The Advanced Diabetes Technologies for Reduction of the Frequency of Hypoglycemia and Minimizing the Occurrence of Severe Hypoglycemia in Children and Adolescents with Type 1 Diabetes
Abstract
:1. Introduction
2. Morbidity of Severe Hypoglycemia (Table 2)
2.1. Neurological Outcomes
Neurological outcomes |
- Impaired intellectual function including overall IQ, executive functions, learning memory and processing speed |
- Worse performance including cognitive function, attention tasks, and verbal and visual memories |
- Brain-structural abnormalities including greater hippocampal volumes and reduced gray- and white-matter volumes |
Psychological outcomes |
- Anxiery, increase general fatigue, insufficient sleep, and impairment of the quality of life |
2.2. Psychological Outcomes
3. Risk Factors for Developing Severe Hypoglycemia
3.1. Younger Age
3.2. Nocturnal Hypoglycemia
3.3. Impaired Awareness of Hypoglycemia
3.4. Frequent Episodes of Hypoglycemia
3.5. Glycemic Control
4. Advanced Diabetes Technologies for Reduction in the Frequency of Hypoglycemia
4.1. CGM
4.2. Sensor-Augmented Insulin Pump with Low Glucose Suspension System and Predictive Low Glucose Suspension System
4.3. Hybrid Closed-Loop System
5. Conclusions
Funding
Conflicts of Interest
References
- Cryer, P.E. Hypoglycemia: Still the limiting factor in the glycemic management of diabetes. Endoc. Pract. 2008, 14, 750–756. [Google Scholar] [CrossRef] [PubMed]
- American Diabetes Association. Minimizing hypoglycemia in diabetes. Diabetes Care 2015, 38, 1583–1591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abraham, M.B.; Karges, B.; Dovc, K.; Naranjo, D.; Arbelaez, A.M.; Mbogo, J.; Javelikar, G.; Jones, T.W.; Mahmud, F.H. ISPAD Clinical Practice Consensus Guidelines 2022: Assessment and management of hypoglycemia in children and adolescents with diabetes. Pediatr. Diabetes 2022, 23 (Suppl. 27), 1322–1340. [Google Scholar] [CrossRef]
- Patterson, C.C.; Dahlquist, G.; Harjutsalo, V.; Joner, G.; Feltbower, R.G.; Svensson, G.; Schober, E.; Gyürüs, E.; Castell, C.; Urbonaité, B. Early mortality in EURODIAB population-based cohorts of type 1 diabetes diagnosed in childhood since 1989. Diabetologia 2007, 50, 2439–2442. [Google Scholar] [CrossRef]
- Feltbower, R.G.; Bodansky, H.J.; Patterson, C.C.; Parslow, R.C.; Stephenson, C.R.; Reynolds, C.; McKinney, P.A. Acute complications and drug misuse are important causes of death for children and young adults with type 1 diabetes: Results from the Yorkshire register of diabetes in children and young adults. Diabetes Care 2008, 31, 922–926. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skrivarhaug, T.; Bangstad, H.J.; Stene, L.C.; Sandvik, L.; Hanssen, K.F.; Joner, G. Long-term mortality in a nationwide cohort of childhood-onset type 1 diabetic patients in Norway. Diabetologia 2006, 49, 298–305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ryan, C.M. Why is cognitive dysfunction associated with the development of diabetes early in life? The diathesis hypothesis. Pediatr. Diabetes 2006, 7, 289–297. [Google Scholar] [CrossRef]
- Gonder-Frederick, L.A.; Zrebiec, J.F.; Bauchowitz, A.U.; Ritterband, L.M.; Magee, J.C.; Cox, D.J.; Clarke, W.L. Cognitive function is disrupted by both hypo- and hyperglycemia in school-aged children with type 1 diabetes: A field study. Diabetes Care 2009, 32, 1001–1006. [Google Scholar] [CrossRef] [Green Version]
- Lin, A.; Northam, E.A.; Rankins, D.; Werther, G.A.; Cameron, F.J. Neuropsychological profiles of young people with type 1 diabetes 12 yr after disease onset. Pediatr. Diabetes 2010, 11, 235–243. [Google Scholar] [CrossRef]
- Hershey, T.; Perantie, D.C.; Warren, S.L.; Zimmerman, E.C.; Sadler, M.; White, N.H. Frequency and timing of severe hypoglycemia affects spatial memory in children with type 1 diabetes. Diabetes Care 2005, 28, 2372–2377. [Google Scholar] [CrossRef]
