum, S.G.; Bajue, S.A.; Golodnitsky, D.; Ardel, G.; Strauss, E.; Peled, E. Electrical, thermal and NMR investigation of composite solid electrolytes based on PEO, LiI and high surface area inorganic oxides. Electrochim. Acta 1998, 43, 1557–1561. [Google Scholar] [CrossRef]
- Croce, F.; Bonino, F.; Panero, S.; Scrosati, B. Properties of mixed polymer and crystalline ionic conductors. Philos. Mag. B 1989, 59, 161–168. [Google Scholar] [CrossRef]
- Capuano, F.; Croce, F.; Scrosati, B. Composite Polymer Electrolytes. J. Electrochem. Soc. 1991, 138, 1918–1922. [Google Scholar] [CrossRef]
- Wieczorek, W.; Florjanczyk, Z.; Stevens, J.R. Composite polyether based solid electrolytes. Electrochim. Acta 1995, 40, 2251–2258. [Google Scholar] [CrossRef]
- Przyluski, J.; Siekierski, M.; Wieczorek, W. Effective medium theory in studies of conductivity of composite polymeric electrolytes. Electrochim. Acta 1995, 40, 2101–2108. [Google Scholar] [CrossRef]
- Golodnitsky, D.; Strauss, E.; Peled, E.; Greenbaum, S. Review—On Order and Disorder in Polymer Electrolytes. J. Electrochem. Soc. 2015, 162, A2551–A2566. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Liu, N.; Sun, J.; Hsu, P.-C.; Li, Y.; Lee, H.-W.; Cui, Y. Ionic Conductivity Enhancement of Polymer Electrolytes with Ceramic Nanowire Fillers. Nano Lett. 2015, 15, 2740–2745. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Lee, S.W.; Lin, D.; Shi, F.; Wang, S.; Sendek, A.D.; Cui, Y. Enhancing ionic conductivity in composite polymer electrolytes with well-aligned ceramic nanowires. Nat. Energy 2017, 2, 17035. [Google Scholar] [CrossRef]
- Weston, J.E.; Steele, B.C.H. Effects of inert fillers on the mechanical and electrochemical properties of lithium salt-poly(ethylene oxide) polymer electrolytes. Solid State Ionics 1982, 7, 75–79. [Google Scholar] [CrossRef]
- Chen, L.; Li, Y.; Li, S.-P.; Fan, L.-Z.; Nan, C.-W.; Goodenough, J.B. PEO/garnet composite electrolytes for solid-state lithium batteries: From “ceramic-in-polymer” to “polymer-in-ceramic”. Nano Energy 2018, 46, 176–184. [Google Scholar] [CrossRef]
- Aetukuri, N.B.; Kitajima, S.; Jung, E.; Thompson, L.E.; Virwani, K.; Reich, M.-L.; Kunze, M.; Schneider, M.; Schmidbauer, W.; Wilcke, W.W.; et al. Flexible Ion-Conducting Composite Membranes for Lithium Batteries. Adv. Energy Mater. 2015, 5, 1500265. [Google Scholar] [CrossRef]
- Zhao, Y.; Wu, C.; Peng, G.; Chen, X.; Yao, X.; Bai, Y.; Wu, F.; Chen, S.; Xu, X. A new solid polymer electrolyte incorporating Li10GeP2S12 into a polyethylene oxide matrix for all-solid-state lithium batteries. J. Power Sources 2016, 301, 47–53. [Google Scholar] [CrossRef]
- Tu, Z.; Kambe, Y.; Lu, Y.; Archer, L.A. Nanoporous Polymer-Ceramic Composite Electrolytes for Lithium Metal Batteries. Adv. Energy Mater. 2013. [Google Scholar] [CrossRef]
