Similar Adaptations to 10 Weeks Concurrent Training on Metabolic Markers and Physical Performance in Young, Adult, and Older Adult Women
Abstract
:1. Introduction
2. Materials and Methods
2.1. Anthropometric Measurements
2.2. Blood Pressure Measurement
2.3. Fasting Plasma Glucose and Lipid Profile Measurement
2.4. Endurance Performance Measurement
2.5. Concurrent Exercise Training Program
2.6. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. Training-Induce Effects
3.3. Age-Group Comparisons at Main MetS Outcomes
4. Discussion
Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Parry, S.; Straker, L. The contribution of office work to sedentary behaviour associated risk. BMC Public Health 2013, 13, 296. [Google Scholar] [CrossRef] [Green Version]
- Diaz-Martinez, X.; Petermann, F.; Leiva, A.; Garrido-Mendez, A.; Salas-Bravo, C.; Martínez, M.; Labraña, A.; Duran, E.; Valdivia-Moral, P.; Zagalaz, M. Association of physical inactivity with obesity, diabetes, hypertension and metabolic syndrome in the chilean population. Rev. Med. Chile 2018, 146, 585–595. [Google Scholar]
- Petermann, F.; Durán, E.; Labraña, A.M.; Martínez, M.A.; Leiva, A.M.; Garrido-Méndez, A.; Poblete-Valderrama, F.; Díaz-Martínez, X.; Salas, C.; Celis-Morales, C. Factores de riesgo asociados al desarrollo de hipertensión arterial en Chile. Rev. Med. Chile 2017, 145, 996–1004. [Google Scholar] [CrossRef]
- Celis-Morales, C.; Salas, C.; Álvarez, C.; Aguilar Farías, N.; Ramírez Campillos, R.; Leppe, J.; Cristi-Montero, C.; Díaz Martínez, X.; Duran, E.; Labraña, A.M. Un mayor nivel de actividad física se asocia a una menor prevalencia de factores de riesgo cardiovascular en Chile: Resultados de la Encuesta Nacional de Salud 2009–2010. Rev. Med. Chile 2015, 143, 1435–1443. [Google Scholar] [CrossRef]
- Gami, A.S.; Witt, B.J.; Howard, D.E.; Erwin, P.J.; Gami, L.A.; Somers, V.K.; Montori, V.M. Metabolic syndrome and risk of incident cardiovascular events and death: A systematic review and meta-analysis of longitudinal studies. J. Am. Coll. Cardiol. 2007, 49, 403–414. [Google Scholar] [CrossRef] [Green Version]
- Alvarez, C.; Ramirez-Campillo, R.; Lucia, A.; Ramirez-Velez, R.; Izquierdo, M. Concurrent exercise training on hyperglycemia and comorbidities associated: Non-responders using clinical cutoff points. Int. J. Sports Med. 2019, 29, 952–967. [Google Scholar] [CrossRef]
- Alvarez, C.; Ramirez-Campillo, R.; Martinez-Salazar, C.; Mancilla, R.; Flores-Opazo, M.; Cano-Montoya, J.; Ciolac, E.G. Low-Volume High-Intensity Interval Training as a Therapy for Type 2 Diabetes. Int. J. Sports Med. 2016, 37, 723–729. [Google Scholar] [CrossRef]
- Alvarez, C.; Ramirez-Velez, R.; Ramirez-Campillo, R.; Lucia, A.; Alonso-Martinez, A.M.; Faundez, H.; Cadore, E.L.; Izquierdo, M. Improvements cardiometabolic risk factors in Latin American Amerindians (the Mapuche) with concurrent training. Scand. J. Med. Sci. Sports 2019, 29, 886–896. [Google Scholar] [CrossRef]