- Aye, T.; Reiss, A.L.; Kesler, S.; Hoang, S.; Drobny, J.; Park, Y.; Schleifer, K.; Baumgartner, H.; Wilson, D.M.; Buckingham, B.A. The feasibility of detecting neuropsychologic and neuroanatomic effects of type 1 diabetes in young children. Diabetes Care 2011, 34, 1458–1462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ho, M.S.; Weller, N.J.; Ives, F.J.; Carne, C.L.; Murray, K.; Driesen, R.I.V.; Nguyen, T.P.; Robins, P.D.; Bulsara, M.; Davis, E.A.; et al. Prevalence of structural central nervous system abnormalities in early-onset type 1 diabetes mellitus. J. Pediatr. 2008, 153, 385–390. [Google Scholar] [CrossRef] [PubMed]
- Hershey, T.; Perantie, D.C.; Wu, J.; Weaver, P.M.; Black, K.J.; White, N.H. Hippocampal volumes in youth with type 1 diabetes. Diabetes 2010, 59, 236–241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perantie, D.C.; Wu, J.; Koller, J.M.; Lim, A.; Warren, S.L.; Black, K.J.; Sadler, M.; White, N.H.; Hershey, T. Regional brain volume differences associated with hyperglycemia and severe hypoglycemia in youth with type 1 diabetes. Diabetes Care 2007, 30, 2331–2337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- The Diabetes Control and Complications Trial Research Group. Hypoglycemia in the Diabetes Control and Complications Trial. Diabetes 1997, 46, 271–286. [Google Scholar] [CrossRef]
- Bulsara, M.K.; Holman, C.D.; Davis, E.A.; Jones, T.W. The impact of a decade of changing treatment on rates of severe hypoglycemia in a population based cohort of children with type 1 diabetes. Diabetes Care 2004, 27, 2293–2298. [Google Scholar] [CrossRef] [Green Version]
- Rewers, A.; Chase, H.P.; Mackenzie, T.; Walravens, P.; Roback, M.; Rewers, M.; Hamman, R.F.; Klingensmith, G. Predictors of acute complications in children with type 1 diabetes. JAMA 2002, 287, 2511–2518. [Google Scholar] [CrossRef] [Green Version]
- O’Connell, S.M.; Cooper, M.N.; Bulsara, M.K.; Davis, E.A.; Jones, T.W. Reducing rates of severe hypoglycemia in a population-based cohort of children and adolescents with type 1 diabetes over the decade 2000–2009. Diabetes Care 2011, 34, 2379–2380. [Google Scholar] [CrossRef] [Green Version]
- Karges, B.; Rosenbauer, J.; Kapellen, T.; Wagner, V.M.; Schober, E.; Karges, W.; Holl, R.W. Hemoglobin A1c levels and risk of severe hypoglycemia in children and young adults with type 1 diabetes from Germany and Austria: A trend analysis in a cohort of 37,539 patients between 1995 and 2012. PLoS Med. 2014, 11, e1001742. [Google Scholar] [CrossRef]
- Urakami, T.; Habu, M.; Suzuki, J. DKA and severe hypoglycemia in management of type 1 diabetes during 2003–2013. Pediatr. Int. 2014, 56, 940. [Google Scholar] [CrossRef]
- Birkebaek, N.H.; Drivvoll, A.K.; Aakeson, K.; Bjarnason, R.; Johansen, A.; Samuelsson, U.; Skrivarhaug, T.; Thorsson, A.V.; Svensson, J. Incidence of severe hypoglycemia in children with type 1 diabetes in the Nordic countries in the period 2008–2012: Association with hemoglobin A1c and treatment modality. BMJ. Open Diabetes Res. Care 2017, 5, e00037722. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fredheim, S.; Johansen, A.; Thorsen, S.U.; Kremke, B.; Nielsen, L.B.; Olsen, B.S.; Lyngøe, L.; Sildorf, S.M.; Pipper, C.; Mortensen, H.B.; et al. Nationwide reduction in the frequency of severe hypoglycemia by half. Acta Diabetol. 2015, 52, 591–5999. [Google Scholar] [CrossRef] [PubMed]
- Karges, B.; Kapellen, T.; Wagner, V.M.; Steigleder-Schweiger, C.; Karges, W.; Holl, R.W.; Rosenbauer, J.; for the DPV Initiative. Glycated hemoglobin A1c as a risk factor for severe hypoglycemia in pediatric type 1 diabetes. Pediatr. Diabetes 2017, 18, 51–58. [Google Scholar] [CrossRef]