- Zheng, J.; Hu, Y.-Y. New Insights into the Compositional Dependence of Li-Ion Transport in Polymer–Ceramic Composite Electrolytes. ACS Appl. Mater. Interfaces 2018, 10, 4113–4120. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Tang, M.; Hu, Y.-Y. Lithium Ion Pathway within Li7La3Zr2O12-Polyethylene Oxide Composite Electrolytes. Angew. Chem. Int. Ed. 2016, 55, 12538–12542. [Google Scholar] [CrossRef] [PubMed]
- Villaluenga, I.; Bogle, X.; Greenbaum, S.; Gil de Muro, I.; Rojo, T.; Armand, M. Cation only conduction in new polymer–SiO2 nanohybrids: Na+ electrolytes. J. Mater. Chem. A 2013, 1, 8348–8352. [Google Scholar] [CrossRef]
- Croce, F.; Sacchetti, S.; Scrosati, B. Advanced, lithium batteries based on high-performance composite polymer electrolytes. J. Power Sources 2006, 162, 685–689. [Google Scholar] [CrossRef]
- Zhang, Y.; Lim, C.A.; Cai, W.; Rohan, R.; Xu, G.; Sun, Y.; Cheng, H. Design and synthesis of a single ion conducting block copolymer electrolyte with multifunctionality for lithium ion batteries. RSC Adv. 2014, 4, 43857–43864. [Google Scholar] [CrossRef]
- Chen, B.; Xu, Q.; Huang, Z.; Zhao, Y.; Chen, S.; Xu, X. One-pot preparation of new copolymer electrolytes with tunable network structure for all-solid-state lithium battery. J. Power Sources 2016, 331, 322–331. [Google Scholar] [CrossRef]
- Boden, N.; Leng, S.A.; Ward, I.M. Ionic conductivity and diffusivity in polyethylene oxode/electrolyte solutions as models for polymer electrolytes. Solid State Ionics 1991, 45, 261–270. [Google Scholar] [CrossRef]
- Yuan, R.; Teran, A.A.; Gurevitch, I.; Mullin, S.A.; Wanakule, N.S.; Balsara, N.P. Ionic Conductivity of Low Molecular Weight Block Copolymer Electrolytes. Macromolecules 2013, 46, 914–921. [Google Scholar] [CrossRef]
- Niitani, T.; Amaike, M.; Nakano, H.; Dokko, K.; Kanamura, K. Star-Shaped Polymer Electrolyte with Microphase Separation Structure for All-Solid-State Lithium Batteries. J. Electrochem. Soc. 2009, 156, A577–A583. [Google Scholar] [CrossRef]
- Alloin, F.; Sanchez, J.Y.; Armand, M. Triblock copolymers and networks incorporating oligo (oxyethylene) chains. Solid State Ionics 1993, 60, 3–9. [Google Scholar] [CrossRef]
- Daigle, J.-C.; Arnold, A.; Vijh, A.; Zaghib, K. Solid-State NMR Study of New Copolymers as Solid Polymer Electrolytes. Magnetochemistry 2018, 4, 13. [Google Scholar] [CrossRef]
- Lin, C.-L.; Kao, H.-M.; Wu, R.-R.; Kuo, P.-L. Multinuclear Solid-State NMR, DSC, and Conductivity Studies of Solid Polymer Electrolytes Based on Polyurethane/Poly(dimethylsiloxane) Segmented Copolymers. Macromolecules 2002, 35, 3083–3096. [Google Scholar] [CrossRef]
- Meabe, L.; Huynh, T.V.; Lago, N.; Sardon, H.; Li, C.; O’Dell, L.A.; Armand, M.; Forsyth, M.; Mecerreyes, D. Poly(ethylene oxide carbonates) solid polymer electrolytes for lithium batteries. Electrochim. Acta 2018, 264, 367–375. [Google Scholar] [CrossRef]