- Delgado-Floody, P.; Alvarez, C.; Cadore, E.L.; Flores-Opazo, M.; Caamano-Navarrete, F.; Izquierdo, M. Preventing metabolic syndrome in morbid obesity with resistance training: Reporting interindividual variability. Scand. J. Med. Sci. Sports 2019, 29, 1368–1381. [Google Scholar] [CrossRef]
- Ramirez-Velez, R.; Hernandez-Quinones, P.A.; Tordecilla-Sanders, A.; Alvarez, C.; Ramirez-Campillo, R.; Izquierdo, M.; Correa-Bautista, J.E.; Garcia-Hermoso, A.; Garcia, R.G. Effectiveness of HIIT compared to moderate continuous training in improving vascular parameters in inactive adults. Lipids Health Dis. 2019, 18, 42. [Google Scholar] [CrossRef] [Green Version]
- Fiuza-Luces, C.; Santos-Lozano, A.; Joyner, M.; Carrera-Bastos, P.; Picazo, O.; Zugaza, J.L.; Izquierdo, M.; Ruilope, L.M.; Lucia, A. Exercise benefits in cardiovascular disease: Beyond attenuation of traditional risk factors. Nat. Rev. Cardiol. 2018, 15, 731–743. [Google Scholar] [CrossRef] [PubMed]
- Seals, D.R.; Nagy, E.E.; Moreau, K.L. Aerobic exercise training and vascular function with ageing in healthy men and women. J. Physiol. 2019, 597, 4901–4914. [Google Scholar] [CrossRef]
- Gurka, M.J.; Ice, C.L.; Sun, S.S.; Deboer, M.D. A confirmatory factor analysis of the metabolic syndrome in adolescents: An examination of sex and racial/ethnic differences. Cardiovasc. Diabetol. 2012, 11, 128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gurka, M.J.; Lilly, C.L.; Oliver, M.N.; DeBoer, M.D. An examination of sex and racial/ethnic differences in the metabolic syndrome among adults: A confirmatory factor analysis and a resulting continuous severity score. Metabolism 2014, 63, 218–225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maiorana, A.; O’Driscoll, G.; Cheetham, C.; Dembo, L.; Stanton, K.; Goodman, C.; Taylor, R.; Green, D. The effect of combined aerobic and resistance exercise training on vascular function in type 2 diabetes. J. Am. Coll. Cardiol. 2001, 38, 860–866. [Google Scholar] [CrossRef] [Green Version]
- Okamoto, T.; Masuhara, M.; Ikuta, K. Combined aerobic and resistance training and vascular function: Effect of aerobic exercise before and after resistance training. J. Appl. Physiol. 2007, 103, 1655–1661. [Google Scholar] [CrossRef]
- Schreuder, T.H.; Van Den Munckhof, I.; Poelkens, F.; Hopman, M.T.; Thijssen, D.H. Combined aerobic and resistance exercise training decreases peripheral but not central artery wall thickness in subjects with type 2 diabetes. J. Appl. Physiol. 2015, 115, 317–326. [Google Scholar] [CrossRef] [Green Version]
- Montero, D.; Vinet, A.; Roberts, C.K. Effect of combined aerobic and resistance training versus aerobic training on arterial stiffness. Int. J. Cardiol. 2015, 178, 69–76. [Google Scholar] [CrossRef]