- Haynes, A.; Hermann, J.M.; Miller, K.M.; Hofer, S.E.; Jones, T.W.; Beck, R.W.; Maahs, D.M.; Davis, E.A.; Holl, R.W.; T1D Exchange, WACDD and DPV Registries. Severe hypoglycemia rates are not associated with HbA1c: A cross-sectional analysis of 3 contemporary pediatric diabetes registry databases. Pediatr. Diabetes 2017, 18, 643–650. [Google Scholar] [CrossRef] [PubMed]
- Maltoni, G.; Zucchini, S.; Scipione, M.; Rollo, A.; Balsamo, C.; Bertolini, C.; Baronio, F.; Rondelli, R.A.; Pession, A. Severe hypoglycemic episodes: A persistent threat for children with type 1 diabetes mellitus and their families. J. Endocrinol. Investig. 2013, 36, 617–621. [Google Scholar]
- Gaudieri, P.A.; Chen, R.; Greer, T.F.; Holmes, C.S. Cognitive function in children with type 1 diabetes: A meta-analysis. Diabetes Care 2008, 31, 1892–1897. [Google Scholar] [CrossRef] [Green Version]
- Cameron, F.J. The impact of diabetes on brain function in childhood and adolescence. Pediatr. Clin. N. Am. 2015, 62, 911–927. [Google Scholar] [CrossRef]
- Rovet, J.F.; Ehrlich, R.M. The effect of hypoglycemic seizures on cognitive function in children with diabetes: A 7-year prospective study. J. Pediatr. 1999, 134, 503–506. [Google Scholar] [CrossRef]
- Schoenle, E.J.; Schoenle, D.; Molinari, L.; Largo, R.H. Impaired intellectual development in children with type 1 diabetes: Association with HbA(1c), age at diagnosis and sex. Diabetologia 2002, 45, 108–114. [Google Scholar] [CrossRef] [Green Version]
- Semenkovich, K.; Patel, P.P.; Pollock, A.B.; Beach, K.A.; Neison, S.; Masterson, J.J.; Hershey, T.; Arbeláez, A.M. Academic abilities and glycaemic control in children and young people with type 1 diabetes mellitus. Diabet. Med. 2016, 33, 668–673. [Google Scholar] [CrossRef] [Green Version]
- Cato, M.A.; Mauras, N.; Ambrosino, J.; Bondurant, A.; Conrad, A.I.; Kollman, C.; Cheng, P.; Beck, R.W.; Ruedy, K.J.; Aye, T.; et al. Diabetes Research in Children Network. Cognitive functioning in young children with type 1 diabetes. J. Int. Neuropsychol. Soc. 2014, 20, 238–247. [Google Scholar] [CrossRef]
- Dafoulas, G.E.; Toulis, K.A.; McCorry, D.; Kumarendran, B.; Thomas, G.N.; Willis, B.H.; Gokhale, K.; Gkoutos, G.; Narendran, P.; Nirantharakuma, K.; et al. Type 1 diabetes mellitus and risk of incident epilepsy: A population-based, open-cohort study. Diabetologia 2017, 60, 258–261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chou, I.C.; Wang, C.H.; Lin, W.D.; Tsai, F.J.; Lin, C.C.; Kao, C.H. Risk of epilepsy in type 1 diabetes mellitus: A population-based cohort study. Diabetologia 2016, 59, 1196–1203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Driscoll, K.A.; Raymond, J.; Naranjo, D.; Patton, S.R. Fear of hypoglycemia in children and adolescents and their parents with type 1 diabetes. Curr. Diab. Rep. 2016, 16, 77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barnard, K.D.; Wysocki, T.; Allen, J.M.; Elleri, D.; Thabit, H.; Leelarathna, L.; Gulati, A.; Nodale, M.; Dunger, D.B.; Tinati, T.; et al. Closing the loop overnight at home setting: Psychosocial impact for adolescents with type 1 diabetes and their parents. BMJ Open Diabetes Res. Care 2014, 2, e000025. [Google Scholar] [CrossRef] [Green Version]
- Martyn-Nemeth, P.; Farabi, S.S.; Mihailescu, D.; Nemeth, J.; Quinn, L. Fear of hypoglycemia in adults with type 1 diabetes: Impact of therapeutic advances and strategies for prevention—A review. J. Diabetes. Complicat. 2016, 30, 167–177. [Google Scholar]
- Van Name, M.A.; Hilliard, M.E.; Boyle, C.T.; Miller, K.M.; DeSalvo, D.J.; Anderson, B.J.; Laffel, L.M.; Woerner, S.E.; DiMeglio, L.A.; Tamborlane, W.V.; et al. Nighttime is the worst time: Parental fear of hypoglycemia in young children with type 1 diabetes. Pediatr. Diabetes 2018, 19, 114–120. [Google Scholar] [CrossRef]
- Ryan, C.; Vega, A.; Drash, A. Cognitive deficits in adolescents who developed diabetes early in life. Pediatrics 1985, 75, 921–927. [Google Scholar] [CrossRef]
