Diagnostic Re-Evaluation and Potential Predictor Factors of Transient and Permanent Congenital Hypothyroidism in Eutopic Thyroid Gland
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tuli, G.; Munarin, J.; Tessaris, D.; Matarazzo, P.; Einaudi, S.; De Sanctis, L. Incidence of primary congenital hypothyroidism and relationship between diagnostic categories and associated malformations. Endocrine 2021, 71, 122–129. [Google Scholar] [CrossRef]
- van Trotsenburg, P.; Stoupa, A.; Léger, J.; Rohrer, T.; Peters, C.; Fugazzola, L.; Cassio, A.; Heinrichs, C.; Beauloye, V.; Pohlenz, J.; et al. Congenital Hypothyroidism: A 2020–2021 Consensus Guidelines Update—An ENDO-European Reference Network Initiative Endorsed by the European Society for Pediatric Endocrinology and the European Society for Endocrinology. Thyroid 2021, 31, 387–419. [Google Scholar] [CrossRef]
- Nair, P.S.; Sobhakumar, S.; Kailas, L. Diagnostic re-evaluation of children with congenital hypothyroidism. Indian Pediatr. 2010, 47, 757–760. [Google Scholar] [CrossRef] [PubMed]
- Rabbiosi, S.; Vigone, M.C.; Cortinovis, F.; Zamproni, I.; Fugazzola, L.; Persani, L.; Corbetta, C.; Chiumello, G.; Weber, G. Congenital Hypothyroidism With Eutopic Thyroid Gland: Analysis of Clinical and Biochemical Features at Diagnosis and after Re-Evaluation. J. Clin. Endocrinol. Metab. 2013, 98, 1395–1402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cho, M.S.; Cho, G.S.; Park, S.H.; Jung, M.H.; Suh, B.K.; Koh, D.G. Earlier re-evaluation may be possible in pediatric patients with eutopic congenital hypothyroidism requiring lower L-thyroxine doses. Ann. Pediatr. Endocrinol. Metab. 2014, 19, 141–145. [Google Scholar] [CrossRef]
- Messina, M.F.; Aversa, T.; Salzano, G.; Zirilli, G.; Sferlazzas, C.; De Luca, F.; Lombardo, F. Early Discrimination between Transient and Permanent Congenital Hypothyroidism in Children with Eutopic Gland. Horm. Res. Paediatr. 2015, 84, 159–164. [Google Scholar] [CrossRef]
- Kara, C.; Günindi, F.; Yılmaz, G.C.; Aydın, M. Transient Congenital Hypothyroidism in Turkey: An Analysis on Frequency and Natural Course. J. Clin. Res. Pediatr. Endocrinol. 2016, 8, 170–179. [Google Scholar] [CrossRef]
- Kang, M.J.; Chung, H.-R.; Oh, Y.-J.; Shim, Y.-S.; Yang, S.; Hwang, I.-T. Three-year follow-up of children with abnormal newborn screening results for congenital hypothyroidism. Pediatr. Neonatol. 2017, 58, 442–448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, I.S.; Yoon, J.S.; So, C.H.; Lee, H.S.; Hwang, J.S. Predictors of transient congenital hypothyroidism in children with eutopic thyroid gland. Ann. Pediatr. Endocrinol. Metab. 2017, 22, 115–118. [Google Scholar] [CrossRef] [Green Version]
- Saba, C.; Guilmin-Crepon, S.; Zénaty, D.; Martinerie, L.; Paulsen, A.; Simon, D.; Storey, C.; Dos Santos, S.; Haignere, J.; Mohamed, D.; et al. Early Determinants of Thyroid Function Outcomes in Children with Congenital Hypothyroidism and a Normally Located Thyroid Gland: A Regional Cohort Study. Thyroid 2018, 28, 959–967. [Google Scholar] [CrossRef]
- Oron, T.; Lazar, L.; Ben-Yishai, S.; Tenenbaum, A.; Yackobovitch-Gavan, M.; Meyerovitch, J.; Phillip, M.; Lebenthal, Y. Permanent vs. Transient Congenital Hypothyroidism: Assessment of Predictive Variables. J. Clin. Endocrinol. Metab. 2018, 103, 4428–4436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Higuchi, S.; Hasegawa, Y. Levothyroxine dosages less than 2.4 μg/kg/day at 1 year and 1.3 μg/kg/day at 3 years of age may predict transient congenital hypothyroidism. Clin. Pediatr. Endocrinol. 2019, 28, 127–133. [Google Scholar] [CrossRef] [Green Version]
