NMR-Based Metabolomic Approach Tracks Potential Serum Biomarkers of Disease Progression in Patients with Type 2 Diabetes Mellitus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Samples
- (1)
- retinopathy was defined as dilated pupils detected on funduscopic and/or fluorescence angiography;
- (2)
- incipient nephropathy was a urinary albumin excretion rate >30 mg/24 h and normal creatinine clearance;
- (3)
- chronic renal failure was defined as an estimated glomerular filtration rate <60 mL/min per 1.73 m2, based upon the four-variable modification of diet in renal disease (MDRD) formula;
- (4)
- neuropathy was established by electromyography;
- (5)
- ischemic heart disease was diagnosed by clinical history and/or ischemic electrocardiographic alterations; these patients had had ST- or non-ST-elevation myocardial infarction, which was defined as a major adverse cardiac event (MACE);
- (6)
- Peripheral vascular disease, including arteriosclerosis obliterans and cerebrovascular disease, was diagnosed based on history, physical examination, and Doppler imaging.
2.2. Laboratory Assays
2.3. Sample Preparation and NMR Measurements
2.4. Metabolic Pathway Analysis
2.5. Statistical Analysis
3. Results
3.1. Clinical Characteristics
3.2. 1H-NMR Analysis of Serum Samples
3.3. Multivariate Analysis of NMR Data
3.4. Metabolic Pathway Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Pandey, A.; Chawla, S.; Guchhait, P. Type-2 diabetes: Current understanding and future perspectives. IUBMB Life 2015, 67, 506–513. [Google Scholar] [CrossRef]
- Bonow, R.O.; Gheorghiade, M. The diabetes epidemic: A national and global crisis. Am. J. Med. 2004, 116, 2S–10S. [Google Scholar] [CrossRef] [PubMed]
- Toniolo, A.; Cassani, G.; Puggioni, A.; Rossi, A.; Colombo, A.; Onodera, T.; Ferrannini, E. The diabetes pandemic and associated infections: Suggestions for clinical microbiology. Rev. Med. Microbiol. 2019, 30, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Kolb, H.; Martin, S. Environmental/lifestyle factors in the pathogenesis and prevention of type 2 diabetes. BMC Med. 2017, 15, 131. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, S.; Khunti, K.; Davies, M.J. Type 2 diabetes. Lancet 2017, 389, 2239–2251. [Google Scholar] [CrossRef]
- Colayco, D.C.; Niu, F.; McCombs, J.S.; Cheetham, T.C. A1C and cardiovascular outcomes in type 2 diabetes: A nested case-control study. Diabetes Care 2011, 34, 77–83. [Google Scholar] [CrossRef]
- Smooke, S.; Horwich, T.B.; Fonarow, G.C. Insulin-treated diabetes is associated with a marked increase in mortality in patients with advanced heart failure. Am. Heart J. 2005, 149, 168–174. [Google Scholar] [CrossRef]
- Herman, M.E.; O’Keefe, J.H.; Bell, D.S.H.; Schwartz, S.S. Insulin therapy increases cardiovascular risk in Type 2 Diabetes. Prog. Cardiovasc. Dis. 2017, 60, 422–434. [Google Scholar] [CrossRef] [PubMed]
- Basu, S.; Sussman, J.B.; Berkowitz, S.A.; Hayward, R.A.; Yudkin, J.S. Development and validation of risk equations for complications of type 2 diabetes (RECODe) using individual participant data from randomised trial. Lancet Diabetes Endocrinol. 2017, 5, 788–798. [Google Scholar] [CrossRef]
- Wang, T.J.; Larson, M.G.; Vasan, R.S.; Cheng, S.; Rhee, E.P.; McCabe, E.; Lewis, G.D.; Fox, C.S.; Jacques, P.F.; Fernandez, C.; et al. Metabolite profiles and the risk of developing diabetes. Nat. Med. 2011, 17, 448–453. [Google Scholar] [CrossRef]
