Immunophenotype Rearrangement in Response to Tumor Excision May Be Related to the Risk of Biochemical Recurrence in Prostate Cancer Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients and Surgical Procedure
2.2. Flow Cytometry and PSA Analysis
2.3. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rawla, P. Epidemiology of prostate cancer. World J. Oncol. 2019, 1, 63–89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sauer, S.; Reed, D.R.; Ihnat, M.; Hurst, R.E.; Warshawsky, D.; Barkan, D. Innovative ap-proaches in the battle against cancer recurrence: Novel strategies to combat dormant dis-seminated tumor cells. Front. Oncol. 2021, 11, 659963. [Google Scholar] [CrossRef] [PubMed]
- Ginzburg, S.; Nevers, T.; Staff, I.; Tortora, J.; Champagne, A.; Kesler, S.S.; Laudone, V.P.; Wagner, J.R. Prostate cancer biochemical recurrence rates after robotic-assisted laparo-scopic radical prostatectomy. JSLS 2012, 16, 443–450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grossfeld, G.D.; Latini, D.M.; Lubeck, D.P.; Mehta, S.S.; Carroll, P.R. Predicting recurrence after radical prostatectomy for patients with high-risk prostate cancer. J. Urol. 2003, 169, 157–163. [Google Scholar] [CrossRef]
- Kurbegovic, S.; Berg, K.D.; Thomsen, F.B.; Gruschy, L.; Iversen, P.; Brasso, K.; Røder, M.A. The risk of biochemical recurrence for intermediate-risk prostate cancer after radical pros-tatectomy. Scand. J. Urol. 2017, 51, 450–456. [Google Scholar] [CrossRef]
- Ingram, I. Surgery Rates Doubled for High-Risk Prostate Cancer. Use of Prostatectomy Nearly Equaled Radiotherapy in 2016. MedPage Today. 31 August 2020. Available online: https://www.medpagetoday.com/hematologyoncology/prostatecancer/88368 (accessed on 1 August 2021).
- Tohme, S.; Simmons, R.L.; Tsung, A. Surgery for cancer: A trigger for metastases. Cancer Res. 2017, 77, 1548–1552. [Google Scholar] [CrossRef] [Green Version]
- Janssen, L.M.; Ramsay, E.E.; Logsdon, C.D.; Overwijk, W.W. The immune system in cancer metastasis: Friend or foe? J. Immunother. Cancer 2017, 79, 1–14. [Google Scholar] [CrossRef]
- Morgan, T.M.; Lange, P.H.; Porter, M.P.; Lin, D.W.; Ellis, W.J.; Gallaher, I.S.; Vessella, R.L. Disseminated tumor cells in prostate cancer patients after radical prostatectomy and without evidence of disease predicts biochemical recurrence. Clin. Cancer Res. 2009, 15, 677–683. [Google Scholar] [CrossRef] [Green Version]
- Whelan, R.L.; Franklin, M.; Holubar, S.D.; Donahue, J.; Fowler, R.; Munger, C.; Doorman, J.; Balli, J.E.; Glass, J.; Gonzalez, J.J.; et al. Postoperative cell mediated immune response is better preserved after laparoscopic vs open colorectal resection in humans. Surg. Endosc. 2003, 17, 972–978. [Google Scholar] [CrossRef]
- Tang, C.L.; Eu, K.W.; Tai, B.C.; Soh, J.G.; MacHin, D.; Seow-Choen, F. Randomized clinical trial of the effect of open versus laparoscopically assisted colectomy on systemic immuni-ty in patients with colorectal cancer. Br. J. Surg. 2001, 88, 801–807. [Google Scholar] [CrossRef]
- Raytis, J.L.; Lew, M.W. Surgical Stress Response and Cancer Metastasis: The Potential Benefit of Perioperative Beta Blockade. In Madame Curie Bioscience Database [Internet]; Landes Bioscience: Austin, TX, USA, 2000–2013. Available online: https://www.ncbi.nlm.nih.gov/books/NBK169223/ (accessed on 1 August 2021).
