An Underestimated Toxicity Radiation-Induced Hypothyroidism in Patients Multimodally Treated for Breast Cancer
Abstract
:1. Introduction
2. Radiation-Induced Thyroid Toxicity—From Pathophysiology to Clinical Symptoms
3. Thyroid Gland as an OAR—Dose-Volume-Toxicity Correlation
4. Breast Cancer—Major Diagnostic and Treatment Advances, New Toxicities
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Pernas, S.; Tolaney, S.M.; Winer, E.P. CDK4/6 inhibition in breast cancer: Current practice and future directions. Ther. Adv. Med. Oncol. 2018, 10, 1758835918786451. [Google Scholar] [CrossRef] [Green Version]
- Agrawal, S. Late effects of cancer treatment in breast cancer survivors. South Asian J. Cancer 2014, 3, 112–115. [Google Scholar] [CrossRef]
- Hancock, S.L.; McDougall, I.; Constine, L.S. Thyroid abnormalities after therapeutic external radiation. Int. J. Radiat. Oncol. 1995, 31, 1165–1170. [Google Scholar] [CrossRef]
- Jereczek-Fossa, B.A.; Alterio, D.; Jassem, J.; Gibelli, B.; Tradati, N.; Orecchia, R. Radiotherapy-induced thyroid disorders. Cancer Treat. Rev. 2004, 30, 369–384. [Google Scholar] [CrossRef]
- Bhandare, N.; Kennedy, L.; Malyapa, R.S.; Morris, C.G.; Mendenhall, W.M. Primary and Central Hypothyroidism after Radiotherapy for Head-and-Neck Tumors. Int. J. Radiat. Oncol. 2007, 68, 1131–1139. [Google Scholar] [CrossRef] [PubMed]
- Boomsma, M.J.; Bijl, H.P.; Langendijk, J.A. Radiation-induced hypothyroidism in head and neck cancer patients: A systematic review. Radiother. Oncol. 2011, 99, 1–5. [Google Scholar] [CrossRef]
- Jefferies, W.M. Occult hypothyroidism and “metabolic insufficiency”. J. Chronic Dis. 1961, 14, 582–592. [Google Scholar] [CrossRef]
- Huang, H.; Roberson, J.; Hou, W.; Mani, K.; Valentine, E.; Ryu, S.; Stessin, A. NTCP model for hypothyroidism after supraclavicular-directed radiation therapy for breast cancer. Radiother. Oncol. 2020, 154, 87–92. [Google Scholar] [CrossRef]
- Cella, L.; Conson, M.; Caterino, M.; De Rosa, N.; Liuzzi, R.; Picardi, M.; Grimaldi, F.; Solla, R.; Farella, A.; Salvatore, M.; et al. Thyroid V30 Predicts Radiation-Induced Hypothyroidism in Patients Treated With Sequential Chemo-Radiotherapy for Hodgkin’s Lymphoma. Int. J. Radiat. Oncol. 2012, 82, 1802–1808. [Google Scholar] [CrossRef] [Green Version]
- Norris, A.A.; Amdur, R.J.; Morris, C.G.; Mendenhall, W.M. Hypothyroidism When the Thyroid Is Included Only in the Low Neck Field during Head and Neck Radiotherapy. Am. J. Clin. Oncol. 2006, 29, 442–445. [Google Scholar] [CrossRef]
- Mercado, G.; Adelstein, D.J.; Saxton, J.P.; Secic, M.; Larto, M.A.; Lavertu, P. Hypothyroidism: A frequent event after radiotherapy and after radiotherapy with chemotherapy for patients with head and neck carcinoma. Cancer 2001, 92, 2892–2897. [Google Scholar] [CrossRef]
- Lin, C.-L.; Wu, S.-Y.; Huang, W.-T.; Feng, Y.-H.; Yiu, C.-Y.; Chiang, W.-F.; Ho, S.-Y.; Lin, S.-H. Subsequent thyroid disorders associated with treatment strategy in head and neck cancer patients: A nationwide cohort study. BMC Cancer 2019, 19, 461. [Google Scholar] [CrossRef]