- Hagen, J.W.; Barklay, C.R.; Anderson, B.J.; Feeman, D.J.; Segal, S.S.; Bacon, G.; Goldstein, G.W. Intellective functioning and strategy use in children with insulin-dependent diabetes mellitus. Child. Dev. 1990, 61, 1714–1727. [Google Scholar] [CrossRef]
- Holmes, C.S.; Richman, L.C. Cognitive profiles of children with insulin-dependent diabetes. J. Dev. Behav. Pediatr. 1985, 6, 323–326. [Google Scholar] [CrossRef]
- Matyka, K.A.; Crowne, E.C.; Havel, P.J.; Macdonald, I.A.; Matthews, D.; Dunger, D.B. Counterregulation during spontaneous nocturnal hypoglycemia in prepubertal children with type 1 diabetes. Diabetes Care 1999, 22, 1144–1150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ly, T.T.; Jones, T.W. Managing hypoglycemia in children: What the clinician needs to know before advising parents. Diabetes Manag. 2012, 2, 503–512. [Google Scholar] [CrossRef]
- Jones, T.W.; Porter, P.; Sherwin, R.S.; Davis, E.A.; O’Leary, P.; Frazer, F.; Byrne, G.; Stick, S.; Tamborlane, W.V. Decreased epinephrine responses to hypoglycemia during sleep. N. Engl. J. Med. 1998, 338, 1657–1662. [Google Scholar] [CrossRef]
- Wilson, D.M.; Calhoun, P.M.; Maahs, D.M.; Chase, H.P.; Messer, L.; Buckingham, B.A.; Aye, T.; Clinton, P.K.; Hramiak, I.; Kollman, C.; et al. Factors associated with nocturnal hypoglycemia in at-risk adolescents and young adults with type 1 diabetes. Diabetes Technol. Ther. 2015, 17, 385–391. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Juvenile Diabetes Research Foundation Continuous Glucose Monitoring Study Group. Prolonged nocturnal hypoglycemia is common during 12 months of continuous glucose monitoring in children and adults with type 1 diabetes. Diabetes Care 2010, 33, 1004–1008. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beregszaszi, M.; Tubiana-Rufi, N.; Benali, K.; Noel, M.; Bloch, J.; Czernichow, P. Nocturnal hypoglycemia in children and adolescents with insulin-dependent diabetes mellitus: Prevalence and risk factors. J. Pediatr. 1997, 131, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Porter, P.A.; Keating, B.; Byrne, G.; Jones, T.W. Incidence and predictive criteria of nocturnal hypoglycemia in young children with insulin-dependent diabetes mellitus. J. Pediatr. 1997, 130, 366–372. [Google Scholar] [CrossRef] [PubMed]
- Graveling, A.J.; Frier, B.M. Impaired awareness of hypoglycaemia: A review. Diabetes Metab. 2010, 36 (Suppl. 3), S64–S74. [Google Scholar] [CrossRef]
- Arbelaez, A.M.; Xing, D.; Cryer, P.E.; Kollman, C.; Beck, R.; Sherr, J.; Ruedy, K.J.; Tamborlane, W.V.; Mauras, N.; Tsalikian, E.; et al. Blunted glucagon but not epinephrine responses to hypoglycemia occurs in youth with less than 1 yr duration of type 1 diabetes mellitus. Pediatr. Diabetes 2014, 15, 127–134. [Google Scholar] [CrossRef] [Green Version]
- Ly, T.T.; Gallego, P.H.; Davis, E.A.; Jones, T.W. Impaired awareness of hypoglycemia in a population-based sample of children and adolescents with type 1 diabetes. Diabetes Care 2009, 32, 1802–1806. [Google Scholar] [CrossRef] [Green Version]
- Abraham, M.B.; Gallego, P.H.; Brownlee, W.M.; Smith, G.J.; Davis, E.A.; Jones, T.W. Reduced prevalence of impaired awareness of hypoglycemia in a population-based clinic sample of youth with type 1 diabetes. Pediatr. Diabetes 2017, 18, 729–733. [Google Scholar] [CrossRef] [PubMed]
- Gold, A.E.; MacLeod, K.M.; Frier, B.M. Frequency of severe hypoglycemia in patients with type I diabetes with impaired awareness of hypoglycemia. Diabetes Care 1994, 17, 697–703. [Google Scholar] [CrossRef] [PubMed]
- Cranston, I.; Lomas, J.; Maran, A.; Macdonald, I.; Amiel, S.A. Restoration of hypoglycaemia awareness in patients with long-duration insulin-dependent diabetes. Lancet 1994, 344, 283–287. [Google Scholar] [CrossRef] [PubMed]