- Gonzalez-Franquesa, A.; Burkart, A.M.; Isganaitis, E.; Patti, M.E. What have metabolomics approaches taught us about Type 2 Diabetes? Curr. Diabetes Rep. 2016, 16, 74. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhang, H.; Yao, L.; Cui, L.; Zhang, L.; Gao, B.; Liu, W.; Wu, D.; Chen, M.; Li, X.; et al. Serum metabolic profiling of type 2 diabetes mellitus in Chinese adults using an untargeted GC/TOF-MS. Clin. Chim. Acta 2018, 477, 39–47. [Google Scholar] [CrossRef]
- Papandreou, C.; Bulló, M.; Ruiz-Canela, M.; Dennis, C.; Deik, A.; Wang, D.; Guasch-Ferré, M.; Yu, E.; Razquin, C.; Corella, D.; et al. Plasma metabolites predict both insulin resistance and incident type 2 diabetes: A metabolomics approach within the prevención con dieta mediterránea (PREDIMED) study. Am. J. Clin. Nutr. 2019, 109, 626–634. [Google Scholar] [CrossRef] [PubMed]
- Friedrich, N. Metabolomics in diabetes research. J. Endocrinol. 2012, 215, 29–42. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Hu, C.; Zhao, X.; Luo, P.; Lu, J.; Li, Q.; Chen, M.; Yan, D.; Lu, X.; Kong, H.; et al. Serum metabolomics study of gliclazide-modified-release-treated type 2 diabetes mellitus patients using a gas chromatography-mass spectrometry method. Proteome Res. 2018, 17, 1575–1585. [Google Scholar] [CrossRef]
- Safai, N.; Suvitaival, T.; Ali, A.; Spégel, P.; Al-Majdoub, M.; Carstensen, B.; Tarnow, L. Effect of metformin on plasma metabolite profile in the copenhagen insulin and metformin therapy (CIMT) trial. Diabet. Med. 2018, 35, 944–953. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Qiao, S.; Shi, C.; Wang, S.; Ji, G. Metabolomics window into diabetic complications. J. Diabetes Investig. 2018, 9, 244–255. [Google Scholar] [CrossRef]
- Montesanto, A.; Bonfigli, A.R.; Crocco, P.; Garagnani, P.; De Luca, M.; Boemi, M.; Marasco, E.; Pirazzini, C.; Giuliani, C.; Franceschi, C.; et al. Genes associated with Type 2 diabetes and vascular complications. Aging 2018, 10, 178–196. [Google Scholar] [CrossRef] [PubMed]
- Bonfigli, A.R.; Spazzafumo, L.; Prattichizzo, F.; Bonafè, M.; Mensà, E.; Micolucci, L.; Giuliani, A.; Fabbietti, P.; Testa, R.; Boemi, M.; et al. Leukocyte telomere length and mortality risk in patients with type 2 diabetes. Oncotarget 2016, 7, 50835–50844. [Google Scholar] [CrossRef] [Green Version]
- Olivieri, F.; Spazzafumo, L.; Bonafè, M.; Recchioni, R.; Prattichizzo, F.; Marcheselli, F.; Micolucci, L.; Mensà, E.; Giuliani, A.; Santini, G.; et al. MiR-21-5p and miR-126a-3p levels in plasma and circulating angiogenic cells: Relationship with type 2 diabetes complications. Oncotarget 2015, 6, 35372–35382. [Google Scholar] [CrossRef]
- Testa, R.; Vanhooren, V.; Bonfigli, A.R.; Boemi, M.; Olivieri, F.; Ceriello, A.; Genovese, S.; Spazzafumo, L.; Borelli, V.; Bacalini, M.G.; et al. N-glycomic changes in serum proteins in type 2 diabetes mellitus correlate with complications and with metabolic syndrome parameters. PLoS ONE 2015, 10, e0119983. [Google Scholar] [CrossRef]
- Olivieri, F.; Bonafè, M.; Spazzafumo, L.; Gobbi, M.; Prattichizzo, F.; Recchioni, R.; Marcheselli, F.; La Sala, L.; Galeazzi, R.; Rippo, M.R.; et al. Testa, age- and glycemia-related miR-126-3p levels in plasma and endothelial cells. Aging 2014, 6, 771–787. [Google Scholar] [CrossRef]