- Sinard, R.J.; Tobin, E.J.; Mazzaferri, E.L.; Hodgson, S.E.; Young, N.C.; Kunz, A.L.; Malhotra, P.S.; Fritz, M.A.; Schuller, D.E. Hypothyroidism After Treatment for Nonthyroid Head and Neck Cancer. Arch. Otolaryngol.-Head Neck Surg. 2000, 126, 652–657. [Google Scholar] [CrossRef] [Green Version]
- Illés, A.; Bíró, E.; Miltényi, Z.; Keresztes, K.; Váróczy, L.; András, C.; Sipka, S.; Bakó, G. Hypothyroidism and Thyroiditis after Therapy for Hodgkin’s Disease. Acta Haematol. 2002, 109, 11–17. [Google Scholar] [CrossRef]
- Metzger, M.L.; Hudson, M.M.; Somes, G.W.; Shorr, R.I.; Li, C.-S.; Krasin, M.J.; Shelso, J.; Pui, C.-H.; Howard, S.C. White Race As a Risk Factor for Hypothyroidism After Treatment for Pediatric Hodgkin’s Lymphoma. J. Clin. Oncol. 2006, 24, 1516–1521. [Google Scholar] [CrossRef] [PubMed]
- Sinnott, B.; Ron, E.; Schneider, A.B. Exposing the Thyroid to Radiation: A Review of Its Current Extent, Risks, and Implications. Endocr. Rev. 2010, 31, 756–773. [Google Scholar] [CrossRef] [Green Version]
- PDQ Pediatric Treatment Editorial tabkleBoard. Late Effects of Treatment for Childhood Cancer (PDQ®): Health Professional Version. In PDQ Cancer Information Summaries [Internet]; National Cancer Institute: Bethesda, MD, USA, 2021. [Google Scholar]
- Chow, E.J.; Friedman, D.L.; Stovall, M.; Yasui, Y.; Whitton, J.A.; Robison, L.L.; Sklar, C.A. Risk of thyroid dysfunction and subsequent thyroid cancer among survivors of acute lymphoblastic leukemia: A report from the Childhood Cancer Survivor Study. Pediatr. Blood Cancer 2009, 53, 432–437. [Google Scholar] [CrossRef] [Green Version]
- Tell, R.; Sjödin, H.; Lundell, G.; Lewin, F.; Lewensohn, R. Hypothyroidism after external radiotherapy for head and neck cancer. Int. J. Radiat. Oncol. 1997, 39, 303–308. [Google Scholar] [CrossRef]
- Oudin, C.; Auquier, P.; Bertrand, Y.; Chastagner, P.; Kanold, J.; Poirée, M.; Thouvenin, S.; Ducassou, S.; Plantaz, D.; Tabone, M.D.; et al. Late thyroid complications in survivors of childhood acute leukemia. An L.E.A. study. Haematologica 2016, 101, 747–756. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Posner, M.R.; Ervin, T.J.; Fabian, R.L.; Weichselbaum, R.R.; Miller, D.; Norris, C.M.; Rose, C. Incidence of hypothyroidism following multimodality treatment for advanced squamous cell cancer of the head and neck. Laryngoscope 1984, 94, 451–454. [Google Scholar] [CrossRef] [PubMed]
- Bentzen, S.M.; Constine, L.S.; Deasy, J.; Eisbruch, A.; Jackson, A.; Marks, L.B.; Haken, R.T.; Yorke, E.D. Quantitative Analyses of Normal Tissue Effects in the Clinic (QUANTEC): An Introduction to the Scientific Issues. Int. J. Radiat. Oncol. 2010, 76, S3–S9. [Google Scholar] [CrossRef] [Green Version]
- Pacelli, R.; Caroprese, M.; Palma, G.; Oliviero, C.; Clemente, S.; Cella, L.; Conson, M. Technological evolution of radiation treatment: Implications for clinical applications. Semin. Oncol. 2019, 46, 193–201. [Google Scholar] [CrossRef]
- Barrett, A.; Morris, S.; Dobbs, J.; Roques, T. Practical Radiotherapy Planning, 4th ed.; Taylor & Francis: Abingdon, UK, 2009. [Google Scholar]
- Brodin, N.; Tomé, W.A. Revisiting the dose constraints for head and neck OARs in the current era of IMRT. Oral Oncol. 2018, 86, 8–18. [Google Scholar] [CrossRef]
