Usefulness of Aerobic Exercise for Home Blood Pressure Control in Patients with Diabetes: Randomized Crossover Trial
Abstract
:1. Introduction
1.1. Background
1.2. Aims and Objectives
2. Materials and Methods
2.1. Study Design
2.2. Study Population
2.3. Intervention
2.4. BP Measurements
2.5. Definition
2.6. Measurements and Outcomes
2.7. Statistical Analysis
3. Results
3.1. Participants
3.2. Baseline Comparisons and Carry-Over Effect
3.3. Outcome and Estimation
4. Discussion
4.1. Principal Findings
4.2. Interpretations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- DeFronzo, R.A. Insulin Resistance, Lipotoxicity, type 2 Diabetes and Atherosclerosis: The Missing Links. The Claude Bernard Lecture 2009. Diabetologia 2010, 53, 1270–1287. [Google Scholar] [CrossRef] [Green Version]
- Asia Pacific Cohort Studies Collaboration; Kengne, A.P.; Patel, A.; Barzi, F.; Jamrozik, K.; Lam, T.H.; Ueshima, H.; Gu, D.F.; Suh, I.; Woodward, M. Systolic Blood Pressure, Diabetes and the Risk of Cardiovascular Diseases in the Asia Pacific Region. J. Hypertens. 2007, 25, 1205–1213. [Google Scholar] [CrossRef] [PubMed]
- Nippon DATA80 Research Group. Risk Assessment Chart for Death From Cardio-Vascular Disease Based on a 19-Year Follow-Up Study of a Japanese Representative Population. Circ. J. 2006, 70, 1249–1255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niiranen, T.J.; Hänninen, M.R.; Johansson, J.; Reunanen, A.; Jula, A.M. Home Measured Blood Pressure Is a Stronger Predictor of Cardiovascular Risk Than Office Blood Pressure: The Finn-Home Study. Hypertension 2010, 55, 1346–1351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- MacDonald, J.R.; MacDougall, J.D.; Hogben, C.D. The Effects of Exercise Duration on Post-Exercise Hypotension. J. Hum. Hypertens. 2000, 14, 125–129. [Google Scholar] [CrossRef] [Green Version]
- Pescatello, L.S.; Franklin, B.A.; Fagard, R.; Farquhar, W.B.; Kelley, G.A.; Ray, C.A.; American College of Sports Medicine. American College of Sports Medicine Position Stand. Exercise and Hypertension. Med. Sci. Sports Exerc. 2004, 36, 533–553. [Google Scholar] [CrossRef]
- Kario, K.; Kanegae, H.; Tomitani, N.; Okawara, Y.; Fujiwara, T.; Yano, Y.; Hoshide, S. Nighttime Blood Pressure Measured by Home Blood Pressure Monitoring as an Independent Predictor of Cardiovascular Events in General Practice. Hypertension 2019, 73, 1240–1248. [Google Scholar] [CrossRef]
- Zheng, J.; Cheng, J.; Zheng, S.; Zhang, L.; Guo, X.; Zhang, J.; Xiao, X. Physical Exercise and Its Protective Effects on Diabetic Cardiomyopathy: What Is the Evidence? Front. Endocrinol. 2018, 9, 729. [Google Scholar] [CrossRef]
- Scheen, A.J.; Delanaye, P. Effects of reducing blood pressure on renal outcomes in patients with type 2 diabetes: Focus on SGLT2 inhibitors and EMPA-REG OUTCOME. Diabetes Metab. 2017, 43, 99–109. [Google Scholar] [CrossRef]
- Boyle, J.G.; Livingstone, R.; Petrie, J.R. Cardiovascular benefits of GLP-1 agonists in type 2 diabetes: A comparative review. Clin. Sci. 2018, 132, 1699–1709. [Google Scholar] [CrossRef] [Green Version]
