Child–Pugh Score and ABCG2-rs2231142 Genotype Independently Predict Survival in Advanced Hepatoma Patients Treated with Sorafenib
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Genotyping
2.3. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. CP Score Acts as an Independent Factor for HCC Patients Treated with Sorafenib
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Llovet, J.M.; Kelley, R.K.; Villanueva, A.; Singal, A.G.; Pikarsky, E.; Roayaie, S.; Lencioni, R.; Koike, K.; Zucman-Rossi, J.; Finn, R.S. Hepatocellular carcinoma. Nat. Rev. Dis. Primers 2021, 7, 6. [Google Scholar] [CrossRef] [PubMed]
- Hung, G.Y.; Horng, J.L.; Yen, H.J.; Lee, C.Y.; Lin, L.Y. Changing incidence patterns of hepatocellular carcinoma among age groups in Taiwan. J. Hepatol. 2015, 63, 1390–1396. [Google Scholar] [CrossRef] [PubMed]
- Heimbach, J.K.; Kulik, L.M.; Finn, R.S.; Sirlin, C.B.; Abecassis, M.M.; Roberts, L.R.; Zhu, A.X.; Murad, M.H.; Marrero, J.A. AASLD guidelines for the treatment of hepatocellular carcinoma. Hepatology 2018, 67, 358–380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Child, C.G.; Turcotte, J.G. Surgery and portal hypertension. Major Probl. Clin. Surg. 1964, 1, 1–85. [Google Scholar] [PubMed]
- Pugh, R.N.; Murray-Lyon, I.M.; Dawson, J.L.; Pietroni, M.C.; Williams, R. Transection of the oesophagus for bleeding oesophageal varices. Br. J. Surg. 1973, 60, 646–649. [Google Scholar] [CrossRef]
- Johnson, P.J.; Berhane, S.; Kagebayashi, C.; Satomura, S.; Teng, M.; Reeves, H.L.; O’Beirne, J.; Fox, R.; Skowronska, A.; Palmer, D.; et al. Assessment of liver function in patients with hepatocellular carcinoma: A new evidence-based approach-the ALBI grade. J. Clin. Oncol. 2015, 33, 550–558. [Google Scholar] [CrossRef]
- Chan, A.W.; Kumada, T.; Toyoda, H.; Tada, T.; Chong, C.C.; Mo, F.K.; Yeo, W.; Johnson, P.J.; Lai, P.B.; Chan, A.T.; et al. Integration of albumin-bilirubin (ALBI) score into Barcelona Clinic Liver Cancer (BCLC) system for hepatocellular carcinoma. J. Gastroenterol. Hepatol. 2016, 31, 1300–1306. [Google Scholar] [CrossRef]
- Llovet, J.M.; Ricci, S.; Mazzaferro, V.; Hilgard, P.; Gane, E.; Blanc, J.F.; de Oliveira, A.C.; Santoro, A.; Raoul, J.L.; Forner, A.; et al. Sorafenib in advanced hepatocellular carcinoma. N. Engl. J. Med. 2008, 359, 378–390. [Google Scholar] [CrossRef] [Green Version]
- Finn, R.S.; Qin, S.; Ikeda, M.; Galle, P.R.; Ducreux, M.; Kim, T.Y.; Kudo, M.; Breder, V.; Merle, P.; Kaseb, A.O.; et al. Atezolizumab plus Bevacizumab in Unresectable Hepatocellular Carcinoma. N. Engl. J. Med. 2020, 382, 1894–1905. [Google Scholar] [CrossRef]