- Coughlin, G.D.; Yaxley, J.W.; Chambers, S.K.; Occhipinti, S.; Samaratunga, H.; Zajdlewicz, L.; Teloken, P.; Dunglison, N.; Williams, S.; Lavin, M.F.; et al. Robot-assisted laparoscopic prostatectomy versus open radical retropubic prostatectomy: 24-month outcomes from a randomised controlled study. Lancet Oncol. 2018, 19, 1051–1060. [Google Scholar] [CrossRef]
- Chi, N.; Tan, Z.; Ma, K.; Bao, L.; Yun, Z. Increased circulating myeloid-derived suppressor cells correlate with cancer stages, interleukin-8 and -6 in prostate cancer. Int. J. Clin. Exp. Med. 2014, 7, 3181–3192. [Google Scholar]
- Brusa, D.; Simone, M.; Gontero, P.; Spadi, R.; Racca, P.; Micari, J.; Degiuli, M.; Carletto, S.; Tizzani, A.; Matera, L. Circulating immunosuppressive cells of prostate cancer patients before and after radical prostatectomy: Profile comparison. Int. J. Urol. 2013, 20, 971–978. [Google Scholar] [CrossRef]
- Cole, K.; Pravoverov, K.; Talmadge, J.E. Role of myeloid-derived suppressor cells in metastasis. Cancer Metastasis Rev. 2021, 40, 391–411. [Google Scholar] [CrossRef] [PubMed]
- Shackleton, E.G.; Ali, H.Y.; Khan, M.; Pockley, G.A.; McArdle, S.E. Novel combinatorial approaches to tackle the immunosuppressive microenvironment of prostate cancer. Cancers 2021, 13, 1145. [Google Scholar] [CrossRef] [PubMed]
- Zaleskis, G.; Bosas, P.; Ulys, A.; Dabkevičiene, D.; Dobrovolskiene, N.; Hudson, B.A.; Pašukoniene, V. A refinement of clinical tumour marker monitoring—Why not use an inverse value of doubling time? Med. Princ. Pract. 2021, 30, 292–296. [Google Scholar] [CrossRef] [PubMed]
- Bou-Dargham, M.J.; Sha, L.; Sang, Q.X.A.; Zhang, J. Immune landscape of human prostate cancer: Immune evasion mechanisms and biomarkers for personalized immunotherapy. BMC Cancer 2020, 20, 572. [Google Scholar] [CrossRef]
- Gaudreau, P.O.; Stagg, J.; Soulières, D.; Saad, F. The present and future of biomarkers in prostate cancer: Proteomics, genomics, and immunology advancements. Biomark. Cancer 2016, 8, 15–33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, M.D.; van der Most, R.; Vivian, J.B.; Lake, R.A.; Larma, I.; Robinson, B.W.; Currie, A.J. Loss of antigen cross-presentation after complete tumor resection is associated with the generation of protective tumor-specific CD8(+) T-cell immunity. Oncoimmunology 2012, 1, 1084–1094. [Google Scholar] [CrossRef] [Green Version]
- Ananth, A.A.; Tai, L.H.; Lansdell, C.; Alkayyal, A.A.; Baxter, K.E.; Angka, L.; Zhang, J.; Tanese de Souza, C.; Stephenson, K.B.; Parato, K.; et al. Surgical stress abrogates pre-existing protective T cell mediated anti-tumor immunity leading to postoperative cancer recurrence. PLoS ONE 2016, 11, e0155947. [Google Scholar]
- Jiang, W.; Li, Y.; Sun, J.; Li, L.; Li, J.; Zhang, C.; Huang, C.; Yang, J.; Kong, G.; Li, Z. Spleen contributes to restraint stress induced changes in blood leukocytes distribution. Sci. Rep. 2017, 7, 6501. [Google Scholar] [CrossRef] [Green Version]