- Park, E.S.; Yoon, J.Y. Factors associated with permanent hypothyroidism in infants with congenital hypothyroidism. BMC Pediatr. 2019, 19, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asena, M.; Demiral, M.; Unal, E.; Öcal, M.; Demirbilek, H.; Özbek, M.N. Validity of Six Month L-Thyroxine Dose for Differentiation of Transient or Permanent Congenital Hypothyroidism. J. Clin. Res. Pediatr. Endocrinol. 2020, 12, 275–280. [Google Scholar] [CrossRef]
- Long, W.; Zhou, L.; Wang, Y.; Liu, J.; Wang, H.; Yu, B. Complicated Relationship between Genetic Mutations and Phenotypic Characteristics in Transient and Permanent Congenital Hypothyroidism: Analysis of Pooled Literature Data. Int. J. Endocrinol. 2020, 2020, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.-H.; Yang, B.-C.; Li, J.-Y.; Xu, P.; Wang, F. Diagnostic re-evaluation and predictors of congenital hypothyroidism with eutopic thyroid gland in Jiangxi, China. J. Pediatr. Endocrinol. Metab. 2021, 34, 1139–1146. [Google Scholar] [CrossRef] [PubMed]
- Nagasaki, K.; Sato, H.; Sasaki, S.; Nyuzuki, H.; Shibata, N.; Sawano, K.; Hiroshima, S.; Asami, T. Re-Evaluation of the Prevalence of Permanent Congenital Hypothyroidism in Niigata, Japan: A Retrospective Study. Int. J. Neonatal Screen. 2021, 7, 27. [Google Scholar] [CrossRef]
- Abbasi, F.; Janani, L.; Talebi, M.; Azizi, H.; Hagiri, L.; Rimaz, S. Risk factors for transient and permanent congenital hypothyroidism: A population-based case-control study. Thyroid Res. 2021, 14, 1–7. [Google Scholar] [CrossRef]
- Matejek, N.; Tittel, S.R.; Haberland, H.; Rohrer, T.; Busemann, E.-M.; Jorch, N.; Schwab, K.-O.; Wölfle, J.; Holl, R.W.; Bettendorf, M. Predictors of transient congenital primary hypothyroidism: Data from the German registry for congenital hypothyroidism (AQUAPE “HypoDok”). Eur. J. Nucl. Med. Mol. Imaging 2021, 180, 2401–2408. [Google Scholar] [CrossRef] [PubMed]
- Mehran, L.; Azizi, F.; Mousapour, P.; Cheraghi, L.; Yarahmadi, S.; Amirshekari, G.; Khalili, D. Development of a risk prediction model for early discrimination between permanent and transient congenital hypothyroidism. Endocrine 2021, 73, 1–10. [Google Scholar] [CrossRef]
- Yamamura, H.; Kokumai, T.; Furuya, A.; Suzuki, S.; Tanahashi, Y.; Azuma, H. Increase in doses of levothyroxine at the age of 3 years and above is useful for distinguishing transient and permanent congenital hypothyroidism. Clin. Pediatr. Endocrinol. 2020, 29, 143–149. [Google Scholar] [CrossRef] [PubMed]
- Kemper, A.R.; Grosse, S.D.; Baker, M.; Pollock, A.J.; Hinton, C.F.; Shapira, S.K. Treatment Discontinuation within 3 Years of Levothyroxine Initiation among Children Diagnosed with Congenital Hypothyroidism. J. Pediatr. 2020, 223, 136–140. [Google Scholar] [CrossRef]
- Itonaga, T.; Higuchi, S.; Shimura, K.; Nagasaki, K.; Satoh, M.; Takubo, N.; Takahashi, I.; Sawada, H.; Hasegawa, Y. Levothyroxine Dosage as Predictor of Permanent and Transient Congenital Hypothyroidism: A Multicenter Retrospective Study in Japan. Horm. Res. Paediatr. 2019, 92, 45–51. [Google Scholar] [CrossRef]