- Wang, W.; Ma, X.P.; Shi, Z.; Zhang, P.; Ding, D.L.; Huang, H.X.; Saiyin, H.G.; Chen, T.Y.; Lu, P.X.; Wang, N.J.; et al. Epidermal growth factor receptor pathway polymorphisms and the prognosis of hepatocellular carcinoma. Am. J. Cancer Res. 2015, 5, 396–410. [Google Scholar] [PubMed]
- Chen, W.; Zhou, C.; Zhang, W.; Atyah, M.; Yin, Y.; Guo, L.; Tang, W.; Dong, Q.; Ye, Q.; Ren, N. Association of WWOX rs9926344 polymorphism with poor prognosis of hepatocellular carcinoma. J. Cancer 2018, 9, 1239–1247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hua, K.T.; Liu, Y.F.; Hsu, C.L.; Cheng, T.Y.; Yang, C.Y.; Chang, J.S.; Lee, W.J.; Hsiao, M.; Juan, H.F.; Chien, M.H.; et al. 3’UTR polymorphisms of carbonic anhydrase IX determine the miR-34a targeting efficiency and prognosis of hepatocellular carcinoma. Sci. Rep. 2017, 7, 4466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.; Wang, J.; Wang, Q.; Wang, J.; Yuan, J.; Si, Y. Genetic variant in DICER gene is associated with prognosis of hepatocellular carcinoma in a Chinese cohort. Hepatol. Res. 2017, 47, 845–853. [Google Scholar] [CrossRef] [PubMed]
- Tandia, M.; Mhiri, A.; Paule, B.; Saffroy, R.; Cailliez, V.; Noe, G.; Farinotti, R.; Bonhomme-Faivre, L. Correlation between clinical response to sorafenib in hepatocellular carcinoma treatment and polymorphisms of P-glycoprotein (ABCB1) and of breast cancer resistance protein (ABCG2): Monocentric study. Cancer Chemother. Pharmacol. 2017, 79, 759–766. [Google Scholar] [CrossRef] [PubMed]
- Azam, F.; Khan, M.; Khaliq, T.; Bhatti, A.B.H. Influence of ABCB1 gene polymorphism on concentration to dose ratio and adverse effects of tacrolimus in Pakistani liver transplant recipients. Pak. J. Med. Sci. 2021, 37, 689–694. [Google Scholar] [CrossRef]
- Okubo, H.; Ando, H.; Ishizuka, K.; Morishige, J.I.; Ikejima, K.; Shiina, S.; Nagahara, A. Impact of genetic polymorphisms on the pharmacokinetics and pharmacodynamics of lenvatinib in patients with hepatocellular carcinoma. J. Pharmacol. Sci. 2022, 148, 6–13. [Google Scholar] [CrossRef]
- Wang, Y.Y.; Zhong, J.H.; Su, Z.Y.; Huang, J.F.; Lu, S.D.; Xiang, B.D.; Ma, L.; Qi, L.N.; Ou, B.N.; Li, L.Q. Albumin-bilirubin versus Child-Pugh score as a predictor of outcome after liver resection for hepatocellular carcinoma. Br. J. Surg. 2016, 103, 725–734. [Google Scholar] [CrossRef]
- Wang, Z.; Fan, Q.; Wang, M.; Wang, E.; Li, H.; Liu, L. Comparison between Child-Pugh Score and albumin-bilirubin grade in patients treated with the combination therapy of transarterial chemoembolization and sorafenib for hepatocellular carcinoma. Ann. Transl. Med. 2020, 8, 537. [Google Scholar] [CrossRef]
- Murray, L.J.; Sykes, J.; Brierley, J.; Kim, J.J.; Wong, R.K.S.; Ringash, J.; Craig, T.; Velec, M.; Lindsay, P.; Knox, J.J.; et al. Baseline Albumin-Bilirubin (ALBI) Score in Western Patients With Hepatocellular Carcinoma Treated With Stereotactic Body Radiation Therapy (SBRT). Int. J. Radiat. Oncol. Biol. Phys. 2018, 101, 900–909. [Google Scholar] [CrossRef]