- Atashak, S.; Stannard, S.R.; Azizbeigi, K. Cardiovascular risk factors adaptation to concurrent training in overweight sedentary middle-aged men. J. Sports Med. Phys. Fit. 2016, 56, 624–630. [Google Scholar]
- Amaro-Gahete, F.J.; Ponce-Gonzalez, J.G.; Corral-Perez, J.; Velazquez-Diaz, D.; Lavie, C.J.; Jimenez-Pavon, D. Effect of a 12-Week Concurrent Training Intervention on Cardiometabolic Health in Obese Men: A Pilot Study. Front. Physiol. 2021, 12, 630831. [Google Scholar] [CrossRef]
- Bennie, J.A.; Ding, D.; Khan, A.; Stamatakis, E.; Biddle, S.J.; Kim, J. Run, lift, or both? Associations between concurrent aerobic-muscle strengthening exercise with adverse cardiometabolic biomarkers among Korean adults. Eur. J. Prev. Cardiol. 2020, 27, 738–748. [Google Scholar] [CrossRef] [PubMed]
- Fyfe, J.J.; Bishop, D.J.; Stepto, N.K. Interference between concurrent resistance and endurance exercise: Molecular bases and the role of individual training variables. Sports Med. 2014, 44, 743–762. [Google Scholar] [CrossRef] [PubMed]
- Coffey, V.G.; Hawley, J.A. Concurrent exercise training: Do opposites distract? J. Physiol. 2017, 595, 2883–2896. [Google Scholar] [CrossRef] [Green Version]
- Ronnestad, B.R.; Hansen, E.A.; Raastad, T. High volume of endurance training impairs adaptations to 12 weeks of strength training in well-trained endurance athletes. Eur. J. Appl. Physiol. 2012, 112, 1457–1466. [Google Scholar] [CrossRef]
- Jones, T.W.; Walshe, I.H.; Hamilton, D.L.; Howatson, G.; Russell, M.; Price, O.J.; Gibson, A.S.; French, D.N. Signaling Responses After Varying Sequencing of Strength and Endurance Training in a Fed State. Int. J. Sports Physiol. Perform. 2016, 11, 868–875. [Google Scholar] [CrossRef] [Green Version]
- Hickson, R.C.; Dvorak, B.A.; Gorostiaga, E.M.; Kurowski, T.T.; Foster, C. Potential for strength and endurance training to amplify endurance performance. J. Appl. Physiol. 1988, 65, 2285–2290. [Google Scholar] [CrossRef]
- Ho, S.S.; Dhaliwal, S.S.; Hills, A.P.; Pal, S. The effect of 12 weeks of aerobic, resistance or combination exercise training on cardiovascular risk factors in the overweight and obese in a randomized trial. BMC Public Health 2012, 12, 704. [Google Scholar] [CrossRef] [Green Version]
- Álvarez, C.; Ramírez, R.; Flores, M.; Zúñiga, C.; Celis-Morales, C.A. Efectos del ejercicio físico de alta intensidad y sobrecarga en parámetros de salud metabólica en mujeres sedentarias, pre-diabéticas con sobrepeso u obesidad. Rev. Med. Chile 2012, 140, 1289–1296. [Google Scholar] [CrossRef] [Green Version]
- Álvarez, C.; Ramírez-Vélez, R.; Ramírez-Campillo, R.; Shigenori, I.; Celis-Morales, C.; García-Hermoso, A.; Rodriguez-Mañas, L.; Lucia, A.; Izquierdo, M. Inter-individual responses to different exercise stimuli among insulin-resistant women. Scand. J. Med. Sci. Sports 2018, 28, 2052–2065. [Google Scholar] [CrossRef]