- Morioka, T.; Nakano, K.; Tominaga, Y. Ion-Conductive Properties of a Polymer Electrolyte Based on Ethylene Carbonate/Ethylene Oxide Random Copolymer. Macromol. Rapid Commun. 2017, 38, 1600652. [Google Scholar] [CrossRef] [PubMed]
- Mindemark, J.; Sun, B.; Törmä, E.; Brandell, D. High-performance solid polymer electrolytes for lithium batteries operational at ambient temperature. J. Power Sources 2015, 298, 166–170. [Google Scholar] [CrossRef]
- Timachova, K.; Villaluenga, I.; Cirrincione, L.; Gobet, M.; Bhattacharya, R.; Jiang, X.; Newman, J.; Madsen, L.A.; Greenbaum, S.G.; Balsara, N.P. Anisotropic Ion Diffusion and Electrochemically Driven Transport in Nanostructured Block Copolymer Electrolytes. J. Phys. Chem. B 2018, 122, 1537–1544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vashishta, P.; Mundy, J.N. Fast Ion Transport in Solids: Electrodes and Electrolytes; Elsevier North Holland, Inc.: Amsterdam, NY, USA, 1979. [Google Scholar]
- Papke, B.L.; Dupon, R.; Ratner, M.A.; Shriver, D.F. Ion-pairing in polyether solid electrolytes and its influence on ion transport. Solid State Ionics 1981, 5, 685–688. [Google Scholar] [CrossRef] [Green Version]
- Chintapalli, M.; Le, T.N.P.; Venkatesan, N.R.; Mackay, N.G.; Rojas, A.A.; Thelen, J.L.; Chen, X.C.; Devaux, D.; Balsara, N.P. Structure and Ionic Conductivity of Polystyrene-block-poly(ethylene oxide) Electrolytes in the High Salt Concentration Limit. Macromolecules 2016, 49, 1770–1780. [Google Scholar] [CrossRef]
- Singh, M.; Odusanya, O.; Wilmes, G.M.; Eitouni, H.B.; Gomez, E.D.; Patel, A.J.; Chen, V.L.; Park, M.J.; Fragouli, P.; Iatrou, H.; et al. Effect of Molecular Weight on the Mechanical and Electrical Properties of Block Copolymer Electrolytes. Macromolecules 2007, 40, 4578–4585. [Google Scholar] [CrossRef]
- Liu, T.-M.; Saikia, D.; Ho, S.-Y.; Chen, M.-C.; Kao, H.-M. High ion-conducting solid polymer electrolytes based on blending hybrids derived from monoamine and diamine polyethers for lithium solid-state batteries. RSC Adv. 2017, 7, 20373–20383. [Google Scholar] [CrossRef] [Green Version]
- Nunes-Pereira, J.; Costa, C.M.; Lanceros-Méndez, S. Polymer composites and blends for battery separators: State of the art, challenges and future trends. J. Power Sources 2015, 281, 378–398. [Google Scholar] [CrossRef]
- Nguyen, C.A.; Xiong, S.; Ma, J.; Lu, X.; Lee, P.S. High ionic conductivity P(VDF-TrFE)/PEO blended polymer electrolytes for solid electrochromic devices. Phys. Chem. Chem. Phys. 2011, 13, 13319–13326. [Google Scholar] [CrossRef] [PubMed]
- Noor, S.A.M.; Ahmad, A.; Talib, I.A.; Rahman, M.Y.A. Morphology, chemical interaction, and conductivity of a PEO-ENR50 based on solid polymer electrolyte. Ionics 2010, 16, 161–170. [Google Scholar] [CrossRef]
- Borodin, O.; Suo, L.; Gobet, M.; Ren, X.; Wang, F.; Faraone, A.; Peng, J.; Olguin, M.; Schroeder, M.; Ding, M.S.; et al. Liquid Structure with Nano-Heterogeneity Promotes Cationic Transport in Concentrated Electrolytes. ACS Nano 2017, 11, 10462–10471. [Google Scholar] [CrossRef] [PubMed]