- Pacaud, D.; Hermann, J.M.; Karges, B.; Rosenbauer, J.; Danne, T.; Dürr, R.; Herbust, A.; Lindauer, S.; Müther, S.; Pötzsch, S.; et al. DPV Initiative. Risk of recurrent severe hypoglycemia remains associated with a past history of severe hypoglycemia up to 4 years: Results from a large prospective contemporary pediatric cohort of the DPV initiative. Pediatr. Diabetes 2018, 19, 493–500. [Google Scholar] [CrossRef]
- Cryer, P.E. Mechanisms of hypoglycemia-associated autonomic failure and its component syndromes in diabetes. Diabetes 2005, 54, 3592–3601. [Google Scholar] [CrossRef] [Green Version]
- Bauman, V.; Sturkey, A.C.; Sherafat-Kazemzadeh, R.; McEwan, J.; Jones, P.M.; Keating, A.; Isganaitis, E.; Ricker, A.; Rother, K.I. Factitious hypoglycemia in children and adolescents with diabetes. Pediatr. Diabetes 2018, 19, 823–831. [Google Scholar] [CrossRef]
- Maahs, D.M.; Hermann, J.M.; DuBose, S.N.; Miller, K.M.; Heidtmann, B.; DiMeglio, L.A.; Rami-Merhar, B.; Beck, R.V.; Schober, E.; Tamborlane, W.V.; et al. Contrasting the clinical care and outcomes of 2622 children with type 1 diabetes less than 6 years of age in the United States T1D exchange and German/Austrian DPV registries. Diabetologia 2014, 57, 1578–1585. [Google Scholar] [CrossRef]
- Sudhanshu, S.; Nair, V.V.; Godbole, T.; Reddy, S.V.B.; Bhatia, E.; Dabadghao, P.; Sharma, K.; Arora, P.; Bano, S.; Singh, A.; et al. Glycemic control and long-term complications in pediatric onset type 1 diabetes mellitus: A single-center experience from northern India. Indian Pediatr. 2019, 56, 191–195. [Google Scholar] [CrossRef]
- Living Evidence for Diabetes Consortium. Australian Evidence-Based Clinical Guidelines for Diabetes; Living Evidence for Diabetes Consortium; Australian Diabetes Society: Sydney, Australia, 2020. [Google Scholar]
- Foster, N.C.; Beck, R.W.; Miller, K.M.; Clements, M.A.; Rickels, M.R.; DiMeglio, L.A.; Maahs, D.M.; Tamborlane, W.V.; Bergenstal, R.; Smith, E.; et al. State of type 1 diabetes management and outcomes from the T1D exchange in 2016–2018. Diabetes Technol. Ther. 2019, 21, 66–72. [Google Scholar] [CrossRef]
- Karges, B.; Schwandt, A.; Heidtman, B.; Kordonouri, O.; Binder, E.; Schierloh, U.; Boettcher, C.; Kapellen, T.; Rosenbauer, J.; Holl, R.W. Association of insulin pump therapy vs insulin injection therapy with severe hypoglycemia, ketoacidosis, and glycemic control among children, adolescents, and young adults with type 1 diabetes. JAMA 2017, 318, 1358–1366. [Google Scholar] [CrossRef]
- Cardona-Hernandez, R.; Schwandt, A.; Alkandari, H.; Bratke, H.; Chobot, A.; Coles, N.; Corathers, S.; Goksen, D.; Goss, P.; Imane, Z.; et al. SWEET Study Group. Glycemic outcome associated with insulin pump and glucose sensor use in children and adolescents with type 1 diabetes. Data from the international pediatric registry SWEET. Diabetes Care 2021, 44, 1176–1184. [Google Scholar] [CrossRef] [PubMed]
- van Beers, C.A.; DeVries, J.H.; Kleijer, S.J.; Smits, M.M.; Geelhoed-Duijvestijn, P.H.; Kramer, M.H.; Diamant, M.; Snoek, F.J.; Serné, E.H. Continuous glucose monitoring for patients with type 1 diabetes and impaired awareness of hypoglycaemia (IN CONTROL): A randomised, open-label, crossover trial. Lancet Diabetes Endocrinol. 2016, 4, 893–902. [Google Scholar] [CrossRef] [PubMed]
- Abraham, M.B.; Nicholas, J.A.; Smith, G.J.; Janice, M.; Fairchild, J.M.; King, B.R.; Ambler, G.R.; Cameron, F.J.; Davis, E.A.; Timothy, W.; et al. Reduction in hypoglycemia with the predictive low-glucose management system: A long-term randomized controlled trial in adolescents with type 1 diabetes. Diabetes Care 2018, 41, 303–310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ly, T.T.; Nicholas, J.A.; Retterath, A.; Lim, E.M.; Davis, E.A.; Jones, T.W. Effect of sensor-augmented insulin pump therapy and automated insulin suspension vs standard insulin pump therapy on hypoglycemia in patients with type 1 diabetes: A randomized clinical trial. JAMA 2013, 310, 