- Seron, P.; Munoz, S.; Lanas, F. Levels of physical activity in an urban population from Temuco, Chile. Rev. Med. Chile 2010, 138, 1232–1239. [Google Scholar] [CrossRef]
- ADA. 2. Classification and Diagnosis of Diabetes. Diabetes Care 2017, 40, S11–S24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alberti, K.; Eckel, R.; Grundy, S.; Zimmet, P.; Cleeman, J.; Donato, K. Harmonizing the metabolic syndrome. A joint interim statement of the IDF Task Force on Epidemiology and Prevention; NHL and Blood Institute; AHA; WHF; IAS and IA for the Study of Obesity. Circulation 2009, 120, 1640–1645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mancia, G.; Fagard, R.; Narkiewicz, K.; Redon, J.; Zanchetti, A.; Böhm, M.; Christiaens, T.; Cifkova, R.; De Backer, G.; Dominiczak, A. 2013 ESH/ESC guidelines for the management of arterial hypertension: The Task Force for the Management of Arterial Hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). Blood Press. 2013, 22, 193–278. [Google Scholar] [CrossRef] [Green Version]
- Álvarez, C.; Ramírez-Campillo, R.; Ramírez-Vélez, R.; Izquierdo, M. Effects and prevalence of nonresponders after 12 weeks of high-intensity interval or resistance training in women with insulin resistance: A randomized trial. J. Appl. Physiol. 2017, 122, 985–996. [Google Scholar] [CrossRef]
- Friedewald, W.T.; Levy, R.I.; Fredrickson, D.S. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin. Chem. 1972, 18, 499–502. [Google Scholar] [CrossRef]
- Vásquez-Gómez, J.; Castillo-Retamal, M.; Faundez-Casanova, C.; Carvalho, R.S.d.; Ramírez-Campillo, R.; Valdés-Badilla, P. Ecuación para predecir el consumo máximo de oxígeno a partir de la prueba de caminata de seis minutos en jóvenes sanos. Rev. Med. Chile 2018, 146, 830–838. [Google Scholar] [CrossRef] [Green Version]
- Gillen, J.B.; Percival, M.E.; Ludzki, A.; Tarnopolsky, M.A.; Gibala, M.J. Interval training in the fed or fasted state improves body composition and muscle oxidative capacity in overweight women. Obesity 2013, 21, 2249–2255. [Google Scholar] [CrossRef]
- Lakens, D. Calculating and reporting effect sizes to facilitate cumulative science: A practical primer for t-tests and ANOVAs. Front. Psychol. 2013, 4, 863. [Google Scholar] [CrossRef] [Green Version]
- Dumortier, M.; Brandou, F.; Perez-Martin, A.; Fedou, C.; Mercier, J.; Brun, J. Low intensity endurance exercise targeted for lipid oxidation improves body composition and insulin sensitivity in patients with the metabolic syndrome. Diabetes Metab. 2003, 29, 509–518. [Google Scholar] [CrossRef]
- Green, J.S.; Stanforth, P.R.; Rankinen, T.; Leon, A.S.; Rao, D.; Skinner, J.S.; Bouchard, C.; Wilmore, J.H. The effects of exercise training on abdominal visceral fat, body composition, and indicators of the metabolic syndrome in postmenopausal women with and without estrogen replacement therapy: The HERITAGE family study. Metabolism 2004, 53, 1192–1196. [Google Scholar] [CrossRef]