- Kim, M.Y.; Yu, T.; Wu, H.-G. Dose-volumetric Parameters for Predicting Hypothyroidism after Radiotherapy for Head and Neck Cancer. Jpn. J. Clin. Oncol. 2014, 44, 331–337. [Google Scholar] [CrossRef] [Green Version]
- Akgun, Z.; Atasoy, B.M.; Ozen, Z.; Yavuz, D.; Gulluoglu, B.; Sengoz, M.; Abacioglu, U. V30 as a predictor for radiation-induced hypothyroidism: A dosimetric analysis in patients who received radiotherapy to the neck. Radiat Oncol. 2014, 9, 104. [Google Scholar] [CrossRef] [Green Version]
- Fujiwara, M.; Kamikonya, N.; Odawara, S.; Suzuki, H.; Niwa, Y.; Takada, Y.; Doi, H.; Terada, T.; Uwa, N.; Sagawa, K.; et al. The threshold of hypothyroidism after radiation therapy for head and neck cancer: A retrospective analysis of 116 cases. J. Radiat. Res. 2015, 56, 577–582. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.; Tan, H.; Guo, R.; Zhang, Y.; Peng, H.; Peng, L.; Lin, A.; Mao, Y.; Sun, Y.; Ma, J.; et al. Thyroid dose-volume thresholds for the risk of radiation-related hypothyroidism in nasopharyngeal carcinoma treated with intensity-modulated radiotherapy—A single-institution study. Cancer Med. 2019, 8, 6887–6893. [Google Scholar] [CrossRef] [Green Version]
- American Cancer Society. Cancer Facts and Figures 2005; American Cancer Society: Atlanta, GA, USA, 2005. [Google Scholar]
- Harris, J.R.; Lippman, M.E.; Morrow, M.; Osborne, C.K. Diseases of the Breast, 3rd ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2004. [Google Scholar]
- D’Eredita, G.; Giardina, C.; Martellotta, M.; Natale, T.; Ferrarese, F. Prognostic factors in breast cancer: The predictive value of the Nottingham Prognostic Index in patients with a long-term follow-up that were treated in a single institution. Eur. J. Cancer 2001, 37, 591–596. [Google Scholar] [CrossRef]
- Olivotto, I.A.; Chua, B.; Sharon, J.A.; Caroline, H.S.; Chia, S.; Ragaz, J. Long-term survival of patients with supraclavicular metastases at diagnosis of breast cancer. J Clin. Oncol. 2003, 21, 851–854. [Google Scholar] [CrossRef] [PubMed]
- Chan, C.W.H.; Law, B.M.H.; So, W.K.W.; Chow, K.M.; Waye, M.M.Y. Novel Strategies on Personalized Medicine for Breast Cancer Treatment: An Update. Int. J. Mol. Sci. 2017, 18, 2423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, L.; Jiang, G.; Chen, Q.; Zheng, J.N. Ki67 is a promising molecular target in the diagnosis of cancer (Review). Mol. Med. Rep. 2014, 11, 1566–1572. [Google Scholar] [CrossRef] [Green Version]
- Joo, W.D.; Visintin, I.; Mor, G. Targeted cancer therapy—Are the days of systemic chemotherapy numbered? Maturitas 2013, 76, 308–314. [Google Scholar] [CrossRef] [Green Version]
- Jorns, J.M. Breast Cancer Biomarkers: Challenges in Routine Estrogen Receptor, Progesterone Receptor, and HER2/neu Evaluation. Arch. Pathol. Lab. Med. 2019, 143, 1444–1449. [Google Scholar] [CrossRef]