- Su, T.S.; Yang, H.M.; Zhou, Y.; Huang, Y.; Liang, P.; Cheng, T.; Chen, L.; Li, L.Q.; Liang, S.X. Albumin-bilirubin (ALBI) versus Child-Turcotte-Pugh (CTP) in prognosis of HCC after stereotactic body radiation therapy. Radiat. Oncol. 2019, 14, 50. [Google Scholar] [CrossRef] [PubMed]
- Tada, T.; Kumada, T.; Hiraoka, A.; Atsukawa, M.; Hirooka, M.; Tsuji, K.; Ishikawa, T.; Takaguchi, K.; Kariyama, K.; Itobayashi, E.; et al. Impact of modified albumin-bilirubin grade on survival in patients with HCC who received lenvatinib. Sci. Rep. 2021, 11, 14474. [Google Scholar] [CrossRef] [PubMed]
- Edeline, J.; Blanc, J.F.; Johnson, P.; Campillo-Gimenez, B.; Ross, P.; Ma, Y.T.; King, J.; Hubner, R.A.; Sumpter, K.; Darby, S.; et al. A multicentre comparison between Child Pugh and Albumin-Bilirubin scores in patients treated with sorafenib for Hepatocellular Carcinoma. Liver Int. 2016, 36, 1821–1828. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tada, T.; Kumada, T.; Toyoda, H.; Tsuji, K.; Hiraoka, A.; Michitaka, K.; Deguchi, A.; Ishikawa, T.; Imai, M.; Ochi, H.; et al. Impact of albumin-bilirubin grade on survival in patients with hepatocellular carcinoma who received sorafenib: An analysis using time-dependent receiver operating characteristic. J. Gastroenterol. Hepatol. 2019, 34, 1066–1073. [Google Scholar] [CrossRef]
- Hiraoka, A.; Kumada, T.; Michitaka, K.; Toyoda, H.; Tada, T.; Ueki, H.; Kaneto, M.; Aibiki, T.; Okudaira, T.; Kawakami, T.; et al. Usefulness of albumin-bilirubin grade for evaluation of prognosis of 2584 Japanese patients with hepatocellular carcinoma. J. Gastroenterol. Hepatol. 2016, 31, 1031–1036. [Google Scholar] [CrossRef]
- Kim, K.M.; Shim, S.G.; Sinn, D.H.; Song, J.E.; Kim, B.S.; Kim, H.G. Child-Pugh, MELD, MELD-Na, and ALBI scores: Which liver function models best predicts prognosis for HCC patient with ascites? Scand. J. Gastroenterol. 2020, 55, 951–957. [Google Scholar] [CrossRef]
- Qin, C.; Cao, Q.; Li, P.; Wang, S.; Wang, J.; Wang, M.; Chu, H.; Zhou, L.; Li, X.; Ye, D.; et al. The influence of genetic variants of sorafenib on clinical outcomes and toxic effects in patients with advanced renal cell carcinoma. Sci. Rep. 2016, 6, 20089. [Google Scholar] [CrossRef] [Green Version]
- Mo, W.; Zhang, J.T. Human ABCG2: Structure, function, and its role in multidrug resistance. Int. J. Biochem. Mol. Biol. 2012, 3, 1–27. [Google Scholar]
- Ghafouri, H.; Ghaderi, B.; Amini, S.; Nikkhoo, B.; Abdi, M.; Hoseini, A. Association of ABCB1 and ABCG2 single nucleotide polymorphisms with clinical findings and response to chemotherapy treatments in Kurdish patients with breast cancer. Tumour Biol. 2016, 37, 7901–7906. [Google Scholar] [CrossRef]