1240–1247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Battelino, T.; Danne, T.; Bergenstal, R.M.; Amiel, S.A.; Beck, R.; Biester, T.; Bosi, E.; Buckingham, B.A.; Cefalu, W.T.; Close, K.L.; et al. Clinical Targets for Continuous Glucose Monitoring Data Interpretation: Recommendations from the International Consensus on Time in Range. Diabetes Care 2019, 42, 1593–1603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Urakami, T.; Yoshida, K.; Kuwabara, R.; Mine, Y.; Aoki, M.; Suzuki, J.; Morioka, I. Significance of “time below range” as a glycemic marker derived from continuous glucose monitoring in Japanese children and adolescents with type 1 diabetes. Horm. Res. Paediatr. 2020, 93, 251–257. [Google Scholar] [CrossRef]
- Bergenstal, R.M.; Tamborlane, W.V.; Ahmann, A.; Buse, J.B.; Dailey, G.; Davis, S.N.; Joyce, C.; Peoples, T.; Perkins, B.A.; John, B.; et al. Effectiveness of sensor-augmented insulin-pump therapy in type 1 diabetes. N. Engl. J. Med. 2010, 363, 311–320. [Google Scholar] [CrossRef] [Green Version]
- Battelino, T.; Phillip, M.; Bratina, N.; Nimri, R.; Oskarsson, P.; Bolinder, J. Effect of continuous glucose monitoring on hypoglycemia in type 1 diabetes. Diabetes Care 2011, 34, 795–800. [Google Scholar] [CrossRef] [Green Version]
- Battelino, T.; Conget, I.; Olsen, B.; Schütz-Fuhrmann, I.; Hommel, E.; Hoogma, R.; Schierloh, U.; Sulli, N.; Bolinder, J.; SWITCH Study Group. The use and efficacy of continuous glucose monitoring in type 1 diabetes treated with insulin pump therapy: A randomised controlled trial. Diabetologia 2012, 55, 3155–3162. [Google Scholar] [CrossRef] [Green Version]
- Oskarsson, P.; Antuna, R.; Geelhoed-Duijvestijn, P.; Kröger, J.; Weitgasser, R.; Bolinder, J. Impact of flash glucose monitoring on hypoglycaemia in adults with type 1 diabetes managed with multiple daily injection therapy: A pre-specified subgroup analysis of the IMPACT randomised controlled trial. Diabetologia 2018, 61, 539–550. [Google Scholar] [CrossRef] [Green Version]
- Tamborlane, W.V.; Beck, R.W.; Bode, B.W.; Buckingham, B.; Chase, H.P.; Clemons, R.; Fiallo-Scharer, R.; Fox, L.A.; Gilliam, L.K.; Hirsch, I.B.; et al. Continuous glucose monitoring and intensive treatment of type 1 diabetes. N. Engl. J. Med. 2008, 359, 1464–1476. [Google Scholar]
- Reddy, M.; Jugnee, N.; Anantharaja, S.; Oliver, N. Switching from flash glucose monitoring to continuous glucose monitoring on hypoglycemia in adults with type 1 diabetes at high hypoglycemia risk: The extension phase of the I HART CGM study. Diabetes Technol. Ther. 2018, 20, 751–757. [Google Scholar] [CrossRef]
- Reddy, M.; Jugnee, N.; El Laboudi, A.; Spanudakis, E.; Anantharaja, S.; Oliver, N. A randomized controlled pilot study of continuous glucose monitoring and flash glucose monitoring in people with type 1 diabetes and impaired awareness of hypoglycaemia. Diabet. Med. 2018, 35, 483–490. [Google Scholar] [CrossRef] [PubMed]
- Hásková, A.; Radovnická, L.; Petruželková, L.; Parkin, C.G.; Grunberger, G.; Horová, E.; Navrátilová, V.; Kádě, O.; Matoulek, M.; Prázný, M.; et al. Real-time CGM is superior to flash glucose monitoring for glucose control in type 1 diabetes: The CORRIDA randomized controlled trial. Diabetes Care 2020, 43, 2744–2750. [Google Scholar] [CrossRef] [PubMed]
- Visser, M.M.; Charleer, S.; Fieuws, S.; De Block, C.; Hilbrands, R.; Van Huffel, L.; Maes, T.; Vanhaverbeke, G.; Dirinck, E.; Myngheer, N.; et al. Comparing real-time and intermittently scanned continuous glucose monitoring in adults with type 1 diabetes (ALERTT1): A 6-month, prospective, multicentre, randomised controlled trial. Lancet 2021, 397, 2275–2283. [Google Scholar] [CrossRef] [PubMed]
- Urakami, T.; Terada, H.; Yoshida, K.; Kuwabara, R.; Mine, Y.; Aoki, M.; Shoji, Y.; Suzuki, J.; Morioka, I. Comparison of the clinical effects of intermittently scanned and real-time continuous glucose monitoring in children and adolescents with type 1 diabetes: A retrospective cohort study. J. Diabetes Investig. 2022, 13, 1745–1752. [Google Scholar] [CrossRef]