- Korzeniewski, S.J.; Grigorescu, V.; Kleyn, M.; Young, W.I.; Birbeck, G.; Todem, D.; Romero, R.; Paneth, N. Transient Hypothyroidism at 3-Year Follow-Up among Cases of Congenital Hypothyroidism Detected by Newborn Screening. J. Pediatr. 2013, 162, 177–182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hashemipour, M.; Hovsepian, S.; Kelishadi, R.; Iranpour, R.; Hadian, R.; Haghighi, S.; Gharapetian, A.; Talaei, M.; Amini, M. Permanent and transient congenital hypothyroidism in Isfahan–Iran. J. Med. Screen. 2009, 16, 11–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Unüvar, T.; Demir, K.; Abacı, A.; Ataş, A.; Büyükgebiz, A.; Böber, E. Monitoring and prognostic evaluation of patients with congenital hypothyroidism treated in a pediatric endocrinology unit. Turk. J. Pediatr. 2013, 55, 384–390. [Google Scholar] [PubMed]
- Unüvar, T.; Demir, K.; Abacı, A.; Büyükgebiz, A.; Böber, E. The Role of Initial Clinical and Laboratory Findings in Infants With Hyperthyrotropinemia to Predict Transient or Permanent Hypothyroidism. J. Clin. Res. Pediatr. Endocrinol. 2013, 5, 170–173. [Google Scholar] [CrossRef]
- Aguiar, L.; Garb, J.; Reiter, E.; Visintainer, P.; Singh, R.; Allen, H.; Tonyushkina, K. Can One Predict Resolution of Neonatal Hyperthyrotropinemia? J. Pediatr. 2016, 174, 71–77.e1. [Google Scholar] [CrossRef]
- Razavi, Z.; Mohammadi, L. Permanent and Transient Congenital Hypothyroidism in Hamadan West Province of Iran. Int. J. Endocrinol. Metab. 2016, 14. [Google Scholar] [CrossRef] [Green Version]
- Fu, C.; Luo, S.; Li, Y.; Li, Q.; Hu, X.; Li, M.; Zhang, Y.; Su, J.; Hu, X.; Chen, Y.; et al. The incidence of congenital hypothyroidism (CH) in Guangxi, China and the predictors of permanent and transient CH. Endocr. Connect. 2017, 6, 926–934. [Google Scholar] [CrossRef] [Green Version]
- Habib, A.; Shojazadeh, A.; Molayemat, M.; Habib, A.; Jeddi, M.; Arabsolghar, R.; Nahas, M.; Rahimi, N.; Ardekani, F.M. Prevalence and predictive factors of transient and permanent congenital hypothyroidism in Fars province, Iran. BMC Pediatr. 2021, 21, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Zdraveska, N.; Zdravkovska, M.; Anastasovska, V.; Sukarova-Angelovska, E.; Kocova, M. Diagnostic re-evaluation of congenital hypothyroidism in Macedonia: Predictors for transient or permanent hypothyroidism. Endocr. Connect. 2018, 7, 278–285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Permanent CH (PCH) 29 Subjects = 52.7% | Transient CH (TCH) 26 Subjects = 47.3% | p | ||
---|---|---|---|---|
Gender | Male | 22 | 12 | 0.02 |
Female | 7 | 14 | ||
Gestational Age | At term | 21 | 17 | 0.6 |
Preterm | 8 | 9 | ||
Delivery | Vaginal | 15 | 11 | 0.5 |
Caesarean section | 14 | 15 | ||
Family history for thyroid disease | 7 | 10 | 0.3 | |
Neonatal Weight (g) | 2285 ± 156.7 | 2602 ± 129.3 | 0.1 | |
Neonatal Length (cm) | 47.7 ± 0.76 | 46.3 ± 1.05 | 0.3 | |
Blood TSH mcUI/mL | 197.3 ± 44.5 | 55.01 ± 7.33 | 0.009 | |
FT4 pg/mL | 6.92 ± 0.72 | 9.29 ± 1.98 | 0.03 | |
FT3 pg/mL | 3.75 ± 0.25 | 4.19 ± 0.48 | 0.3 | |
Levothyroxine initial dose | 8.37 ± 0.43 | 9.13 ± 0.44 | 0.23 | |
Levothyroxine requirement in the 1st year | 5.12 ± 0.36 | 5.61 ± 0.55 | 0.46 | |
Levothyroxine requirement in the 2nd year | 2.77 ± 0.19 | 2.74 ± 0.2 | 0.9 | |
Levothyroxine requirement at withdrawal | 2.69 ± 0.14 | 2.14 ± 0.19 | 0.02 | |
TSH mcUI/mL prior to withdrawal | 2.81 ± 0.74 | 1.98 ± 0.27 | 0.2 | |
FT4 pg/mL prior to withdrawal | 14.53 ± 0.56 | 14.45 ± 0.44 | 0.9 | |
TSH mcUI/mL after withdrawal | 23.37 ± 13.6 | 4.1 ± 0.31 | 0.007 | |
FT4 pg/mL after withdrawal | 9.54 ± 1.22 | 13.13 ± 0.33 | 0.004 | |
Malformations | 15 | 5 | 0.01 |