- Shindo, G.; Endo, T.; Onda, M.; Goto, S.; Miyamoto, Y.; Kaneko, T. Is the CD4/CD8 ratio an effective indicator for clinical estimation of adoptive immunotherapy for cancer treatment? J. Cancer Ther. 2013, 4, 1382–1390. [Google Scholar] [CrossRef] [Green Version]
- Vicier, C.; Ravi, P.; Kwak, L.; Werner, L.; Huang, Y.; Evan, C.; Loda, M.; Hamid, A.A.; Sweeney, C.J. Association between CD8 and PD-L1 expression and outcomes after radical prostatectomy for localized prostate cancer. Prostate 2021, 81, 50–57. [Google Scholar] [CrossRef]
- Petitprez, F.; Fossati, N.; Vano, Y.; Freschi, M.; Becht, E.; Lucianò, R.; Calderaro, J.; Guédet, T.; Lacroix, L.; Rancoita, P.M.V.; et al. PD-L1 expression and CD8+ T-cell infiltrate are associated with clinical progression in patients with node-positive prostate cancer. Eur. Urol. Focus. 2019, 5, 192–196. [Google Scholar] [CrossRef]
- Osborn, J.F.; Hobbs, S.J.; Mooster, J.L.; Khan, T.N.; Kilgore, A.M.; Harbour, J.C.; Nolz, J.C. Central memory CD8+ T cells become CD69+ tissue-residents during viral skin infection independent of CD62L-mediated lymph node surveillance. PLoS Pathog. 2019, 15, e1007633. [Google Scholar] [CrossRef] [PubMed]
- Lan, B.; Zhang, J.; Lu, D.; Li, W. Generation of cancer-specific CD8+ CD69+ cells inhibits colon cancer growth. Immunobiology 2016, 221, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Schowengerdt, K.O.; Fricker, F.J.; Bahjat, K.S.; Kuntz, S.T. Increased expression of the lymphocyte early activation marker CD69 in peripheral blood correlates with histologic evidence of cardiac allograft rejection. Transplantation 2000, 69, 2102–2107. [Google Scholar] [CrossRef]
- Yang, Z.R.; Zhao, N.; Meng, J.; Shi, Z.L.; Li, B.X.; Wu, X.W.; Li, P.; Zhang, Q.; Wei, X.B.; Fu, S. Peripheral lymphocyte subset variation predicts prostate cancer carbon ion radiotherapy outcomes. Oncotarget 2016, 7, 26422–26435. [Google Scholar] [CrossRef]
- Davidsson, S.; Andren, O.; Ohlson, A.L.; Carlsson, J.; Andersson, S.O.; Giunchi, F.; Rider, J.R.; Fiorentino, M. FOXP3+ regulatory T cells in normal prostate tissue, postatrophic hyperplasia, prostatic intraepithelial neoplasia, and tumor histological lesions in men with and without prostate cancer. Prostate 2018, 78, 40–47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kgatle, M.M.; Boshomane, T.M.G.; Lawal, I.O.; Mokoala, K.M.G.; Mokgoro, N.P.; Lourens, N.; Kairemo, K.; Zeevaart, J.R.; Vorster, M.; Sathekge, M.M. Immune checkpoints, inhibitors and radionuclides in prostate cancer: Promising combinatorial therapy approach. Int. J. Mol. Sci. 2021, 22, 4109. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.C.; Kuo, M.C.; Hong, J.H.; Jaw, F.S.; Huang, C.Y.; Cheng, J.C.; Kung, H.N. Lower postoperative natural killer cell activity is associated with positive surgical margins after radical prostatectomy. J. Formos. Med. Assoc. 2020, 119, 1673–1683. [Google Scholar] [CrossRef] [PubMed]
- Hansen, T.F.; Nederby, L.; Zedan, A.H.; Mejlholm, I.; Henriksen, J.R.; Steffensen, K.D.; Thomsen, C.B.; Raunkilde, L.; Jensen, L.H.; Jakobsen, A. Correlation between natural killer cell activity and treatment effect in patients with disseminated cancer. Transl. Oncol. 2019, 12, 968–972. [Google Scholar] [CrossRef]