- Committee of the Japan Diabetes Society on the Diagnostic Criteria of Diabetes Mellitus; Seino, Y.; Nanjo, K.; Tajima, N.; Kadowaki, T.; Kashiwagi, A.; Araki, E.; Ito, C.; Inagaki, N.; Iwamoto, Y.; et al. Report of the Committee on the Classification and Diagnostic Criteria of Diabetes Mellitus. J. Diabetes Investig. 2010, 1, 212–228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ainsworth, B.E.; Haskell, W.L.; Whitt, M.C.; Irwin, M.L.; Swartz, A.M.; Strath, S.J.; O’Brien, W.L.; Bassett, D.R.; Schmitz, K.H.; Emplaincourt, P.O.; et al. Compendium of Physical Activities: An Update of Activity Codes and MET Intensities. Med. Sci. Sports Exerc. 2000, 32, S498–S504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cardoso, C.R.; Maia, M.D.; de Oliveira, F.P.; Leite, N.C.; Salles, G.F. High Fitness Is Associated With a Better Cardiovascular Risk Profile in Patients With Type 2 Diabetes Mellitus. Hypertens. Res. 2011, 34, 856–861. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, E.; Sheridan, J.; O’Malley, K. Dipper and Non-Dippers. Lancet 1988, 332, 397. [Google Scholar] [CrossRef]
- Park, S.; Jastremski, C.A.; Wallace, J.P. Time of Day for Exercise on Blood Pressure Reduction in Dipping and Nondipping Hypertension. J. Hum. Hypertens. 2005, 19, 597–605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hashimoto, Y.; Osaka, T.; Fukuda, T.; Tanaka, M.; Yamazaki, M.; Fukui, M. The Relationship Between Hepatic Steatosis and Skeletal Muscle Mass Index in Men With type 2 Diabetes. Endocr. J. 2016, 63, 877–884. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iwai, K.; Ushigome, E.; Yokota, I.; Majima, S.; Nakanishi, N.; Hashimoto, Y.; Okada, H.; Senmaru, T.; Hamaguchi, M.; Asano, M.; et al. Home Blood Pressure Is Associated With Cognitive Impairment Among Elderly Patients with type 2 Diabetes: KAMOGAWA-HBP Study. Diabetes Metab. Syndr. Obes. 2020, 13, 4747–4753. [Google Scholar] [CrossRef]
- Carlson, D.J.; Inder, J.; Palanisamy, S.K.; McFarlane, J.R.; Dieberg, G.; Smart, N.A. The efficacy of isometric resistance training utilizing handgrip exercise for blood pressure management a randomized trial. Medicine 2016, 95, e5791. [Google Scholar] [CrossRef]
- Jönsson, A.; Rydberg, T.; Sterner, G.; Melander, A. Pharmacokinetics of Glibenclamide and Its Metabolites in Diabetic Patients with Impaired Renal Function. Eur. J. Clin. Pharmacol. 1998, 53, 429–435. [Google Scholar] [CrossRef]
- Freeman, P.R. The Performance of the Two-Stage Analysis of Two-Treatment, Two-Period Crossover Trials. Stat. Med. 1989, 8, 1421–1432. [Google Scholar] [CrossRef]
- Vishram, J.K.; Dahlöf, B.; Devereux, R.B.; Ibsen, H.; Kjeldsen, S.E.; Lindholm, L.H.; Mancia, G.; Okin, P.M.; Rothwell, P.M.; Wachtell, K.; et al. Blood Pressure Variability Predicts Cardiovascular Events Independently of Traditional Cardiovascular Risk Factors and Target Organ Damage: A LIFE Substudy. J. Hypertens. 2015, 33, 2422–2430. [Google Scholar] [CrossRef]
- Hastie, C.E.; Jeemon, P.; Coleman, H.; McCallum, L.; Patel, R.; Dawson, J.; Morrison, D.; Walters, M.; Sloan, W.; Jones, G.C.; et al. Long-term and ultra long-term blood pressure variability during follow-up and mortality in 14,522 patients with hypertension. Hypertension 2013, 62, 698–705. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Darabont, R.; Tautu, O.F.; Pop, D.; Fruntelata, A.; Deaconu, A.; Onciul, S.; Salaru, D.; Micoara, A.; Dorobantu, M. Visit-to-Visit Blood Pressure Variability and Arterial Stiffness Independently Predict Cardiovascular Risk Category in a General Population: Results From the SEPHAR II Study. Hellenic J. Cardiol. 2015, 56, 208–216. [Google Scholar]