- Wu, H.; Liu, Y.; Kang, H.; Xiao, Q.; Yao, W.; Zhao, H.; Wang, E.; Wei, M. Genetic Variations in ABCG2 Gene Predict Breast Carcinoma Susceptibility and Clinical Outcomes after Treatment with Anthracycline-Based Chemotherapy. Biomed. Res. Int. 2015, 2015, 279109. [Google Scholar] [CrossRef] [Green Version]
- Chen, I.C.; Chen, Y.J.; Chen, Y.M.; Lin, H.J.; Lin, Y.C.; Chagn, J.C.; Chen, P.C.; Lin, C.H. Interaction of Alcohol Consumption and ABCG2 rs2231142 Variant Contributes to Hyperuricemia in a Taiwanese Population. J. Pers. Med. 2021, 11, 1158. [Google Scholar] [CrossRef] [PubMed]
Clinical Parameters | Cohort 1 (n = 97) | Cohort 2 (n = 60) | p Value |
---|---|---|---|
Gender, male, n (%) | 82 (84.5%) | 51 (85.0%) | 0.9374 |
Age, years, mean ± SD | 58.6 ± 10.6 | 58.1 ± 9.7 | 0.7834 |
ECOG status | 0.9936 | ||
Status 0, n (%) | 53 (54.6%) | 34 (56.7%) | |
Status 1, n (%) | 37 (38.1%) | 23 (38.3%) | |
Status 2, n (%) | 4 (4.1%) | 2 (3.3%) | |
Status 3, n (%) | 3 (3.1%) | 1 (1.7%) | |
HBsAg, positive, n (%) | 57 (58.8%) | 38 (63.3%) | 0.6166 |
Anti-HCV, positive, n (%) | 30 (30.9%) | 30 (50.0%) | 0.0189 |
Alcoholism, yes, n (%) | 33 (34%) | 23 (38.3%) | 0.6101 |
Cirrhosis, yes, n (%) | 83 (85.6%) | 52 (86.7%) | 1.0000 |
Ascites, yes, n (%) | 24 (24.7%) | 15 (25.0%) | 1.0000 |
Child–Pugh Score | 0.0233 | ||
5–6, n (%) | 77 (79.4%) | 36 (60.0%) | |
7–9, n (%) | 18 (18.6%) | 23 (38.3%) | |
≥10, n (%) | 2 (2.1%) | 1 (1.7%) | |
ALBI score, median (range) | −2.341 (−3.67 to −0.30) | −2.487 (−3.614 to −0.8922) | 0.1225 |
ALBI grade | 0.2156 | ||
Grade 1, n (%) | 28 (28.9%) | 20 (33.3%) | |
Grade 2, n (%) | 61 (62.9%) | 39 (65.0%) | |
Grade 3, n (%) | 8 (8.2%) | 1 (1.7%) | |
Portal vein thrombosis, yes, n (%) | 61 (61.2%) | 40 (66.7%) | 0.7321 |
Initial metastasis, yes, n (%) a | 54 (55.7%) | 32 (53.3%) | 0.8691 |
New metastasis, yes, n (%) b | 8 (8.2%) | 16 (26.7%) | 0.0027 |
All metastasis, yes, n (%) c | 62 (63.9%) | 48 (80%) | 0.0225 |
Tumor size, cm, median (range) | 5.0 (1 to 18.6) | 4.45 (1 to 17.5) | 0.5872 |
Laboratory test | |||
AFP, ng/mL, median (range) | 744.7 (2 to 831318) | 1033 (4 to 745879) | 0.4700 |
Albumin, g/L, mean ± SD | 3.8 ± 0.5 | 3.807 ± 0.5276 | 0.5106 |
Bilirubin, mg/dL, mean ± SD | 1.4 ± 2.2 | 1.330 ± 1.427 | 0.6429 |
Prothrombin time, sec, mean ± SD | 13.1 ± 1.2 | 13.07 ± 1.083 | 0.8637 |
Creatinine, mg/dL, mean ± SD | 0.8 ± 0.4 | 0.8492 ± 0.3740 | 0.5820 |
AST, U/L, mean ± SD | 80.8 ± 61.0 | 82.4 ± 56.86 | 0.5941 |
ALT, U/L, mean ± SD | 52.8 ± 37.3 | 57 ± 42.33 | 0.5865 |
Hemoglobin, g/dL, mean ± SD | 12.5 ± 1.9 | 12.7 ± 1.745 | 0.4141 |