Study | Year | No. of Subjects with Eutopic Thyroid | TCH Rate | Main Findings |
---|---|---|---|---|
Nair et al. [3] | 2010 | 23 | 80% | Significant higher TSH in PCH subjects |
Rabbiosi et al. [4] | 2013 | 84 | 67% | Same clinical outcome in patients with screening TSH values < 20 and >20 mcUI/mL. M/F ratio: 0.88 for TCH vs. 1.23 for PCH (not significant). Malformations rate 12.5% for TCH vs. 13.7% for PCH. |
Cho et al. [5] | 2014 | 56 | 45% | TSH at diagnosis and levothyroxine requirement found to be predictive. M/F ratio: 0.92 for TCH vs. 0.93 for PCH. |
Messina et al. [6] | 2015 | 64 | 72% | TSH at diagnosis and levothyroxine requirement found to be predictive. |
Kara et al. [7] | 2016 | 86 | 73% | Levothyroxine requirement found to be predictive. M/F ratio: 1.7 for TCH vs. 0.7 for PCH. |
Kang et al. [8] | 2017 | 20 | 50% | TSH at diagnosis and levothyroxine requirement found to be predictive. M/F ratio: 1.3 for TCH vs. 0.6 for PCH. |
Park et al. [9] | 2017 | 100 | 65% | TSH at diagnosis and levothyroxine requirement. M/F ratio: 1.2 for TCH vs. 1.1 for PCH found to be predictive. |
Saba et al. [10] | 2018 | 92 | 54% | Levothyroxine requirement found to be predictive. M/F ratio: 1.1 for TCH vs. 1.05 for PCH. |
Oron et al. [11] | 2018 | 84 | 20% | Levothyroxine requirement found to be predictive. M/F ratio: 1.43 for TCH vs. 0.86 for PCH. |
Higuchi et al. [12] | 2019 | 30 | 50% | Levothyroxine requirement found to be predictive. M/F ratio: 0.9 for TCH vs. 1.4 for PCH (not significant). |
Park et al. [13] | 2019 | 80 | 89% | Levothyroxine requirement found to be predictive. M/F ratio: 0.97 for TCH vs. 0.55 for PCH. Malformations rate not reported. |
Asena et al. [14] | 2020 | 186 | 29% | Levothyroxine requirement found to be predictive. |
Long et al. [15] | 2020 | 190 | 45% | Mutations related to thyroid dysgenesis are more likely to have PCH. M/F ratio: 1.09 for TCH vs. 1.1 for PCH. (not significant). |
Chen et al. [16] | 2021 | 508 | 66% | Levothyroxine requirement and familial history of CH found to be predictive. M/F ratio: 1.22 for TCH vs. 1.58 for PCH (not significant). |
Current study | 2021 | 55 | 47% | M/F ratio: 0.86 for TCH vs. 3.1 for PCH. TSH above 60 mcUI/mL and fT4 inferior to 7.2 pg/mL at diagnosis and levothyroxine requirement above 2.25 mcg/kg/day found to be predictive of PCH. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tuli, G.; Munarin, J.; De Sanctis, L. Diagnostic Re-Evaluation and Potential Predictor Factors of Transient and Permanent Congenital Hypothyroidism in Eutopic Thyroid Gland. J. Clin. Med. 2021, 10, 5583. https://doi.org/10.3390/jcm10235583
Tuli G, Munarin J, De Sanctis L. Diagnostic Re-Evaluation and Potential Predictor Factors of Transient and Permanent Congenital Hypothyroidism in Eutopic Thyroid Gland. Journal of Clinical Medicine. 2021; 10(23):5583. https://doi.org/10.3390/jcm10235583
Chicago/Turabian StyleTuli, Gerdi, Jessica Munarin, and Luisa De Sanctis. 2021. "Diagnostic Re-Evaluation and Potential Predictor Factors of Transient and Permanent Congenital Hypothyroidism in Eutopic Thyroid Gland" Journal of Clinical Medicine 10, no. 23: 5583. https://doi.org/10.3390/jcm10235583
APA StyleTuli, G., Munarin, J., & De Sanctis, L. (2021). Diagnostic Re-Evaluation and Potential Predictor Factors of Transient and Permanent Congenital Hypothyroidism in Eutopic Thyroid Gland. Journal of Clinical Medicine, 10(23), 5583. https://doi.org/10.3390/jcm10235583