- de Souza, P.H.; Bianchi, R.F.; Dahmouche, K.; Judeinstein, P.; Faria, R.M.; Bonagamba, T.J. Solid-State NMR, Ionic Conductivity, and Thermal Studies of Lithium-doped Siloxane−Poly(propylene glycol) Organic−Inorganic Nanocomposites. Chem. Mater. 2001, 13, 3685–3692. [Google Scholar] [CrossRef]
- Gadjourova, Z.; Andreev, Y.G.; Tunstall, D.P.; Bruce, P.G. Ionic conductivity in crystalline polymer electrolytes. Nature 2001, 412, 520–523. [Google Scholar] [CrossRef] [PubMed]
- Christie, A.M.; Lilley, S.J.; Staunton, E.; Andreev, Y.G.; Bruce, P.G. Increasing the conductivity of crystalline polymer electrolytes. Nature 2005, 433, 50–53. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Staunton, E.; Andreev, Y.G.; Bruce, P.G. Raising the Conductivity of Crystalline Polymer Electrolytes by Aliovalent Doping. J. Am. Chem. Soc. 2005, 127, 18305–18308. [Google Scholar] [CrossRef] [PubMed]
- Staunton, E.; Andreev, Y.G.; Bruce, P.G. Factors influencing the conductivity of crystalline polymer electrolytes. Faraday Discuss. 2007, 134, 143–156. [Google Scholar] [CrossRef] [PubMed]
- Golodnitsky, D.; Livshits, E.; Peled, E. Highly conductive oriented PEO-based polymer electrolytes. Macromol. Symp. 2003, 203, 27–46. [Google Scholar] [CrossRef]
- Golodnitsky, D.; Livshits, E.; Ulus, A.; Barkay, Z.; Lapides, I.; Peled, E.; Chung, S.H.; Greenbaum, S. Fast Ion Transport Phenomena in Oriented Semicrystalline LiI−P(EO)n-Based Polymer Electrolytes. J. Phys. Chem. A 2001, 105, 10098–10106. [Google Scholar] [CrossRef]
- Yan, X.; Peng, B.; Hu, B.; Chen, Q. PEO-urea-LiTFSI ternary complex as solid polymer electrolytes. Polymer 2016, 99, 44–48. [Google Scholar] [CrossRef]
- Liu, Y.; Antaya, H.; Pellerin, C. Characterization of the stable and metastable poly(ethylene oxide)–urea complexes in electrospun fibers. J. Polym. Sci. Part B Polym. Phys. 2008, 46, 1903–1913. [Google Scholar] [CrossRef]
- Chenite, A.; Brisse, F. Structure and conformation of poly(ethylene oxide), PEO, in the trigonal form of the PEO-urea complex at 173 K. Macromolecules 1991, 24, 2221–2225. [Google Scholar] [CrossRef]
- Liu, Y.; Pellerin, C. Highly Oriented Electrospun Fibers of Self-Assembled Inclusion Complexes of Poly(ethylene oxide) and Urea. Macromolecules 2006, 39, 8886–8888. [Google Scholar] [CrossRef]
- Liang, H.; Li, H.; Wang, Z.; Wu, F.; Chen, L.; Huang, X. New Binary Room-Temperature Molten Salt Electrolyte Based on Urea and LiTFSI. J. Phys. Chem. B 2001, 105, 9966–9969. [Google Scholar] [CrossRef]
- Fu, X.-B.; Yang, G.; Wu, J.-Z.; Wang, J.-C.; Chen, Q.; Yao, Y.-F. Fast Lithium-Ion Transportation in Crystalline Polymer Electrolytes. ChemPhysChem 2018, 19, 45–50. [Google Scholar] [CrossRef] [PubMed]