Platelet, 1000/μL, mean ± SD | 161.7 ± 100.0 | 149.6 ± 90.06 | 0.4556 |
WBC, 1000/μL, mean ± SD | 5.9 ± 2.6 | 5.663 ± 2.719 | 0.4788 |
Previous treatment, n (%) | 76 (78.4%) | 46 (76.7%) | 0.8449 |
Sorafenib-related adverse events d | |||
Leukopenia, n (%) | 2 (2.1%) | 1 (1.7%) | 1.000 |
Neutropenia, n (%) | 3 (3.1%) | 1 (1.7%) | 1.000 |
Anemia, n (%) | 3 (3.1%) | 2 (3.3%) | 1.000 |
Thrombocytopenia, n (%) | 12 (12.4%) | 8 (13.3%) | 1.000 |
Nausea, n (%) | 0 | 0 | |
Vomiting, n (%) | 0 | 0 | |
Mucositis, n (%) | 1 (1%) | 1 (1.7%) | 1.000 |
Diarrhea, n (%) | 4 (4.1%) | 19 (31.7%) | <0.001 |
Alopecia, n (%) | 0 | 0 | |
Hepatotoxicity, n (%) | 5 (5.2%) | 3 (5.0%) | 1.000 |
Skin rash, n (%) | 13 (13.4%) | 7 (11.7%) | 0.8104 |
Fatigue, n (%) | 3 (3.1%) | 3 (5.0%) | 0.6752 |
Renal insufficiency, n (%) e | 8 (8.2%) | 6 (10.0%) | 0.7764 |
Bleeding, n (%) | 6 (6.2%) | 6 (10.0%) | 0.5378 |
Infection, n (%) | 11 (11.3%) | 7 (11.7%) | 1.000 |
Clinical Parameters | Univariate Analysis | Multivariate Analysis a | ||
---|---|---|---|---|
Hazard Ratio (95% CI) | p | Hazard Ratio (95% CI) | p | |
Gender, male = 1 | 1.442 (0.607–3.428) | 0.407 | ||
Age, per year increase | 1.011 (0.981–1.041) | 0.478 | ||
Anti-HCV, positive = 1 | 2.018 (0.988–4.123) | 0.054 | ||
HBsAg, positive = 1 | 1.914 (1.013–3.618) | 0.046 | ||
Alcoholism, yes = 1 | 1.103 (0.576–2.111) | 0.768 | ||
Cirrhosis, yes = 1 | 1.213 (0.373–3.947) | 0.748 | ||
Ascites, yes = 1 | 2.884 (1.458–5.703) | 0.002 | ||
Child–Pugh Score, per score increase | 1.754 (1.285–2.393) | <0.001 | 2.003 (1.455–2.758) | <0.001 |
Child–Pugh Score, “≥7” = 1 | 3.895 (1.799–8.435) | 0.001 | ||
ALBI score, per score increase | 1.536 (0.848–2.782) | 0.157 | ||
ECOG, per score increase | 1.577 (1.069–2.327) | 0.022 | ||
Portal vein thrombosis, yes = 1 | 1.800 (0.959–3.381) | 0.067 | ||
All metastasis, yes = 1 | 1.339 (0.695–2.579) | 0.383 | ||
Initial metastasis, yes = 1 | 1.000 (0.547–1.827) | 1.000 | ||
New metastasis after regression, yes = 1 | 1.709 (0.818–3.567) | 0.154 | ||
Tumor size, per cm increase | 1.002 (0.927–1.083) | 0.963 | ||
Alpha-fetoprotein, per 1000 ng/mL increase | 1.001 (0.999–1.004) | 0.300 | ||
Albumin, per g/L increase | 0.539 (0.282–1.029) | 0.061 | ||
Bilirubin, per mg/dL increase | 1.240 (1.029–1.494) | 0.024 | ||
Prothrombin time, per s increase | 0.749 (0.559–1.004) | 0.053 | ||
Creatinine, per mg/dL increase | 1.247 (0.745–2.087) | 0.401 | ||
AST, per U/L increase | 1.003 (0.995–1.010) | 0.486 | ||
ALT, per U/L increase | 0.990 (0.979–1.002) | 0.106 | ||
Hb, per g/dL increase | 0.919 (0.777–1.087) | 0.325 | ||
Platelet, per 1000/μL increase | 1.003 (0.999–1.006) | 0.107 | ||
WBC, per 1000/μL increase | 1.029 (0.911–1.161) | 0.648 | ||