- Koch, M.O. Robotic versus open prostatectomy: End of the controversy. J. Urol. 2016, 196, 9–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qin, Y.; Han, H.; Xue, Y.; Wu, C.; Wei, X.; Liu, Y.; Cao, Y.; Ruan, Y.; He, J. Comparison and trend of perioperative outcomes between robot-assisted radical prostatectomy and open radical prostatectomy: Nationwide inpatient sample 2009–2014. Int. Braz. J. Urol. 2020, 46, 754–771. [Google Scholar] [CrossRef]
- Du, Y.; Long, Q.; Guan, B.; Mu, L.; Tian, J.; Jiang, Y.; Bai, X.; Wu, D. Robot-assisted radical prostatectomy is more beneficial for prostate cancer patients: A system review and meta-analysis. Med. Sci. Monit. 2018, 24, 272–287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pearce, S.M.; Pariser, J.J.; Karrison, T.; Patel, S.G.; Eggener, S.E. Comparison of perioperative and early oncologic outcomes between open and robotic assisted laparoscopic prostatectomy in a contemporary population based cohort. J. Urol. 2016, 196, 76–81. [Google Scholar] [CrossRef]
- Schmid, M.; Gandaglia, G.; Trinh, Q.D. The controversy that will not go away. Eur. Urol. 2015, 67, 439–440. [Google Scholar] [CrossRef]
- Kauffman, E.C.; Lee, M.J.; Alarcon, S.V.; Lee, S.; Hoang, A.N.; Walton Diaz, A.; Chelluri, R.; Vourganti, S.; Trepel, J.B.; Pinto, P.A. Lack of impact of robotic assisted laparoscopic radical prostatectomy on intraoperative levels of prostate cancer circulating tumor cells. J. Urol. 2016, 195, 1136–1142. [Google Scholar] [CrossRef]
- Gupta, N.; Visagie, M.; Kajstura, T.J.; Han, M.; Trock, B.; Gehrie, E.A.; Frank, S.M.; Bivalacqua, T.J. Reducing preoperative blood orders and costs for radical prostatectomy. J. Comp. Eff. Res. 2020, 9, 219–226. [Google Scholar] [CrossRef]
- Li, S.L.; Ye, Y.; Yuan, X.H. Association between allogeneic or autologous blood transfusion and survival in patients after radical prostatectomy: A systematic review and meta-analysis. PLoS ONE 2017, 12, e0171081. [Google Scholar] [CrossRef]
- Galletti, G.; Portella, L.; Tagawa, S.T.; Kirby, B.J.; Giannakakou, P.; Nanus, D.M. Circulating tumor cells in prostate cancer diagnosis and monitoring: An appraisal of clinical potential. Mol. Diagn. Ther. 2014, 18, 389–402. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Su, X.; Yang, L.; Qiao, F.; Fang, Y.; Yu, L.; Yang, Q.; Wang, Y.; Yin, Y.; Chen, R.; et al. The influence of myeloid-derived suppressor cells on angiogenesis and tumor growth after cancer surgery. Int. J. Cancer 2016, 138, 2688–2699. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brune, I.B.; Wilke, W.; Hensler, T.; Holzmann, B.; Siewert, J.R. Downregulation of T helper type 1 immune response and altered pro-inflammatory and anti-inflammatory T cell cytokine balance following conventional but not laparoscopic surgery. Am. J. Surg. 1999, 17, 755–760. [Google Scholar]