- Tong, Y.; Chen, L.; He, X.; Chen, Y. Sequential effect and enhanced conductivity of star-shaped diblock liquid-crystalline copolymers for solid electrolytes. J. Power Sources 2014, 247, 786–793. [Google Scholar] [CrossRef]
- MacFarlane, D.R.; Forsyth, M.; Howlett, P.C.; Pringle, J.M.; Sun, J.; Annat, G.; Neil, W.; Izgorodina, E.I. Ionic Liquids in Electrochemical Devices and Processes: Managing Interfacial Electrochemistry. Acc. Chem. Res. 2007, 40, 1165–1173. [Google Scholar] [CrossRef] [PubMed]
- MacFarlane, D.R.; Huang, J.; Forsyth, M. Lithium-doped plastic crystal electrolytes exhibiting fast ion conduction for secondary batteries. Nature 1999, 402, 792–794. [Google Scholar] [CrossRef]
- Chen, F.; Pringle, J.M.; Forsyth, M. Insights into the Transport of Alkali Metal Ions Doped into a Plastic Crystal Electrolyte. Chem. Mater. 2015, 27, 2666–2672. [Google Scholar] [CrossRef]
- Wanakule, N.S.; Panday, A.; Mullin, S.A.; Gann, E.; Hexemer, A.; Balsara, N.P. Ionic Conductivity of Block Copolymer Electrolytes in the Vicinity of Order−Disorder and Order−Order Transitions. Macromolecules 2009, 42, 5642–5651. [Google Scholar] [CrossRef]
- Choi, I.; Ahn, H.; Park, M.J. Enhanced Performance in Lithium–Polymer Batteries Using Surface-Functionalized Si Nanoparticle Anodes and Self-Assembled Block Copolymer Electrolytes. Macromolecules 2011, 44, 7327–7334. [Google Scholar] [CrossRef]
- Sun, J.; Liao, X.; Minor, A.M.; Balsara, N.P.; Zuckermann, R.N. Morphology-Conductivity Relationship in Crystalline and Amorphous Sequence-Defined Peptoid Block Copolymer Electrolytes. J. Am. Chem. Soc. 2014, 136, 14990–14997. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tong, Y.; Chen, L.; He, X.; Chen, Y. Free Mesogen Assisted Assembly of the Star-shaped Liquid-crystalline Copolymer/Polyethylene Oxide Solid Electrolytes for Lithium Ion Batteries. Electrochim. Acta 2014, 118, 33–40. [Google Scholar] [CrossRef]
- Lin, D.; Liu, W.; Liu, Y.; Lee, H.R.; Hsu, P.-C.; Liu, K.; Cui, Y. High Ionic Conductivity of Composite Solid Polymer Electrolyte via In Situ Synthesis of Monodispersed SiO2 Nanospheres in Poly(ethylene oxide). Nano Lett. 2016, 16, 459–465. [Google Scholar] [CrossRef] [PubMed]
- MacGlashan, G.S.; Andreev, Y.G.; Bruce, P.G. Structure of the polymer electrolyte poly(ethylene oxide)6:LiAsF6. Nature 1999, 398, 792–794. [Google Scholar] [CrossRef]
- Yang, L.-Y.; Wei, D.-X.; Xu, M.; Yao, Y.-F.; Chen, Q. Transferring Lithium Ions in Nanochannels: A PEO/Li+ Solid Polymer Electrolyte Design. Angew. Chem. 2014, 126, 3705–3709. [Google Scholar] [CrossRef]
- Fu, X.-B.; Yang, L.-Y.; Ma, J.-Q.; Yang, G.; Yao, Y.-F.; Chen, Q. Revealing structure and dynamics in host–guest supramolecular crystalline polymer electrolytes by solid-state NMR: Applications to β-CD-polyether/Li+ crystal. Polymer 2016, 105, 310–317. [Google Scholar] [CrossRef]