- Fujita, N.; Enomoto, Y.; Inakami, K.; Yanagisawa, T.; Iguchi, C.; Aono, T.; Nomura, T.; Yamamoto, H.; Kasugai, T.; Shiba, E. Prognostic Factors in HER2-Positive Primary Breast Cancer Patients Treated Using Neoadjuvant Chemotherapy Plus Trastuzumab. Oncology 2019, 98, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Honkanen, T.J.; Tikkanen, A.; Karihtala, P.; Mäkinen, M.; Väyrynen, J.P.; Koivunen, J.P. Prognostic and predictive role of tumour -associated macrophages in HER2 positive breast cancer. Sci. Rep. 2019, 9, 10961. [Google Scholar] [CrossRef] [Green Version]
- Del Prete, S.; Montella, L.; Arpino, G.; Buono, G.; Buonerba, C.; Dolce, P.; Fiorentino, O.; Aliberti, M.; Febbraro, A.; Savastano, C.; et al. Second line trastuzumab emtansine following horizontal dual blockade in a real-life setting. Oncotarget 2020, 11, 2083–2091. [Google Scholar] [CrossRef]
- Keith, K.C.; Lee, Y.; Ewend, M.G.; Zagar, T.M.; Anders, C.K. Activity of transtuzumab-emtansine (TDM1) in HER2-positive breast cancer brain metastases: A case series. Cancer Treat Commun. 2016, 7, 43–46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hurvitz, S.A.; Im, S.; Lu, Y.; Colleoni, M.; Franke, F.A.; Bardia, A.; Harbeck, N.; Chow, L.; Sohn, J.; Lee, K.S.; et al. Phase III MONALEESA-7 trial of premenopausal patients with HR+/HER2− advanced breast cancer treated with endocrine therapy ± ribociclib: Overall survival results. In Proceedings of the 2019 ASCO Annual Meeting, Chicago, IL, USA, 4 June 2019. Abstract LBA1008. [Google Scholar]
- Sledge, G.W., Jr.; Toi, M.; Neven, P.; Sohn, J.; Inoue, K.; Pivot, X.; Burdaeva, O.; Okera, M.; Masuda, N.; Kaufman, P.A.; et al. The effect of abemaciclib plus fulvestrant on overall survival in hormone receptor-positive, ERBB2-negative breast cancer that progressed on endocrine therapy–MONARCH 2: A randomized clinical trial. JAMA Oncol. 2020, 6, 116–124. [Google Scholar] [CrossRef] [PubMed]
- Anker, G.B.; Lonning, P.E.; Aakvaag, A.; Lien, E.A.; Anker, P.E.L.G.B. Thyroid function in postmenopausal breast cancer patients treated with tamoxifen. Scand. J. Clin. Lab. Investig. 1998, 58, 103–107. [Google Scholar] [CrossRef]
- Gordon, D.; Beastall, G.H.; McArdle, C.S.; Thomson, J.A. The effect of tamoxifen therapy on thyroid function tests. Cancer 1986, 58, 1422–1425. [Google Scholar] [CrossRef]
- Mazokopakis, E.E.; Karefilakis, C.M.; Tsartsalis, A.N.; Milkas, A.N.; Starakis, I.K. Exemestane-Induced Subclinical Hypothyroidism. Clin. Drug Investig. 2008, 28, 669–671. [Google Scholar] [CrossRef] [PubMed]
- Hamnvik, O.P.; Larsen, P.R.; Marqusee, E. Thyroid dysfunction from antineoplastic agents. J. Natl. Cancer Inst. 2011, 103, 1572–1587. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rivas, A.M.; Larumbe-Zabala, E.; Diaz-Trastoy, O.; Schurr, R.N.; Jones, C.; Abdulrahman, R.; Dar, N.; Lado-Abeal, J. Effect of chemoradiation on the size of the thyroid gland. Bayl. Univ. Med Cent. Proc. 2020, 33, 541–545. [Google Scholar] [CrossRef]
- De Groot, S.; Janssen, L.G.M.; Charehbili, A.; Dijkgraaf, E.M.; Smit, V.T.H.B.M.; Kessels, L.W.; Van Bochove, A.; Van Laarhoven, H.W.M.; Kranenbarg, E.M.-K.; Van Leeuwen-Stok, A.E.; et al. Thyroid function alters during neoadjuvant chemotherapy in breast cancer patients: Results from the NEOZOTAC trial (BOOG 2010-01). Breast Cancer Res. Treat. 2015, 149, 461–466. [Google Scholar] [CrossRef] [Green Version]