- Allendorf, J.D.; Bessler, M.; Kayton, M.L.; Oesterling, S.D.; Treat, M.R.; Nowygrod, R.; Whelan, R.L. Increased tumor establishment and growth after laparotomy vs laparoscopy in a murine model. Arch. Surg. 1995, 130, 649–653. [Google Scholar] [CrossRef] [PubMed]
- Wildbrett, P.; Oh, A.; Carter, J.J.; Schuster, H.; Bessle, M.; Jaboci, C.A.; Whelan, R.L. Increased rates of pulmonary metastases following sham laparotomy compared to CO2 pneumoperitoneum and the inhibition of metastases utilizing perioperative immunomodulation and a tumor vaccine. Surg. Endosc. 2002, 16, 1162–1169. [Google Scholar] [CrossRef]
- Abdul Sater, H.; Marté, J.L.; Donahue, R.N.; Walter-Rodriguez, B.; Heery, C.R.; Steinberg, S.M.; Cordes, L.M.; Chun, G.; Karzai, F.; Bilusic, M.; et al. Neoadjuvant PROSTVAC prior to radical prostatectomy enhances T-cell infiltration into the tumor immune microenvironment in men with prostate cancer. J. Immunother. Cancer 2020, 8, e000655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ben-Eliyahu, S. Tumor excision as a metastatic Russian roulette: Perioperative interventions to improve long-term survival of cancer atients. Trends Cancer 2020, 6, 951–959. [Google Scholar] [CrossRef]
- Alicke, B.; Totpal, K.; Schartner, J.M.; Berkley, A.M.; Lehar, S.M.; Capietto, A.H.; Cubas, R.A.; Gould, S.E. Immunization associated with primary tumor growth leads to rejection of commonly used syngeneic tumors upon tumor rechallenge. J. Immunother. Cancer 2020, 8, e000532. [Google Scholar] [CrossRef]
- Xue, P.; Wu, Z.; Wang, K.; Gao, G.; Zhuang, M.; Yan, M. Oncological outcome of combining cytoreductive prostatectomy and metastasis-directed radiotherapy in patients with prostate cancer and bone oligometastases: A retrospective cohort study. Cancer Manag. Res. 2020, 12, 8867–8873. [Google Scholar] [CrossRef]
- Battaglia, A.; de Meerleer, G.; Tosco, L.; Moris, L.; van den Broeck, T.; Devos, G.; Everaerts, W.; Joniau, S. Novel insights into the management of oligometastatic prostate cancer: A comprehensive review. Eur. Urol. Oncol. 2019, 2, 174–188. [Google Scholar] [CrossRef]
- MacFarlane, A.W.; Jillab, M.; Plimack, E.R.; Hudes, G.R.; Uzzo, R.G.; Litwin, S.; Dulaimi, E.; Al-Saleem, T.; Campbell, K.S. PD-1 expression on peripheral blood cells increases with stage in renal cell carcinoma patients and is rapidly reduced after surgical tumor resection. Cancer Immunol. Res. 2014, 2, 320–331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borghetti, P.; Spiazzi, L.; Cozzaglio, C.; Pedretti, S.; Caraffini, B.; Triggiani, L.; Greco, D.; Bardoscia, L.; Barbera, F.; Buglione, M.; et al. Postoperative radiotherapy for prostate cancer: The sooner the better and potential to reduce toxicity even further. Radiol. Med. 2018, 123, 63–70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alongi, F.; De Bari, B.; Franco, P.; Ciammella, P.; Chekrine, T.; Livi, L.; Jereczek-Fossa, B.A.; Filippi, A.R.; AIRO Young and AIRO Prostate cancer Working Group. The PROCAINA (PROstate CAncer INdication Attitudes) Project (Part I): A survey among Italian radiation oncologists on postoperative radiotherapy in prostate cancer. Radiol. Med. 2013, 118, 660–678. [Google Scholar] [CrossRef] [PubMed]