- Ly, T.T.; Hewitt, J.; Davev, R.J.; Lim, E.M.; Davis, E.A.; Jones, T.W. Improving epinephrine responses in hypoglycemia unawareness with real-time continuous glucose monitoring in adolescents with type 1 diabetes. Diabetes Care 2011, 34, 50–52. [Google Scholar] [CrossRef] [Green Version]
- Willi, S.M.; Planton, J.; Egede, L.; Schwarz, S. Benefits of continuous subcutaneous insulin infusion in children with type 1 diabetes. J. Pediatr. 2003, 143, 796–801. [Google Scholar] [CrossRef]
- Bergenstal, R.M.; Klonoff, D.C.; Garg, S.K.; Bode, B.W.; Meredith, M.; Slover, R.H.; Ahmann, A.J.; Welsh, J.B.; Lee, S.W.; Kaufman, F.R.; et al. Threshold-based insulin-pump interruption for reduction of hypoglycemia. N. Engl. J. Med. 2013, 369, 224–232. [Google Scholar] [CrossRef] [Green Version]
- Abraham, M.B.; Davey, R.; O’Grady, M.J.; Ly, T.T.; Paramalingam, N.; Fournier, P.A.; Roy, A.; Grosman, B.; Kurtz, N.; Fairchild, J.M.; et al. Effectiveness of a predictive algorithm in the prevention of exercise-induced hypoglycemia in type 1 diabetes. Diabetes Technol. Ther. 2016, 18, 543–550. [Google Scholar] [CrossRef]
- Abraham, M.B.; De Bock, M.; Paramalingam, N.; O’Grady, M.J.; Ly, T.T.; George, C.; Roy, A.; Spital, G.; Karula, S.; Heels, K.; et al. Prevention of insulin-induced hypoglycemia in type 1 diabetes with predictive low glucose management system. Diabetes Technol. Ther. 2016, 18, 436–443. [Google Scholar] [CrossRef] [PubMed]
- Choudhary, P.; Olsen, B.S.; Conget, I.; Welsh, J.B.; Vorrink, L.; Shin, J.J. Hypoglycemia prevention and user acceptance of an insulin pump system with predictive low glucose management. Diabetes Technol. Ther. 2016, 18, 288–291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Battelino, T.; Nimri, R.; Dovc, K.; Phillip, M.; Bratina, N. Prevention of hypoglycemia with predictive low glucose insulin suspension in children with type 1 diabetes: A randomized controlled trial. Diabetes Care 2017, 40, 764–770. [Google Scholar] [CrossRef] [PubMed]
- Biester, T.; Kordonouri, O.; Holder, M.; Remus, K.; Kieninger-Baum, D.; Wadien, T.; Danne, T. “Let the algorithm do the work”: Reduction of hypoglycemia using sensor-augmented pump therapy with predictive insulin suspension (SmartGuard) in pediatric type 1 diabetes patients. Diabetes Technol. Ther. 2017, 19, 173–182. [Google Scholar] [CrossRef]
- Scaramuzza, A.E.; Arnaldi, C.; Cherubini, V.; Piccinno, E.; Rabbone, I.; Toni, S.; Tumini, S.; Candela, G.; Cipriano, P.; Ferrito, L.; et al. Use of the predictive low glucose management (PLGM) algorithm in Italian adolescents with type 1 diabetes: CareLink data download in a real-world setting. Acta Diabetol. 2017, 54, 317–319. [Google Scholar] [CrossRef]
- Forlenza, G.P.; Li, Z.; Buckingham, B.A.; Pinsker, J.E.; Cengiz, E.; Wadwa, R.P.; Ekhlaspour, L.; Church, M.M.; Weinzimer, S.A.; Jost, E.; et al. Predictive low-glucose suspend reduces hypoglycemia in adults, adolescents, and children with type 1 diabetes in an At-home randomized crossover study: Results of the PROLOG trial. Diabetes Care 2018, 41, 2155–2161. [Google Scholar] [CrossRef] [Green Version]
- Heile, M.H.; Hollstegge, B.; Broxterman, L.; Cai, A.; Close, K. Automated insulin delivery: Easy enough to use in primary care? Clin. Diabetes 2021, 38, 474–485. [Google Scholar] [CrossRef]
- Tauschmann, M.; Allen, J.M.; Wilinska, M.E.; Thabit, H.; Stewart, Z.; Cheng, P.; Kollman, C.; Acerini, C.L.; Dunger, D.B.; Hovorka, R. Day-and-night hybrid closed-loop insulin delivery in adolescents with type 1 diabetes: A free-living, randomized clinical trial. Diabetes Care 2016, 39, 1168–1174. [Google Scholar] [CrossRef] [Green Version]