- Balistreri, C.R.; Bonfigli, A.R.; Boemi, M.; Olivieri, F.; Ceriello, A.; Genovese, S.; Franceschi, C.; Spazzafumo, L.; Fabietti, P.; Candore, G.; et al. Evidences of +896 A/G TLR4 polymorphism as an indicative of prevalence of complications in T2DM patients. Mediat. Inflamm. 2014, 2014, 973139. [Google Scholar] [CrossRef] [PubMed]
- Testa, R.; Olivieri, F.; Sirolla, C.; Spazzafumo, L.; Rippo, M.R.; Marra, M.; Bonfigli, A.R.; Ceriello, A.; Antonicelli, R.; Franceschi, C.; et al. Leukocyte telomere length is associated with complications of type 2 diabetes mellitus. Diabet Med 2011, 28, 1388–1394. [Google Scholar] [CrossRef]
- Spazzafumo, L.; Mensà, E.; Matacchione, G.; Galeazzi, T.; Zampini, L.; Recchioni, R.; Marcheselli, F.; Prattichizzo, F.; Testa, R.; Antonicelli, R.; et al. Age-related modulation of plasmatic beta-Galactosidase activity in healthy subjects and in patients affected by T2DM. Oncotarget 2017, 8, 93338–93348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beckonert, O.; Keun, H.C.; Ebbels, T.M.; Bundy, J.; Holmes, E.; Lindon, J.C.; Nicholson, J.K. Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts. Nat. Protoc. 2007, 2, 2692. [Google Scholar] [CrossRef] [PubMed]
- Nicholson, J.K.; Foxall, P.J.; Spraul, M.; Farrant, R.D.; Lindon, J.C. 750 MHz 1H and 1H-13C NMR spectroscopy of human blood plasma. Anal. Chem. 1995, 67, 793–811. [Google Scholar] [CrossRef]
- Chong, J.; Soufan, O.; Li, C.; Caraus, L.; Li, S.; Bourque, G.; Wishart, D.S.; Xia, J. MetaboAnalyst 4.0: Towards more transparent and integrative metabolomics analysis. Nucl. Acids Res. 2018, 46, W486–W494. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Gao, J.; Chen, J.; Wang, Z.; Shi, Q.; Man, H.; Guo, S.; Wang, Y.; Li, Z.; Wang, W. Identification of metabolic biomarkers in patients with type 2 diabetic coronary heart diseases based on metabolomic approach. Sci. Rep. 2016, 6, 30785. [Google Scholar] [CrossRef] [PubMed]
- Trygg, J.; Wold, S. Orthogonal projections to latent structures (O-PLS). J. Chemom. 2002, 16, 119–128. [Google Scholar] [CrossRef]
- Girelli, C.R.; Del Coco, L.; Papadia, P.; De Pascali, S.A.; Fanizzi, F.P. Harvest year effects on Apulian EVOOs evaluated by 1H NMR based metabolomics. Peer J. 2016, 4, e2740. [Google Scholar] [CrossRef]
- De Castro, F.; Benedetti, M.; Antonaci, G.; Del Coco, L.; De Pascali, S.; Muscella, A.; Fanizzi, F.P. Response of cisplatin resistant Skov-3 cells to [Pt (O, O′-Acac)(γ-Acac)(DMS)] treatment revealed by a metabolomic 1H-NMR study. Molecules 2018, 23, 2301. [Google Scholar] [CrossRef] [PubMed]
- Del Coco, L.; Felline, S.; Girelli, C.; Angilè, F.; Magliozzi, L.; Almada, F.; D’Aniello, B.; Mollo, E.; Terlizzi, A.; Fanizzi, F. 1H NMR Spectroscopy and MVA to evaluate the effects of caulerpin-based diet on Diplodus sargus lipid profiles. Mar. Drugs 2018, 16, 390. [Google Scholar] [CrossRef] [PubMed]
- Girelli, C.R.; De Pascali, S.A.; Del Coco, L.; Fanizzi, F.P. Metabolic profile comparison of fruit juice from certified sweet cherry trees (Prunus avium L.) of Ferrovia and Giorgia cultivars: A preliminary study. Food Res. Int. 2016, 90, 281–287. [Google Scholar] [CrossRef]
- Song, B.; Zhang, G.; Zhu, W.; Liang, Z. ROC operating point selection for classification of imbalanced data with application to computer-aided polyp detection in CT colonography. Int. J. Comput. Assist. Radiol. Surg. 2014, 9, 79–89. [Google Scholar] [CrossRef] [PubMed]