- Hordern, M.D.; Marwick, T.H.; Wood, P.; Cooney, L.M.; Prins, J.B.; Coombes, J.S. Acute Response of Blood Glucose to Short-Term Exercise Training in Patients With type 2 Diabetes. J. Sci. Med. Sport. 2011, 14, 238–242. [Google Scholar] [CrossRef] [PubMed]
- Morais, P.K.; Campbell, C.S.; Sales, M.M.; Motta, D.F.; Moreira, S.R.; Cunha, V.N.C.; Benford, R.E.; Simões, H.G. Acute Resistance Exercise Is More Effective Than Aerobic Exercise for 24-h Blood Pressure Control in Type 2 Diabetics. Diabetes Metab. 2011, 37, 112–117. [Google Scholar] [CrossRef]
- Tamura, T.; Kida, K.; Suetsuna, F.; Kasai, N.; Seki, T. Follow-up Study of Continuation Versus Discontinuation of Home Exercise in type 2 Diabetes Patients. J. Phys. Ther. Sci. 2011, 23, 91–96. [Google Scholar] [CrossRef] [Green Version]
- Carpio-Rivera, E.; Moncada-Jiménez, J.; Salazar-Rojas, W.; Solera-Herrera, A. Acute Effects of Exercise on Blood Pressure: A Meta-Analytic Investigation. Arq. Bras. Cardiol. 2016, 106, 422–433. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, R.; Kasahara, Y.; Ikeo, T.; Asaki, K.; Sato, K.; Matsui, T.; Iwanuma, S.; Ohashi, N.; Hashiguchi, T. Effects of Different Intensities and Durations of Aerobic Exercise Training on Arterial Stiffness. J. Phys. Ther. Sci. 2020, 32, 104–109. [Google Scholar] [CrossRef] [Green Version]
- Piepoli, M.; Isea, J.E.; Pannarale, G.; Adamopoulos, S.; Sleight, P.; Coats, A.J. Load Dependence of Changes in Forearm and Peripheral Vascular Resistance After Acute Leg Exercise in Man. J. Physiol. 1994, 478, 357–362. [Google Scholar] [CrossRef] [Green Version]
- Rezk, C.C.; Marrache, R.C.; Tinucci, T.; Mion Jr., D.; Forjaz, C.L.M. Post-Resistance Exercise Hypo- Tension, Hemodynamics, and Heart Rate Variability: Influence of Exercise Intensity. Eur. J. Appl. Physiol. 2006, 98, 105–112. [Google Scholar] [CrossRef]
- Kiyonaga, A.; Arakawa, K.; Tanaka, H.; Shindo, M. Blood Pressure and Hormonal Responses to Aerobic Exercise. Hypertension 1985, 7, 125–131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ikeda, M.; Matsusaki, M.; Kinoshita, A.; Koga, M.; Ideishi, M.; Sasaguri, M.; Tanaka, H.; Shindo, M.; Arakawa, K. Active and Inactive Renin After Exercise. Eur. J. Appl. Physiol. Occup. Physiol. 1992, 65, 331–334. [Google Scholar] [CrossRef] [PubMed]
- Eicher, J.D.; Maresh, C.M.; Tsongalis, G.J.; Thompson, P.D.; Pescatello, L.S. The Additive Blood Pressure Lowering Effects of Exercise Intensity on Post-Exercise Hypotension. Am. Heart J. 2010, 160, 513–520. [Google Scholar] [CrossRef] [PubMed]
- Jones, H.; George, K.; Edwards, B.; Atkinson, G. Exercise intensity and blood pressure during sleep. Int. J. Sports Med. 2009, 30, 94–99. [Google Scholar] [CrossRef]
- Mokhlesi, B.; Grimaldi, D.; Beccuti, G.; Van Cauter, E. Effect of One Week of CPAP Treatment of Obstructive Sleep Apnoea on 24- Hour Profiles of Glucose, Insulin and Counter-Regulatory Hormones in type 2 Diabetes. Diabetes Obes. Metab. 2017, 19, 452–456. [Google Scholar] [CrossRef]
- Schwab, K.E.; Ronish, B.; Needham, D.M.; To, A.Q.; Martin, J.L.; Kamdar, B.B. Actigraphy to Evaluate Sleep in the Intensive Care Unit. A Systematic Review. Ann. Am. Thorac. Soc. 2018, 15, 1075–1082. [Google Scholar] [CrossRef]