- Bergenstal, R.M.; Garg, S.; Weinzimer, S.A.; Buckingham, B.A.; Bode, B.W.; Tamborlane, W.V.; Kaufman, F.R. Safety of a hybrid closed-loop insulin delivery system in patients with type 1 diabetes. JAMA 2016, 316, 1407–1408. [Google Scholar] [CrossRef]
- Brown, S.A.; Kovatchev, B.P.; Raghinaru, D.; Lum, J.W.; Kovatchev, B.A.; Kudva, Y.; Laffel, L.M.; Levy, C.J.; Pinsker, J.E.; Wadwa, R.P.; et al. Six-month randomized, multicenter trial of closed-loop control in type 1 diabetes. N. Engl. J. Med. 2019, 381, 1707–1717. [Google Scholar] [CrossRef]
- Forlenza, G.P.; Pinhas-Hamiel, O.; Liljenquist, D.R.; Shulman, D.I.; Bailey, T.S.; Bode, B.W.; Wood, M.A.; Buckingham, B.A.; Kaiserman, K.B.; Shin, J.; et al. Safety evaluation of the MiniMed 670G system in children 7–13 years of age with type 1 diabetes. Diabetes Technol. Ther. 2019, 21, 11–19. [Google Scholar] [CrossRef]
- Breton, M.D.; Kanapka, L.G.; Beck, R.W.; Ekhlaspour, L.; Forlenza, G.P.; Cengiz, E.; Schoelwer, M.; Ruedy, K.J.; Jost, E.; Carria, L.; et al. iDCL Trial Research Group. A randomized trial of closed-loop control in children with type 1 diabetes. N. Engl. J. Med. 2020, 383, 836–845. [Google Scholar] [CrossRef] [PubMed]
- Bergenstal, R.M.; Nimri, R.; Beck, R.W.; Criego, A.; Laffel, L.; Schatz, D.; Battelino, T.; Danne, T.; Weinzimer, S.A.; Sibayan, J.; et al. FLAIR Study Group. A comparison of two hybrid closed-loop systems in adolescents and young adults with type 1 diabetes (FLAIR): A multicentre, randomised, crossover trial. Lancet 2021, 397, 208–219. [Google Scholar] [CrossRef] [PubMed]
- Cobry, E.C.; Hamburger, E.; Jaser, S.S. Impact of the hybrid closed-loop system on sleep and quality of life in youth with type 1 diabetes and their parents. Diabetes Technol Ther. 2020, 22, 794–800. [Google Scholar] [CrossRef] [PubMed]
- Burckhardt, M.A.; Abraham, M.B.; Dart, J.; Smith, G.; Paramalingam, N.; O’Dea, J.; de Bock, M.; Davis, E.; Joneset, T. Impact of hybrid closed loop therapy on hypoglycemia awareness in individuals with type 1 diabetes and impaired hypoglycemia awareness. Diabetes Technol. Ther. 2021, 23, 482–490. [Google Scholar] [CrossRef] [PubMed]
Report | Year | Incidence * | Reference No. |
---|---|---|---|
DCCT | 1984–1993 | [15] | |
Conventional | 18.7 | ||
Intensive | 61.2 | ||
Bulsara MK | 1992 | 7.8 | [16] |
2002 | 16.6 | ||
Rewers A | 1996–2000 | 19.0 | [17] |
O’Connell SM | 2001 | 17.3 | [18] |
2006 | 5.8 | ||
Karges B | 1995 2012 | 20.7 3.6 | [19] |
Urakami T | 2003–2013 | 4.0 | [20] |
Cherubini V | 2011–2012 | 7.7 | [21] |
Younger aga |
Nocturnal hypoglycemia |
Impaired awareness of hypoglycemia |
Frequent episodes of hypoglycemia |
Glycemic control (Recently, association between glycemic control and the risk of severe hypoglycemia seems to be weakened.) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Urakami, T. The Advanced Diabetes Technologies for Reduction of the Frequency of Hypoglycemia and Minimizing the Occurrence of Severe Hypoglycemia in Children and Adolescents with Type 1 Diabetes. J. Clin. Med. 2023, 12, 781. https://doi.org/10.3390/jcm12030781
Urakami T. The Advanced Diabetes Technologies for Reduction of the Frequency of Hypoglycemia and Minimizing the Occurrence of Severe Hypoglycemia in Children and Adolescents with Type 1 Diabetes. Journal of Clinical Medicine. 2023; 12(3):781. https://doi.org/10.3390/jcm12030781
Chicago/Turabian StyleUrakami, Tatsuhiko. 2023. "The Advanced Diabetes Technologies for Reduction of the Frequency of Hypoglycemia and Minimizing the Occurrence of Severe Hypoglycemia in Children and Adolescents with Type 1 Diabetes" Journal of Clinical Medicine 12, no. 3: 781. https://doi.org/10.3390/jcm12030781
APA StyleUrakami, T. (2023). The Advanced Diabetes Technologies for Reduction of the Frequency of Hypoglycemia and Minimizing the Occurrence of Severe Hypoglycemia in Children and Adolescents with Type 1 Diabetes. Journal of Clinical Medicine, 12(3), 781. https://doi.org/10.3390/jcm12030781