- Van den Berg, R.A.; Hoefsloot, H.C.; Westerhuis, J.A.; Smilde, A.K.; van der Werf, M.J. Centering, scaling, and transformations: Improving the biological information content of metabolomics data. BMC Genom. 2006, 7, 142. [Google Scholar] [CrossRef]
- Xia, J.; Wishart, D.S. MetPA: A web-based metabolomics tool for pathway analysis and visualization. Bioinformatics 2010, 26, 2342–2344. [Google Scholar] [CrossRef] [PubMed]
- Piepoli, M.F.; Hoes, A.W.; Agewall, S.; Albus, C.; Brotons, C.; Catapano, A.L.; Cooney, M.T.; Corrà, U.; Cosyns, B.; Deaton, C.; et al. 2016 European guidelines on cardiovascular disease prevention in clinical practice: The sixth joint task force of the European society of cardiology and other societies on cardiovascular disease prevention in clinical practice (constituted by representatives of 10 societies and by invited experts) developed with the special contribution of the European association for cardiovascular prevention & rehabilitation (EACPR). Eur. Heart J. 2016, 37, 2315–2381. [Google Scholar] [PubMed]
- American Diabetes Association. 9. Pharmacologic approaches to glycemic treatment: Standards of medical care in diabetes-2019. Diabetes Care 2019, 42 (Suppl. 1), S90–S102. [Google Scholar] [CrossRef]
- Fan, T.W.M. Metabolite profiling by one-and two-dimensional NMR analysis of complex mixtures. Prog. Nucl. Mag. Res. SP 1996, 28, 161–219. [Google Scholar] [CrossRef]
- Schneider, D.J.; Sobel, B.E. PAI-1 and diabetes: A journey from the bench to the bedside. Diabetes Care 2012, 35, 1961–1967. [Google Scholar] [CrossRef]
- Fernández-Real, J.M.; López-Bermejo, A.; Ricart, W. Cross-talk between iron metabolism and diabetes. Diabetes 2002, 51, 2348–2354. [Google Scholar] [CrossRef]
- Ussher, J.R.; Elmariah, S.; Gerszten, R.E.; Dyck, J.R. The emerging role of metabolomics in the diagnosis and prognosis of cardiovascular disease. J. Am. Coll. Cardiol. 2016, 68, 2850–2870. [Google Scholar] [CrossRef] [PubMed]
- Adams, S.H. Emerging perspectives on essential amino acid metabolism in obesity and the insulin-resistant state. Adv. Nutr. 2011, 2, 445–456. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Tavintharan, S.; Sum, C.F.; Woon, K.; Lim, S.C.; Ong, C.N. Metabolic signature shift in type 2 diabetes mellitus revealed by mass spectrometry-based metabolomics. J. Clin. Endocrin. Metab. 2013, 98, E1060–E1065. [Google Scholar] [CrossRef] [PubMed]
- Wurtz, P.; Tiainen, M.; Mäkinen, V.P.; Kangas, A.J.; Soininen, P.; Saltevo, J.; Keinänen-Kiukaanniemi, S.; Mäntyselkä, P.; Lehtimäki, T.; et al. Circulating metabolite predictors of glycemia in middle-aged men and women. Diabetes Care 2012, 35, 1749–1756. [Google Scholar] [CrossRef]
- Huffman, K.M.; Shah, S.H.; Stevens, R.D.; Bain, J.R.; Muehlbauer, M.; Slentz, C.A.; Tanner, C.J.; Kuchibhatla, M.; Houmard, J.A.; Newgard, C.B.; et al. Relationships between circulating metabolic intermediates and insulin action in overweight to obese, inactive men and women. Diabetes Care 2009, 32, 1678–1683. [Google Scholar] [CrossRef]
- Qiu, G.; Zheng, Y.; Wang, H.; Sun, J.; Ma, H.; Xiao, Y.; Li, Y.; Yuan, Y.; Yang, H.; Li, X.; et al. Plasma metabolomics identified novel metabolites associated with risk of type 2 diabetes in two prospective cohorts of Chinese adults. Int. J. Epidemiol. 2016, 45, 1507–1516. [Google Scholar] [CrossRef] [Green Version]