Patient Characteristics | |
---|---|
No of patients (%) | 108 (100%) |
Age (years) | |
<61 | 40 (37.0%) |
61–65 | 29 (26.9%) |
>65 | 39 (36.1%) |
Preoperative PSA (ng/mL) | |
<4 | 15 (13.9%) |
4–10 | 71 (65.7%) |
>10 | 22 (20.4%) |
White blood cells (k/µL) | 6.02 (5.1–8.0) |
Lymphocytes (k/µL) | 2.12 (1.6–2.7) |
Tumor characteristics | |
Extracapsular extension | 28 (25.9%) |
Seminal vesical invasion | 12 (15.7%) |
Lymph node involvement | 5 (4.6%) |
pT stage | |
pT2 | 78 (72.2%) |
pT3 | 30 (27.8%) |
Gleason score | |
Grade 1 [≤3 + 3] | 16 (14.8%) |
Grade 2 [3 + 4] | 80 (74.1%) |
Grade ≥3 [≥4 + 3] | 12 (11.1%) |
Pretreatment risk stratification | |
Low (low and intermediate) | 64 (59.3%) |
High (high and very high) | 44 (40.7%) |
Prostatectomy applied | |
Open | 45 (41.7%) |
Laparoscopic | 63 (58.3%) |
Low Risk | |||
---|---|---|---|
PreOp | One Month | Three Months | |
PSA, ng/mL | |||
Mean | 7.19 ± 5.038 | 0.04 ± 0.031 | 0.01 ± 0.011 |
Range | 3.03–36.00 | 0.0 *–0.14 | 0.0 *–0.055 |
Median | 5.80 | 0.033 | 0.003 |
HT, days | |||
Mean | n.a. | 4.06 ± 0.661 | 34.26 ± 65.143 |
Range | n.a. | 2.79–6.62 | −282.67–282.75 |
Median | n.a. | 4.02 | 31.32 |
High Risk | |||
PreOp | One Month | Three Months | |
PSA, ng/mL | |||
Mean | 10.84 ± 12.886 | 0.23 ± 0.858 | 0.27 ± 1.015 |
Range | 2.15–67.71 | 0.0 *−5.58 | 0.0 *−6.32 |
Median | 7.4 | 0.044 | 0.018 |
HT, days | |||
Mean | n.a. | 5.24 ± 4.933 | −35.34 ± 329.773 |
Range | n.a. | 2.17–35.53 | −1706.13–606.10 |
Median | n.a. | 4.17 | 28.77 |
Low Risk | ||||
---|---|---|---|---|
Subset | PreOp (Cells/µL) Median (Range) | Three Months (Cells/µL) Median (Range) | p Value | Trend |
CD3+ | 1272 (930–1649) | 1433 (1139–2000) | <0.001 | ↑ |
CD4+ | 779 (573–1207) | 887 (710–1228) | 0.15 | ≈ |
CD8+ | 503 (356–711) | 692 (449–920) | <0.05 | ↑ |
Ratio CD4+/CD8+ | 1.8 (1.1–2.4) | 1.5 (0.9–2.3) | <0.05 | ↓ |
CD8+CD69+ | 185 (114–305) | 196 (152–278) | <0.001 | ↑ |
Ratio CD4+/CD8+CD69+ | 4.5 (2.9–6.9) | 4.3 (3.0–7.0) | 0.33 | ≈ |
CD4+CD25+FoxP3+ | 3.1 (1.6–5.6) | 3.3 (1.8–5.5) | 0.76 | ≈ |
CD3-CD16+CD56+ | 232 (113–360) | 317 (176–484) | <0.05 | ↑ |
MDSC | 11.9 (4.7–21.4) | 12.1 (6.0–21.7) | 0.12 | ≈ |
CD19+ | 206 (119–337) | 189 (110–285) | 0.07 | ≈ |
High Risk | ||||
Subset | PreOp (Cells/µL) Median (Range) | Three Months (Cells/µL) Median (Range) | p Value | Trend |
CD3+ | 1426 (967–2161) | 1388 (1043–1852) | 0.11 | ≈ |
CD4+ | 894 (587–1425) | 803 (683–1074) | 0.42 | ≈ |
CD8+ | 571 (342–925) | 594 (405–920) | 0.24 | ≈ |
Ratio CD4+/CD8+ | 1.6 (1.2–2.4) | 1.7 (1.0–2.1) | 0.81 | ≈ |
CD8+CD69+ | 205 (120–373) | 227 (156–308) | <0.001 | ↑ |
Ratio CD4+/CD8+CD69+ | 4.3 (3.0–7.1) | 3.9 (2.8–6.4) | 0.07 | ≈ |
CD4+CD25+FoxP3+ | 4.6 (2.1–7.3) | 3.9 (2.4–7.1) | 0.11 | ≈ |
CD3-CD16+CD56+ | 211 (119–320) | 328 (225–458) | 0.14 | ≈ |
MDSC | 12.4 (6.5–19.9) | 16.2 (10.5–26.1) | <0.002 | ↑ |
CD19+ | 188 (124–299) | 181 (147–272) | 0.50 | ≈ |