- Early Breast Cancer Trialists’ Collaborative Group (EBCTCG). Effect of radiotherapy after breast-conserving surgery on 10-year recurrence and 15-year breast cancer death: Meta-analysis of individual patient data for 10 801 women in 17 randomised trials. Lancet 2011, 378, 1707–1716. [Google Scholar] [CrossRef] [Green Version]
- Almahariq, M.F.; Quinn, T.J.; Siddiqui, Z.A.; Thompson, A.B.; Jawad, M.S.; Chen, P.Y.; Gustafson, G.S.; Dilworth, J.T. Post-mastectomy radiotherapy is associated with improved overall survival in T3N0 patients who do not receive chemotherapy. Radiother. Oncol. 2020, 145, 229–237. [Google Scholar] [CrossRef]
- Li, X.A.; Tai, A.; Arthur, D.W.; Buchholz, T.A.; Macdonald, S.; Marks, L.B.; Moran, J.M.; Pierce, L.J.; Rabinovitch, R.; Taghian, A.; et al. Variability of target and normal structure delineation for breast-cancer radiotherapy: A RTOG multi-institutional and multi-observer study. Int. J. Radiat. Oncol. Biol. Phys. 2009, 73, 944–951. [Google Scholar] [CrossRef] [Green Version]
- Offersen, B.V.; Boersma, L.J.; Kirkove, C.; Hol, S.; Aznar, M.C.; Sola, A.B.; Kirova, Y.M.; Pignol, J.; Remouchamps, V.; Verhoeven, K.; et al. ESTRO consensus guideline on target volume delineation for elective radiation therapy of early stage breast cancer, version 1.1. Radiother Oncol. 2016, 118, 205–208. [Google Scholar] [CrossRef] [PubMed]
- Gee, H.E.; Moses, L.; Stuart, K.; Nahar, N.; Tiver, K.; Wang, T.; Ward, R.; Ahern, V. Contouring consensus guidelines in breast cancer radiotherapy: Comparison and systematic review of patterns of failure. J. Med. Imaging Radiat. Oncol. 2018, 63, 102–115. [Google Scholar] [CrossRef]
- Akurek, S.; Babalioglu, I.; Kose, K.; Gokce, S.C. Thyroid Dysfunction Following Supraclavicular Irradiation in the Management of Carcinoma of the Breast. Int. J. Hematol. Oncol. 2014, 24, 139–144. [Google Scholar] [CrossRef]
- Bruning., P.; Bonfrèr, J.; De Jong-Bakker, M.; Nooyen, W.; Burgers, M. Primary hypothyroidism in breast cancer patients with irradiated supraclavicular lymph nodes. Br. J. Cancer 1985, 51, 659–663. [Google Scholar] [CrossRef] [PubMed]
- Wolny-Rokicka, E.; Tukiendorf, A.; Wydmański, J.; Roszkowska, D.; Staniul, B.S.; Zembroń-Łacny, A. Thyroid Function after Postoperative Radiation Therapy in Patients with Breast Cancer. Asian Pac. J. Cancer Prev. 2016, 17, 4577–4581. [Google Scholar]
- Choi, S.H.; Chang, J.S.; Byun, H.K.; Son, N.-H.; Hong, C.-S.; Hong, N.; Park, M.Y.-I.; Kim, J.; Kim, J.S.; Kim, Y.B. Risk of Hypothyroidism in Women After Radiation Therapy for Breast Cancer. Int. J. Radiat. Oncol. 2021, 110, 462–472. [Google Scholar] [CrossRef]
- Haciislamoglu, E.; Canyilmaz, E.; Gedik, S.; Aynaci, O.; Serdar, L.; Yoney, A. Effect of dose constraint on the thyroid gland during locoregional intensity-modulated radiotherapy in breast cancer patients. J. Appl. Clin. Med. Phys. 2019, 20, 135–141. [Google Scholar] [CrossRef] [Green Version]
- Falstie-Jensen, A.M.; Esen, B.; Kjærsgaard, A.; Lorenzen, E.L.; Jensen, J.D.; Reinertsen, K.V.; Dekkers, O.M.; Ewertz, M.; Cronin-Fenton, D.P. Incidence of hypothyroidism after treatment for breast cancer—A Danish matched cohort study. Breast Cancer Res. 2020, 22, 1–10. [Google Scholar] [CrossRef]