- MacInnis, M.J.; Zacharewicz, E.; Martin, B.J.; Haikalis, M.E.; Skelly, L.E.; Tarnopolsky, M.A.; Murphy, R.M.; Gibala, M.J. Superior mitochondrial adaptations in human skeletal muscle after interval compared to continuous single-leg cycling matched for total work. J. Physiol. 2017, 595, 2955–2968. [Google Scholar] [CrossRef] [PubMed]
- Castaneda, C.; Layne, J.E.; Munoz-Orians, L.; Gordon, P.L.; Walsmith, J.; Foldvari, M.; Roubenoff, R.; Tucker, K.L.; Nelson, M.E. A Randomized Controlled Trial of Resistance Exercise Training to Improve Glycemic Control in Older Adults With Type 2 Diabetes. Diabetes Care 2002, 25, 2335–2341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wewege, M.A.; Thom, J.M.; Rye, K.-A.; Parmenter, B.J. Aerobic, resistance or combined training: A systematic review and meta-analysis of exercise to reduce cardiovascular risk in adults with metabolic syndrome. Atherosclerosis 2018, 274, 162–171. [Google Scholar] [CrossRef]
- Gillen, J.B.; Gibala, M.J. Is high-intensity interval training a time-efficient exercise strategy to improve health and fitness? Appl. Physiol. Nutr. Metab. 2014, 39, 409–412. [Google Scholar] [CrossRef]
- Junior, L.C.H.; Pillay, J.D.; van Mechelen, W.; Verhagen, E. Meta-analyses of the effects of habitual running on indices of health in physically inactive adults. Sports Med. 2015, 45, 1455–1468. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, J.L.; Slentz, C.A.; Houmard, J.A.; Samsa, G.P.; Duscha, B.D.; Aiken, L.B.; McCartney, J.S.; Tanner, C.J.; Kraus, W.E. Exercise training amount and intensity effects on metabolic syndrome (from Studies of a Targeted Risk Reduction Intervention through Defined Exercise). Am. J. Cardiol. 2007, 100, 1759–1766. [Google Scholar] [CrossRef] [Green Version]
- Ramos, J.S.; Dalleck, L.C.; Borrani, F.; Beetham, K.S.; Wallen, M.P.; Mallard, A.R.; Clark, B.; Gomersall, S.; Keating, S.E.; Fassett, R.G.; et al. Low-Volume High-Intensity Interval Training Is Sufficient to Ameliorate the Severity of Metabolic Syndrome. Metab. Syndr. Relat. Disord. 2017, 15, 319–328. [Google Scholar] [CrossRef]
- Earnest, C.P.; Artero, E.G.; Sui, X.; Lee, D.-c.; Church, T.S.; Blair, S.N. Maximal estimated cardiorespiratory fitness, cardiometabolic risk factors, and metabolic syndrome in the aerobics center longitudinal study. Mayo Clin. Proc. 2013, 88, 259–270. [Google Scholar] [CrossRef] [Green Version]
- Lawrenson, L.; Hoff, J.; Richardson, R. Aging attenuates vascular and metabolic plasticity but does not limit improvement in muscle VO2 max. Am. J. Physiol. Heart Circ. Physiol. 2004, 286, H1565–H1572. [Google Scholar] [CrossRef]
- Zhang, P.; Zhang, X.; Brown, J.; Vistisen, D.; Sicree, R.; Shaw, J.; Nichols, G. Global healthcare expenditure on diabetes for 2010 and 2030. Diabetes Res. Clin. Pract. 2010, 87, 293–301. [Google Scholar] [CrossRef]