Open Radical Prostatectomy | ||||
---|---|---|---|---|
Subset | PreOp (Cells/µL) Median (Range) | Three Months (Cells/µL) Median (Range) | p Value | Trend |
CD3+ | 1280 (878–2086) | 1538 (924–1956) | 0.84 | ≈ |
CD4+ | 826 (549–1400) | 839 (630–1162) | 0.72 | ≈ |
CD8+ | 554 (298–928) | 711 (423–958) | 0.15 | ≈ |
Ratio CD4+/CD8+ | 1.7 (1.2–2.4) | 1.5 (0.8–2.0) | 0.07 | ≈ |
CD8+CD69+ | 169 (92–347) | 198 (159–261) | 0.26 | ≈ |
Ratio CD4+/CD8+CD69+ | 4.5 (2.9–6.9) | 4.3 (3.0–7.0) | 0.16 | ≈ |
CD4+CD25+FoxP3+ | 3.4 (2.1–6.8) | 3.5 (2.1–4.8) | 0.30. | ≈ |
CD3-CD16+CD56+ | 205 (106–329) | 294 (170–441) | 0.03 | ↑ |
MDSC | 11.1 (4.7–16.0) | 14.8 (10.5–26.1) | <0.01 | ↑ |
CD19+ | 188 (124–299) | 180.735 (147–272) | 0.74 | ≈ |
Laparoscopic Radical Prostatectomy | ||||
Subset | PreOp (Cells/µL) Median (Range) | Three Months (Cells/µL) Median (Range) | p Value | Trend |
CD3+ | 1292 (964−1867) | 1346 (1126–1984) | <0.05 | ↑ |
CD4+ | 780 (651–1282) | 881 (696–1187) | 0.46 | ≈ |
CD8+ | 538 (379–780) | 576 (437–904) | <0.001. | ↑ |
Ratio CD4+/CD8+ | 1.8 (1.1–2.4) | 1.7 (0.9–2.3) | 0.10 | ≈ |
CD8+CD69+ | 209 (131–330) | 216 (152–322) | 0.15 | ≈ |
Ratio CD4+/CD8+CD69+ | 4.0 (2.7–6.1) | 4.2 (3.0–6.3) | 0.10 | ≈ |
CD4+CD25+FoxP3+ | 2.37 (1.1–4.6) | 2.5 (1.2–4.1) | 0.91 | ≈ |
CD3-CD16+CD56+ | 223 (117–353) | 359 (199–502) | <0.001 | ↑ |
MDSC | 11.0 (6.4–14.9) | 11.2 (7.4–21.7) | 0.16 | ≈ |
CD19+ | 187 (119–307) | 185 (131–273) | 0.50 | ≈ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bosas, P.; Zaleskis, G.; Dabkevičiene, D.; Dobrovolskiene, N.; Mlynska, A.; Tikuišis, R.; Ulys, A.; Pašukoniene, V.; Jarmalaitė, S.; Jankevičius, F. Immunophenotype Rearrangement in Response to Tumor Excision May Be Related to the Risk of Biochemical Recurrence in Prostate Cancer Patients. J. Clin. Med. 2021, 10, 3709. https://doi.org/10.3390/jcm10163709
Bosas P, Zaleskis G, Dabkevičiene D, Dobrovolskiene N, Mlynska A, Tikuišis R, Ulys A, Pašukoniene V, Jarmalaitė S, Jankevičius F. Immunophenotype Rearrangement in Response to Tumor Excision May Be Related to the Risk of Biochemical Recurrence in Prostate Cancer Patients. Journal of Clinical Medicine. 2021; 10(16):3709. https://doi.org/10.3390/jcm10163709
Chicago/Turabian StyleBosas, Paulius, Gintaras Zaleskis, Daiva Dabkevičiene, Neringa Dobrovolskiene, Agata Mlynska, Renatas Tikuišis, Albertas Ulys, Vita Pašukoniene, Sonata Jarmalaitė, and Feliksas Jankevičius. 2021. "Immunophenotype Rearrangement in Response to Tumor Excision May Be Related to the Risk of Biochemical Recurrence in Prostate Cancer Patients" Journal of Clinical Medicine 10, no. 16: 3709. https://doi.org/10.3390/jcm10163709
APA StyleBosas, P., Zaleskis, G., Dabkevičiene, D., Dobrovolskiene, N., Mlynska, A., Tikuišis, R., Ulys, A., Pašukoniene, V., Jarmalaitė, S., & Jankevičius, F. (2021). Immunophenotype Rearrangement in Response to Tumor Excision May Be Related to the Risk of Biochemical Recurrence in Prostate Cancer Patients. Journal of Clinical Medicine, 10(16), 3709. https://doi.org/10.3390/jcm10163709