Neutrophil, per 1000/μL increase | 1.040 (0.911–1.189) | 0.560 | ||
Neutrophil ratio | 1.013 (0.989–1.039) | 0.284 | ||
Lymphocyte, per 1000/μL | 0.946 (0.605–1.478) | 0.807 | ||
N to L ratio | 0.970 (0.841–1.119) | 0.677 | ||
P to L ratio | 1.000 (0.997–1.003) | 0.955 | ||
Previous treatment, yes = 1 | 1.185 (0.575–2.441) | 0.645 | ||
Adverse events ≥ grade 3, yes = 1 | ||||
Leukopenia | 1.260 (0.172–9.238) | 0.820 | ||
Neutropenia | 0.915 (0.220–3.804) | 0.903 | ||
Anemia | 0.629 (0.086–4.587) | 0.648 | ||
Thrombocytopenia | 1.251 (0.579–2.705) | 0.569 | ||
Nausea | - | - | ||
Vomiting | - | - | ||
Mucositis | 0.049 (0–29808681482) | 0.827 | ||
Diarrhea | 0.325 (0.076–1.386) | 0.129 | ||
Alopecia | - | - | ||
Hepatotoxicity | 2.824 (0.989–8.064) | 0.052 | ||
Skin rash | 0.720 (0.283–1.837) | 0.492 | ||
Fatigue | 4.287 (1.305–14.081) | 0.016 | ||
Renal insufficiency | 5.065 (2.283–11.233) | <0.001 | 7.661 (3.283–17.880) | <0.001 |
Bleeding | 2.677 (0.949–7.555) | 0.063 | ||
Infection | 3.860 (1.840–8.096) | <0.001 |
Clinical Parameters | Univariate Analysis | Multivariate Analysis a | ||
---|---|---|---|---|
Hazard Ratio (95% CI) | p | Hazard Ratio (95% CI) | p | |
Gender, male = 1 | 1.442 (0.607–3.428) | 0.407 | ||
Age, >65 = 1 | 0.954 (0.323–2.814) | 0.932 | ||
Anti-HCV, positive = 1 | 0.434 (0.147–1.283) | 0.131 | ||
HBsAg, positive = 1 | 2.524 (0.930–6.851) | 0.069 | ||
Alcoholism, yes = 1 | 0.833 (0.343–2.021) | 0.686 | ||
Cirrhosis, yes = 1 | 1.520 (0.201–11.486) | 0.685 | ||
Ascites, yes = 1 | 4.945 (2.019–12.108) | 0.000 | 9.947 (3.142–31.491) | <0.001 |
Child–Pugh Score, “≥ 7” = 1 | 2.619 (1.154–5.945) | 0.021 | 5.776 (2.031–16.426) | 0.001 |
ALBI score | 2.460 (0.949–6.379) | 0.064 | ||
ECOG | 1.335 (0.579–3.078) | 0.497 | ||
Portal vein thrombosis, yes = 1 | 1.204 (0.524–2.769) | 0.662 | ||
All metastasis, yes = 1 | 1.632 (0.982–2.711) | 0.059 | ||
Initial metastasis, yes = 1 | 1.096 (0.484–2.483) | 0.826 | ||
Tumor size, per cm increase | 0.978 (0.875–1.092) | 0.690 | ||
Alpha-fetoprotein, per 1000 ng/mL increase | 0.871 (0.384–1.977) | 0.741 | ||
Albumin, per g/L increase | 0.782 (0.489–1.252) | 0.306 | ||
Bilirubin, per mg/dL increase | 1.380 (1.105–1.723) | 0.004 | ||
Prothrombin time, per s increase | 0.732 (0.480–1.116) | 0.147 | ||
Creatinine, per mg/dL increase | 1.593 (0.602–4.215) | 0.348 | ||
AST, per U/L increase | 1.002 (0.993–1.012) | 0.642 | ||
ALT, per U/L increase | 0.992 (0.978–1.006) | 0.264 | ||
Hb, per g/dL increase | 0.796 (0.616–1.028) | 0.080 | ||
Platelet, per 1000/μL increase | 1.002 (0.997–1.006) | 0.497 | ||
WBC, per 1000/μL increase | 1.020 (0.878–1.185) | 0.796 | ||
Previous treatment, yes = 1 | 1.328 (0.547–3.227) | 0.531 | ||
Adverse events ≥ grade 3, yes = 1 | ||||