- Turnbull, F.; Neal, B.; Algert, C.; Chalmers, J.; Chapman, N.; Cutler, J.; Woodward, M.; MacMahon, S. Effects of different blood pressure-lowering regimens on major cardiovascular events in individuals with and without diabetes mellitus: Results of prospectively designed overviews of randomized trials. Arch. Intern. Med. 2005, 14, 1410–1419. [Google Scholar]
MetS Outcomes | Groups | Baseline, F and p Value | |||
---|---|---|---|---|---|
20–29y a | 30–39y b | 40–49y c | 50–59y d | ||
n = | 28 | 29 | 28 | 27 | |
Age (y) | 25.2 (23.7; 26.6) | 35.4 (34.4; 36.3) | 42.8 (41.3; 44.3) | 53.1 (50.2; 56.0) abc | (150.2), p < 0.0001 |
Primary outcomes | |||||
Waist circumference (cm) ∆pre-post (%) Pre-Post p-value | 98.4 (92.7; 104.0) −3.2 p = 0.001 | 98.0 (93.9; 102.1) −3.5 p < 0.0001 | 102.0 (97.5; 106.5) −3.5 p < 0.0001 | 101.5 (94.1; 108.9) −4.2 p = 0.002 | (0.70), p = 0.591 |
Systolic BP (mmHg) ∆pre-post (%) Pre-Post p-value | 118.8 (113.3; 124.3) −3.0 p = 0.011 | 116.4 (110.8; 122.0) −1.0 p = 0.424 | 119.2 (113.1; 125.3) −1.0 p = 0.269 | 117.6 (103.6; 131.6) 3.8 p = 0.552 | (0.17), p = 0.949 |
Diastolic BP (mmHg) ∆pre-post (%) Pre-Post p-value | 80.5 (75.5; 85.6) 0.3 p = 0.837 | 74.2 (68.7; 79.7) 6.9 p = 0.218 | 80.9 (76.1; 85.8) 4.4 p = 0.523 | 79.1 (71.8; 86.4) 5.4 p = 0.571 | (1.27), p = 0.286 |
HDL-cholesterol (mg/dL) ∆pre-post (%) Pre-Post p-value | 51.3 (46.6; 55.9) 1.1 p = 0.845 | 53.0 (48.9; 57.6) 1.1 p = 0.815 | 53.3 (47.0; 59.7) 1.5 p > 0.999 | 51.3 (45.0; 57.6) 6.9 p = 0.178 | (1.55), p = 0.196 |
Triglycerides (mg/dL) ∆pre-post (%) Pre-Post p-value | 108.3 (86.4; 130.3) −2.5 p = 0.137 | 104.0 (90.3; 117.7) −2.1 p = 0.096 | 150.5 (111.5; 189.4) −10.6 p = 0.014 | 124.1 (87.1; 161.0) −7.0 p = 0.412 | (2.37), p = 0.60 |
Fasting plasma glucose (mg/dL) ∆pre-post (%) Pre-Post p-value | 93.8 (909.1; 97.5) −2.0 p = 0.013 | 93.1 (90.4; 95.8) −0.03 p = 0.938 | 96.8 (91.5; 102.1) −1.3 p = 0.048 | 97.6 (91.0; 104.2) −0.2 p = 0.962 | (1.07), p = 0.374 |
Secondary outcomes | |||||
Body mass (kg) ∆pre-post (%) Pre-Post p-value | 79.8 (71.9; 87.7) −5.3 p < 0.0001 | 78.2 (70.7; 85.8) −5.5 p = 0.084 | 77.4 (71.9; 82.8) −7.2 p < 0.0001 | 72.8 (66.4; 79.2) −3.5 p = 0.004 | (3.13), p = 0.081 |
Body mass index (kg/m2) ∆pre-post (%) Pre-Post p-value | 31.8 (28.1; 35.4) −5.3 p < 0.0001 | 31.1 (28.2; 33.9) −2.8 p = 0.023 | 31.3 (29.0; 33.5) −3.0 p < 0.0001 | 30.7 (28.4; 33.0) −6.5 p = 0.058 | (0.26), p = 0.901 |
Total cholesterol (mg/dL) ∆pre-post (%) Pre-Post p-value | 186.0 (157.2; 214.7) −0.8 p = 0.359 | 173.7 (164.6; 182.7) −0.03 p = 0.752 | 199.0 (182.0; 216.0) −6.0 p = 0.029 | 191.7 (159.1; 224.4) 4.1 p = 0.517 | (0.98), p = 0.324 |
LDL-cholesterol (mg/dL) ∆pre-post (%) Pre-Post p-value | 113.9 (89.4; 138.4) 1.5 p = 0.532 | 99.0 (90.9; 107.1) 1.2 p = 0.774 | 115.3 (102.5; 128.2) −9.1 p = 0.013 | 115.5 (89.3; 141.7) 4.9 p = 0.769 | (1.97), p = 0.106 |