- Okumura, H.; Kawaguchi, Y.; Harada, A. Preparation and Characterization of Inclusion Complexes of Poly(dimethylsiloxane)s with Cyclodextrins. Macromolecules 2001, 34, 6338–6343. [Google Scholar] [CrossRef]
- Li, J.; Ni, X.; Zhou, Z.; Leong, K.W. Preparation and Characterization of Polypseudorotaxanes Based on Block-Selected Inclusion Complexation between Poly(propylene oxide)-Poly(ethylene oxide)-Poly(propylene oxide) Triblock Copolymers and α-Cyclodextrin. J. Am. Chem. Soc. 2003, 125, 1788–1795. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Zhu, X.; Yan, D.; Chen, Y.; Chen, Q.; Yao, Y. Controlling Polymer Architecture through Host–Guest Interactions. Angew. Chem. Int. Ed. 2006, 45, 87–90. [Google Scholar] [CrossRef] [PubMed]
- Murugan, R.; Thangadurai, V.; Weppner, W. Fast Lithium Ion Conduction in Garnet-Type Li7La3Zr2O12. Angew. Chem. Int. Ed. 2007, 46, 7778–7781. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Gamble, S.; Ainsworth, D.; Slawin, A.M.Z.; Andreev, Y.G.; Bruce, P.G. Alkali metal crystalline polymer electrolytes. Nat. Mater. 2009, 8, 580–584. [Google Scholar] [CrossRef] [PubMed]
- Pope, C.R.; Romanenko, K.; MacFarlane, D.R.; Forsyth, M.; O’Dell, L.A. Sodium ion dynamics in a sulfonate based ionomer system studied by 23Na solid-state nuclear magnetic resonance and impedance spectroscopy. Electrochim. Acta 2015, 175, 62–67. [Google Scholar] [CrossRef]
- Tiyapiboonchaiya, C.; Pringle, J.M.; MacFarlane, D.R.; Forsyth, M.; Sun, J. Polyelectrolyte-in-Ionic-Liquid Electrolytes. Macromol. Chem. Phys. 2003, 204, 2147–2154. [Google Scholar] [CrossRef]
- Ünal, H.I.; Yilmaz, H. Electrorheological properties of poly(lithium-2-acrylamido-2-methyl propane sulfonic acid) suspensions. J. Appl. Polym. Sci. 2002, 86, 1106–1112. [Google Scholar] [CrossRef]
- Noor, S.A.M.; Sun, J.; MacFarlane, D.R.; Armand, M.; Gunzelmann, D.; Forsyth, M. Decoupled ion conduction in poly(2-acrylamido-2-methyl-1-propane-sulfonic acid) homopolymers. J. Mater. Chem. A 2014, 2, 17934–17943. [Google Scholar] [CrossRef]
- Wang, W.; Tudryn, G.J.; Colby, R.H.; Winey, K.I. Thermally Driven Ionic Aggregation in Poly(ethylene oxide)-Based Sulfonate Ionomers. J. Am. Chem. Soc. 2011, 133, 10826–10831. [Google Scholar] [CrossRef] [PubMed]
- Tudryn, G.J.; Liu, W.; Wang, S.-W.; Colby, R.H. Counterion Dynamics in Polyester−Sulfonate Ionomers with Ionic Liquid Counterions. Macromolecules 2011, 44, 3572–3582. [Google Scholar] [CrossRef]
- Mandai, T.; Nozawa, R.; Tsuzuki, S.; Yoshida, K.; Ueno, K.; Dokko, K.; Watanabe, M. Phase Diagrams and Solvate Structures of Binary Mixtures of Glymes and Na Salts. J. Phys. Chem. B 2013, 117, 15072–15085. [Google Scholar] [CrossRef] [PubMed]
- Freitag, K.M.; Walke, P.; Nilges, T.; Kirchhain, H.; Spranger, R.J.; van Wüllen, L. Electrospun-sodiumtetrafluoroborate-polyethylene oxide membranes for solvent-free sodium ion transport in solid state sodium ion batteries. J. Power Sources 2018, 378, 610–617. [Google Scholar] [CrossRef]