- Brito, L.C.; Peçanha, T.; Fecchio, R.Y.; Rezende, R.A.; Sousa, P.; Da Silva-Júnior, N.; Abreu, A.; Silva, G.; Mion-Junior, D.; Halliwill, J.R.; et al. Morning Versus Evening Aerobic Training Effects on Blood Pressure in Treated Hypertension. Med. Sci. Sports Exerc. 2019, 51, 653–662. [Google Scholar] [CrossRef]
Study Follow-Up Visits | ||||
---|---|---|---|---|
TIMEPOINT | Enrolment | Allocation | 1 Month | 2 Months |
ENROLMENT: | ||||
Eligibility screen | X | |||
Informed consent | X | |||
Allocation | X | |||
Exercise preceding group Exercise period | X | |||
Exercise lagging group Exercise period | X | |||
HBP measurement (days 24 to 28 each period) | X | X | ||
ASSESSMENTS: | ||||
Demographics | X | |||
InBody | X | X | X | |
Sleeping habits | X | X | X | |
Medication review | X | X | X | |
Body weight | X | X | X | |
Hemoglobin A1c | X | X | X | |
Blood glucose | X | X | X | |
Serum lipid profile | X | X | X | |
Renal function | X | X | X | |
Liver function | X | X | X | |
Urinary albumin excretion | X | X | X |
Variables | Preceding | Lagging | Overall |
---|---|---|---|
n = 54 | n = 43 | n = 97 | |
Men | 33 (61.1) | 23 (53.5) | 56 (57.7) |
Women | 21 (38.9) | 20 (46.5) | 41 (42.3) |
Age (years) | 69 (63–74) | 69 (61–72) | 69 (62.8–74) |
Duration of diabetes mellitus (years) | 9.5 (5–16) | 14 (7–20) | 12 (5.8–17) |
Body mass index (kg/m2) | 24.6 (22.4–26.8) | 23.3 (21.6–26.3) | 24.3 (22.0–26.6) |
Hemoglobin A1c (%) | 7.0 (6.5–7.8) | 7.2 (6.7–7.8) | 7.2 (6.6–7.8) |
LDL cholesterol (mg/dL) | 101.5 (87.5–121.3) | 109.0 (86–122) | 104.0 (87.5–122) |
HDL cholesterol (mg/dL) | 55.5 (46.8–69.0) | 58.0 (50–68) | 57.5 (48–68.3) |
Triglycerides (mg/dL) | 123.5 (93.0–207.8) | 117 (88–159)) | 122.5 (92.5–181.8) |
eGFR (mL/min/1.73 m2) | 65.7 (57.7–82.1) | 66.1 (55.5–77.1) | 66.1 (57–77.3) |
Smoking status | |||
current | 6 (11.1) | 2 (4.7) | 8 (8.2) |
past | 18 (33.3) | 15 (34.9) | 33 (34.0) |
never | 30 (55.6) | 26 (60.5) | 56 (57.7) |
Alcohol consumption status | |||
everyday | 10 (18.5) | 4 (9.3) | 14 (14.4) |
social | 15 (27.8) | 14 (32.6) | 29 (29.9) |
none | 29 (53.7) | 25 (58.1) | 54 (55.7) |
Diabetes complication | |||
Nephropathy (microalbuminuria) | 18 (33.3) | 15 (34.9) | 33 (34.0) |
Retinopathy | 10 (18.5) | 13 (30.2) | 23 (23.7) |
Neuropathy | 14 (25.9) | 8 (18.6) | 22 (22.7) |
Macrovascular complication | 2 (3.8) | 5 (11.6) | 7 (7.2) |
Use of antihypertensive medication | 32 (59.3) | 23 (53.5) | 55 (57.0) |
Use of SGLT-2 inhibitor | 20 (37.0) | 17 (40.5) | 37 (38.0) |
Period 1 | Period 2 | EX Period–Non-EX Period | |
---|---|---|---|
Preceding group | 118.6 (114.4–122.8) | 119.2 (115.3–123.1) | −0.6 (−3.6–2.5) |
Lagging group | 116.6 (113.0–120.2) | 115.6 (111.8–119.4) | −1.0 (−3.0–0.9) |
p-value * | 0.8149 |
Variables | n | EX Period | Non-EX Period | EX Period-Non-EX Period | p-Value |
---|---|---|---|---|---|
Mean SBP at 2 a.m. | 97 | 117.3 (114.4–120.1) | 118.1 (115.4–120.1) | −0.8 (−2.7–1.1) | 0.21 |
Mean SBP at 3 a.m. | 97 | 116.9 (114.2–119.5) | 117.4 (114.7–120.0) | −0.5 (−2.3–1.3) | 0.30 |
Mean SBP at 4 a.m. | 97 | 119.3 (116.5–122.1) | 117.9 (114.9–120.8) | 1.4 (−0.3–3.2) | 0.95 |
Mean morning SBP | 87 | 130.1 (126.9–133.2) | 130.2 (127.1–133.3) | −0.1 (−2.0–1.7) | 0.44 |
Mean evening SBP | 94 | 125.7 (122.3–129.1) | 126.7 (123.4–130.0) | −1.0 (−2.8–0.9) | 0.15 |