Leukopenia | 0.047 (0.000–2187.519) | 0.577 | ||
Neutropenia | 0.044 (0.000–144.587) | 0.450 | ||
Anemia | 0.048 (0.000–188,112) | 0.190 | ||
Vomiting | - | - | ||
Mucositis | 0.048 (0.829–44,109,144,047) | 0.829 | ||
Alopecia | - | - | ||
Hepatotoxicity | 3.662 (1.056–12.695) | 0.041 | ||
Skin rash | 0.860 (0.201–3.683) | 0.839 | ||
Fatigue | 3.738 (1.086–12.865) | 0.037 | ||
Renal insufficiency | 3.853 (1.404–10.578) | 0.009 | ||
Bleeding | 2.679 (0.902–7.952) | 0.076 | ||
Infection | 3.530 (1.361–9.157) | 0.009 | 12.168 (3.680–40.231) | <0.001 |
VEGFR2 rs7692791 non-TT = 1 | 1.377 (0.617–3.073) | 0.435 | ||
WWOX rs9926344 non-GG = 1 | 1.061 (0.439–2.565) | 0.896 | ||
DICER rs1057035 non-TT = 1 | 0.499 (0.205–1.212) | 0.125 | ||
CA9 rs1048638 non-CC = 1 | 0.288 (0.067–1.238) | 0.094 | ||
ABCB1 rs2032582 non-GG = 1 | 1.443 (0.615–3.384) | 0.399 | ||
ABCG2 rs2231142 non-CC = 1 | 0.423 (0.181–0.992) | 0.048 | 0.234 (0.090–0.607) | 0.003 |
ABCG2 rs2231137 non-CC = 1 | 2.361 (0.934–5.968) | 0.069 |
Gene | SNP | Types | |
---|---|---|---|
VEGFR2 | rs7692791 | TT type (n = 35, 58.3%) | non-TT type (n = 25, 41.7%) |
WWOX | rs9926344 | GG type (n = 43, 72.9%) | non-GG type (n = 16, 27.1%) |
CA9 | rs1048638 | CC type (n = 52, 86.7%) | non-CC type (n = 8, 13.3%) |
DICER | rs1057035 | TT type (n = 34, 63%) | non-TT type (n = 20, 37%) |
ABCB1 | rs2032582 | GG type (n = 24, 44.4%) | non-GG type (n = 30, 55.6%) |
ABCG2 | rs2231142 | CC type (n = 32, 53.3%) | non-CC type (n = 28, 46.7%) |
ABCG2 | rs2231137 | CC type (n = 26, 43.3%) | non-CC type (n = 34, 56.7%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, P.-H.; Yu, J.; Chu, Y.-Y.; Lin, Y.-H.; Yeh, C.-T. Child–Pugh Score and ABCG2-rs2231142 Genotype Independently Predict Survival in Advanced Hepatoma Patients Treated with Sorafenib. J. Clin. Med. 2022, 11, 2550. https://doi.org/10.3390/jcm11092550
Huang P-H, Yu J, Chu Y-Y, Lin Y-H, Yeh C-T. Child–Pugh Score and ABCG2-rs2231142 Genotype Independently Predict Survival in Advanced Hepatoma Patients Treated with Sorafenib. Journal of Clinical Medicine. 2022; 11(9):2550. https://doi.org/10.3390/jcm11092550
Chicago/Turabian StyleHuang, Po-Han, Jen Yu, Yin-Yi Chu, Yang-Hsiang Lin, and Chau-Ting Yeh. 2022. "Child–Pugh Score and ABCG2-rs2231142 Genotype Independently Predict Survival in Advanced Hepatoma Patients Treated with Sorafenib" Journal of Clinical Medicine 11, no. 9: 2550. https://doi.org/10.3390/jcm11092550
APA StyleHuang, P. -H., Yu, J., Chu, Y. -Y., Lin, Y. -H., & Yeh, C. -T. (2022). Child–Pugh Score and ABCG2-rs2231142 Genotype Independently Predict Survival in Advanced Hepatoma Patients Treated with Sorafenib. Journal of Clinical Medicine, 11(9), 2550. https://doi.org/10.3390/jcm11092550