- Freitag, K.M.; Kirchhain, H.; Wüllen, L.V.; Nilges, T. Enhancement of Li Ion Conductivity by Electrospun Polymer Fibers and Direct Fabrication of Solvent-Free Separator Membranes for Li Ion Batteries. Inorg. Chem. 2017, 56, 2100–2107. [Google Scholar] [CrossRef] [PubMed]
Dry Polymer Electrolyte Type | Room Temperature Conductivity Scm−1 | Cathode Type Used | Cathode Loading Used (wt. % Active) | Areal Cathode Capacity | Test Fixture Format | Testing Temperature Used | # of Full/Deep Cycles Demonstrated |
---|---|---|---|---|---|---|---|
PEO/nanocomposite [21] | ~10−5 or lower | LiFePO4 (<3.5 V) | 60% | ~1 mAh/cm2 | Coin cell | 100 °C | 100 |
Polyether/LiFTSI [22] | ~8 × 10−5 | LiFePO4 (<3.5 V) | 54% | Undisclosed | Coin cell | 80 °C | 1300 |
PEO/nano particle composite [23] | ~5 × 10−5 | LiFePO4 (<3.5 V) | 63% | Undisclosed | Coin cell | 70 °C | 130 |
Single-ion BAB triblock copolymer [24] | Lower than 10−6 | LiFePO4 (<3.5 V) | 60% | 8 mAh/cm2 | Coin cell | 80 °C | ~100 |
Block Co-polymer (P3HT-PEO) [25] | ~10−5 or lower | LiFePO4 (<3.5 V) | 50% | Undisclosed | Coin cell | 90 °C | 10’s |
Ordered Liquid Crystalline (meogen/Li salt) [26] | ~10−6 Scm−1 | LiFePO4 (<3.5 V) | 65% | Undisclosed | Coin cell | 60 °C | 30 |
PEO/MEEGE [27] | ~ lower than 10−5 | LiFePO4 (<3.5 V) | 83% | Undisclosed | Pouch Cell | 60 °C | 250 |
P(EO/MEEGE/AGE) [28] | lower than 10−5 | Nano-coated LiCoO2 | 82% | ~1 mAh/cm2 | Coin cell | 60 °C | 25 (not fully stable at cathode potentials) |
PEM [29] | <10−3 | LiFePO4 | 80% | 0.8–1.5 mg/cm2 | Coin cell | ambient | 50 cycles (80% capacity after) |
Interlinked solid polymer electrolyte [30] | ~10−4 | LiFePO4 (2.5–4 V) | Undisclosed | ~0.1 mAh/cm2 | Coin cell | 20 °C | 50 |
Single ion triblock copolymer [31] | <10−7 | LiFePO4 | 60% | Undisclosed | Undisclosed | 70 °C | 300 (77% capacity retention) |
Carbonate-linked PEO electrolyte [32] | <10−5 | LiFePO4 | 80% | 1.3–1.8 mAh/cm2 | Coin | 25 °C | 20 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Munoz, S.; Greenbaum, S. Review of Recent Nuclear Magnetic Resonance Studies of Ion Transport in Polymer Electrolytes. Membranes 2018, 8, 120. https://doi.org/10.3390/membranes8040120
Munoz S, Greenbaum S. Review of Recent Nuclear Magnetic Resonance Studies of Ion Transport in Polymer Electrolytes. Membranes. 2018; 8(4):120. https://doi.org/10.3390/membranes8040120
Chicago/Turabian StyleMunoz, Stephen, and Steven Greenbaum. 2018. "Review of Recent Nuclear Magnetic Resonance Studies of Ion Transport in Polymer Electrolytes" Membranes 8, no. 4: 120. https://doi.org/10.3390/membranes8040120
APA StyleMunoz, S., & Greenbaum, S. (2018). Review of Recent Nuclear Magnetic Resonance Studies of Ion Transport in Polymer Electrolytes. Membranes, 8(4), 120. https://doi.org/10.3390/membranes8040120