BP variation at 2 a.m. | 97 | 10.26 (9.25–11.28) | 10.28 (9.31–11.26) | −0.02 (−1.37–1.32) | 0.49 |
BP variation at 3 a.m. | 97 | 9.89 (8.80–10.99) | 10.59 (9.48–11.71) | −0.70 (−2.15–0.75) | 0.17 |
BP variation at 4 a.m. | 97 | 9.50 (8.41–10.58) | 9.67 (8.51–10.83) | −0.17 (−1.50–116) | 0.40 |
BP variation at morning | 87 | 3.53 (2.99–4.06) | 3.59 (3.07–4.12) | −0.07 (−0.64–0.50) | 0.40 |
BP variation at evening | 94 | 3.46 (2.97–3.96) | 3.57 (3.09–4.05) | −0.10 (−0.55–0.34) | 0.32 |
Hemoglobin A1c | 97 | 7.18 (7.02–7.34) | 7.24 (7.07–7.41) | −0.66 (−0.12–0.00) | 0.03 |
Blood glucose | 97 | 145.6 (138.1–153.1) | 153.2 (143.2–163.1) | −7.6 (−17.5–2.4) | 0.07 |
LDL | 97 | 107.4 (101.7–113.1) | 109.4 (103.5–115.4) | −2.0 (−5.5–1.5) | 0.12 |
Triglycerides | 97 | 149.2 (129.9–168.6) | 147.5 (128.8–166.2) | 1.7 (−15.1–18.6) | 0.58 |
Creatinine | 96 | 0.82 (0.77–0.87) | 0.82 (0.77–0.87) | 0.00 (−0.01–0.02) | 0.74 |
AST | 97 | 27.2 (23.9–30.6) | 25.2 (21.9–28.5) | 2.0 (0.3–3.8) | 0.99 |
ALT | 97 | 27.3 (22.6–32.0) | 27.7 (23.0–32.4) | −0.4 (−2.1–1.3) | 0.32 |
Urinary albumin excretion | 81 | 102.0 (46.3–157.8) | 125.7 (23.3–228.1) | −23.7 (−89.7–42.3) | 0.24 |
Body weight | 97 | 64.8 (62.0–67.5) | 65.0 (62.2–67.7) | −0.2 (−0.4–0.0) | 0.02 |
Body mass index | 97 | 24.5 (23.7–25.3) | 24.5 (23.7–25.4) | 0.0 (−0.1–0.0) | 0.16 |
SMI | 97 | 6.95 (6.69–7.22) | 7.08 (6.81–7.35) | −0.13 (−0.35–0.10) | 0.13 |
EX Period BP Pattern (Number) | Percentage of People with Decreased Nocturnal BP (%) | Percentage of People Who Improved to Dippers (%) | ||||
---|---|---|---|---|---|---|
Non-EX Period BP Pattern (Number) | Non-Dipper | Dipper | Extreme Dipper | Riser | ||
Non-dipper (n = 24) | 14 | 8 | 0 | 2 | 33.3 | 33.3 |
Dipper (n = 41) | 9 | 26 | 4 | 2 | 9.8 | N/A |
Extreme dipper (n = 18) | 1 | 6 | 12 | 0 | 0 | 33.3 |
Riser (n = 14) | 6 | 1 | 0 | 6 | 50 | 7.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iwai, K.; Ushigome, E.; Okada, K.; Yokota, I.; Majima, S.; Nakanishi, N.; Hashimoto, Y.; Okada, H.; Senmaru, T.; Hamaguchi, M.; et al. Usefulness of Aerobic Exercise for Home Blood Pressure Control in Patients with Diabetes: Randomized Crossover Trial. J. Clin. Med. 2022, 11, 650. https://doi.org/10.3390/jcm11030650
Iwai K, Ushigome E, Okada K, Yokota I, Majima S, Nakanishi N, Hashimoto Y, Okada H, Senmaru T, Hamaguchi M, et al. Usefulness of Aerobic Exercise for Home Blood Pressure Control in Patients with Diabetes: Randomized Crossover Trial. Journal of Clinical Medicine. 2022; 11(3):650. https://doi.org/10.3390/jcm11030650
Chicago/Turabian StyleIwai, Keiko, Emi Ushigome, Kazufumi Okada, Isao Yokota, Saori Majima, Naoko Nakanishi, Yoshitaka Hashimoto, Hiroshi Okada, Takafumi Senmaru, Masahide Hamaguchi, and et al. 2022. "Usefulness of Aerobic Exercise for Home Blood Pressure Control in Patients with Diabetes: Randomized Crossover Trial" Journal of Clinical Medicine 11, no. 3: 650. https://doi.org/10.3390/jcm11030650
APA StyleIwai, K., Ushigome, E., Okada, K., Yokota, I., Majima, S., Nakanishi, N., Hashimoto, Y., Okada, H., Senmaru, T., Hamaguchi, M., Asano, M., Yamazaki, M., & Fukui, M. (2022). Usefulness of Aerobic Exercise for Home Blood Pressure Control in Patients with Diabetes: Randomized Crossover Trial. Journal of Clinical Medicine, 11(3), 650. https://doi.org/10.3390/jcm11030650