VLDL-cholesterol (mg/dL) ∆pre-post (%) Pre-Post p-value | 21.6 (17.2; 26.0) −2.5 p = 0.137 | 20.8 (18.0; 23.5) −2.1 p = 0.096 | 30.1 (22.3; 37.8) −10.6 p = 0.014 | 24.8 (17.4; 32.2) −7.0 p = 0.412 | (2.37), p = 0.060 |
TC/HDL-c (mg/dL) ratio ∆pre-post (%) Pre-Post p-value | 3.6 (3.1; 4.1) −1.1 p = 0.660 | 3.4 (3.0; 3.7) 1.1 p = 0.790 | 4.0 (3.4; 4.6) −6.5 p = 0.024 | 3.7 (3.1; 4.4) −2.5 p = 0.419 | (1.05), p = 0.384 |
MAP (mmHg) ∆pre-post (%) Pre-Post p-value | 93.4 (88.6; 98.2) −1.3 p = 0.400 | 88.3 (83.1; 93.5) 2.7 p = 0.491 | 93.7 (88.8; 98.6) −3.0 p = 0.193 | 92.0 (82.5; 101.4) −0.02 p = 0.509 | (0.88), p = 0.480 |
6 min walking test (m) ∆pre-post (%) Pre-Post p-value | 630.1 (605.4; 654.9) 7.8 p < 0.0001 | 646.3 (619.1; 673.4) 10.9 p < 0.0001 | 647.3 (616.3; 678.4) 9.4 p < 0.0001 | 639.7 (598.7; 680.8) 6.5 p = 0.037 | (0.28), p = 0.890 |
Outcomes | r = | p Value |
---|---|---|
Primary | ||
∆6Mwt—∆WC | −0.26 | p = 0.017 |
∆6Mwt—∆HDL-c | −0.08 | p = 0.460 |
∆6Mwt—∆FPG | 0.03 | p = 0.740 |
∆6Mwt—∆Tg | 0.07 | p = 0.499 |
∆6Mwt—∆SBP | 0.12 | p = 0.280 |
∆6Mwt—∆DBP | 0.02 | p = 0.801 |
Secondary | ||
∆6Mwt—∆BM | −0.21 | p = 0.054 |
∆6Mwt—∆BMI | −0.07 | p = 0.491 |
∆6Mwt—∆MAP | 0.06 | p = 0.575 |
∆6Mwt—∆TC | 0.08 | p = 0.481 |
∆6Mwt—∆LDL-c | 0.00 | p = 0.983 |
∆6Mwt—∆VLDL-c | 0.07 | p = 0.499 |
∆6Mwt—∆TC/HDL-c | −0.08 | p = 0.460 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andrade, D.C.; Flores-Opazo, M.; Peñailillo, L.; Delgado-Floody, P.; Cano-Montoya, J.; Vásquez-Gómez, J.A.; Alvarez, C. Similar Adaptations to 10 Weeks Concurrent Training on Metabolic Markers and Physical Performance in Young, Adult, and Older Adult Women. J. Clin. Med. 2021, 10, 5582. https://doi.org/10.3390/jcm10235582
Andrade DC, Flores-Opazo M, Peñailillo L, Delgado-Floody P, Cano-Montoya J, Vásquez-Gómez JA, Alvarez C. Similar Adaptations to 10 Weeks Concurrent Training on Metabolic Markers and Physical Performance in Young, Adult, and Older Adult Women. Journal of Clinical Medicine. 2021; 10(23):5582. https://doi.org/10.3390/jcm10235582
Chicago/Turabian StyleAndrade, David C., Marcelo Flores-Opazo, Luis Peñailillo, Pedro Delgado-Floody, Johnattan Cano-Montoya, Jaime A. Vásquez-Gómez, and Cristian Alvarez. 2021. "Similar Adaptations to 10 Weeks Concurrent Training on Metabolic Markers and Physical Performance in Young, Adult, and Older Adult Women" Journal of Clinical Medicine 10, no. 23: 5582. https://doi.org/10.3390/jcm10235582
APA StyleAndrade, D. C., Flores-Opazo, M., Peñailillo, L., Delgado-Floody, P., Cano-Montoya, J., Vásquez-Gómez, J. A., & Alvarez, C. (2021). Similar Adaptations to 10 Weeks Concurrent Training on Metabolic Markers and Physical Performance in Young, Adult, and Older Adult Women. Journal of Clinical Medicine, 10(23), 5582. https://doi.org/10.3390/jcm10235582