- Hurkmans, C.; Duisters, C.; Peters-Verhoeven, M.; Boersma, L.; Verhoeven, K.; Bijker, N.; Crama, K.; Nuver, T.; van der Sangen, M. Harmonization of breast cancer radiotherapy treatment planning in the Netherlands. Tech. Innov. Patient Support Radiat. Oncol. 2021, 19, 26–32. [Google Scholar] [CrossRef] [PubMed]
- Smith, G.L.; Smith, B.D.; Giordano, S.H.; Shih, Y.C.T.; Woodward, W.A.; Strom, E.A.; Perkins, G.H.; Tereffe, W.; Yu, T.K.; Buchholz, T.A. Risk of hypothyroidism in older breast cancer patients treated with radiation. Cancer 2008, 112, 1371–1379. [Google Scholar] [CrossRef] [PubMed]
- Darvish, L.; Ghorbani, M.; Teshnizi, S.H.; Roozbeh, N.; Seif, F.; Bayatiani, M.R.; Knaup, C.; Amraee, A. Evaluation of thyroid gland as an organ at risk after breast cancer radiotherapy: A systematic review and meta-analysis. Clin. Transl. Oncol. 2018, 20, 1430–1438. [Google Scholar] [CrossRef]
- Madisetty, A.; Suryadevara, A.; Chinta, S.K.; Vuppu, S.; Marella, V.R.R. Should we consider thyroid gland as an organ at risk in carcinoma breast patients receiving adjuvant radiation by conformal technique? A single institute dosimetric study. Indian J. Cancer 2020, 57, 393–397. [Google Scholar]
Limits | Level III (Infraclavicular) | Level IV (Supraclavicular) |
---|---|---|
Superior | Superior margin of clavicle | 5 mm superior of subclavian vein |
Inferior | 5 mm inferior to the subclavian vein | subclavian vein with a 5 mm margin |
Medial | inside the pectoralis minor, level II and the Rotter level | jugular vein without margins, exclude common carotid artery and thyroide gland |
Lateral | Clavicle and the jonction between infraclavicular and internal jugular vein | the tissue in proximity of external margin of scalene muscle and the anterior scalene muscles |
Anterior | Posterior margin of pectoralis major | posterior part of the clavicle of the sternocleidomastoid and sterno-thyroid muscle |
Posterior | Anterior from costae and Intercostals muscle | Pleura |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mireștean, C.C.; Iancu, R.I.; Iancu, D.P.T. An Underestimated Toxicity Radiation-Induced Hypothyroidism in Patients Multimodally Treated for Breast Cancer. J. Clin. Med. 2021, 10, 5503. https://doi.org/10.3390/jcm10235503
Mireștean CC, Iancu RI, Iancu DPT. An Underestimated Toxicity Radiation-Induced Hypothyroidism in Patients Multimodally Treated for Breast Cancer. Journal of Clinical Medicine. 2021; 10(23):5503. https://doi.org/10.3390/jcm10235503
Chicago/Turabian StyleMireștean, Camil Ciprian, Roxana Irina Iancu, and Dragoș Petru Teodor Iancu. 2021. "An Underestimated Toxicity Radiation-Induced Hypothyroidism in Patients Multimodally Treated for Breast Cancer" Journal of Clinical Medicine 10, no. 23: 5503. https://doi.org/10.3390/jcm10235503
APA StyleMireștean, C. C., Iancu, R. I., & Iancu, D. P. T. (2021). An Underestimated Toxicity Radiation-Induced Hypothyroidism in Patients Multimodally Treated for Breast Cancer. Journal of Clinical Medicine, 10(23), 5503. https://doi.org/10.3390/jcm10235503