- Boden, G.; Chen, X.; Stein, T.P. Gluconeogenesis in moderately and severely hyperglycemic patients with type 2 diabetes mellitus. Am. J. Physiol. Endocrinol. Metab. 2001, 280, E23–E30. [Google Scholar] [CrossRef]
- Magnusson, I.; Rothman, D.L.; Katz, L.D.; Shulman, R.G.; Shulman, G.I. Increased rate of gluconeogenesis in type II diabetes mellitus. J. Clin. Investig. 1992, 90, 1323–1327. [Google Scholar] [CrossRef] [PubMed]
- Gastaldelli, A.; Toschi, E.; Pettiti, M.; Frascerra, S.; Quiñones-Galvan, A.; Sironi, A.M.; Natali, A.; Ferrannini, E. Effect of physiological hyperinsulinemia on gluconeogenesis in nondiabetic subjects and in type 2 diabetic patients. Diabetes 2001, 50, 1807–1812. [Google Scholar] [CrossRef] [PubMed]
- Burrage, L.C.; Nagamani, S.C.S.; Campeau, P.M.; Lee, B.H. Branched-chain amino acid metabolism: From rare Mendelian diseases to more common disorders. Hum. Mol. Genet. 2014, 23, R1–R8. [Google Scholar] [CrossRef]
- Würtz, P.; Soininen, P.; Kangas, A.J.; Rönnemaa, T.; Lehtimäki, T.; Kähönen, M.; Viikari, J.S.; Raitakari, O.T.; Ala-Korpela, M. Branched-chain and aromatic amino acids are predictors of insulin resistance in young adults. Diabetes Care 2013, 36, 648–655. [Google Scholar] [CrossRef]
- Lee, A.; Jang, H.B.; Ra, M.; Choi, Y.; Lee, H.J.; Park, J.Y.; Kang, J.H.; Park, K.H.; Park, S.I.; Song, J. Prediction of future risk of insulin resistance and metabolic syndrome based on Korean boy’s metabolite profiling. Obes. Res. Clin. Pract. 2015, 9, 336–345. [Google Scholar] [CrossRef] [PubMed]
- Gar, C.; Rottenkolber, M.; Prehn, C.; Adamski, J.; Seissler, J.; Lechner, A. Serum and plasma amino acids as markers of prediabetes, insulin resistance, and incident diabetes. Crit. Rev. Clin. Lab. Sci. 2018, 55, 21–32. [Google Scholar] [CrossRef]
- Saleem, T.; Dahpy, M.; Ezzat, G.; Abdelrahman, G.; Abdel-Aziz, E.; Farghaly, R. The profile of plasma free amino acids in type 2 diabetes mellitus with insulin resistance: Association with microalbuminuria and macroalbuminuria. Appl. Biochem. Biotechnol. 2019, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Shin, A.C.; Fasshauer, M.; Filatova, N.; Grundell, L.A.; Zielinski, E.; Zhou, J.Y.; Scherer, T.; Lindtner, C.; White, P.J.; Lapworth, A.L.; et al. Brain insulin lowers circulating BCAA levels by inducing hepatic BCAA catabolism. Cell Metab. 2014, 20, 898–909. [Google Scholar] [CrossRef]
- Gowda, K.; Zinnanti, W.J.; LaNoue, K. The influence of diabetes on glutamate metabolism in retinas. J. Neurochem. 2011, 117, 309–320. [Google Scholar] [CrossRef]
- Layman, D.K.; Walker, D.A. Potential importance of leucine in treatment of obesity and the metabolic syndrome. J. Nutr. 2006, 136, 319S–323S. [Google Scholar] [CrossRef] [PubMed]
- Mirmiranpour, H.; Khaghani, S.; Bathaie, S.Z.; Nakhjavani, M.; Kebriaeezadeh, A.; Ebadi, M.; Gerayesh-Nejad, S.; Zangooei, M. The preventive effect of L-Lysine on lysozyme glycation in Type 2 Diabetes. Acta Med. Iran 2016, 54, 24–31. [Google Scholar]
- Olio, F.; Vanhooren, V.; Chen, C.C.; Slagboom, P.E.; Wuhrer, M.; Franceschi, C. N-glycomic biomarkers of biological aging and longevity: A link with inflammaging. Ageing Res. Rev. 2013, 12, 685–698. [Google Scholar] [Green Version]
- Labrie, F.; Korner, A. Effect of glucagon, insulin, and thyroxine on tyrosine transaminase and tryptophan pyrrolase of rat liver. Arch. Biochem. Biophys. 1969, 129, 75–78. [Google Scholar] [CrossRef]
- Welsh, P.; Rankin, N.; Li, Q.; Mark, PB.; Würtz, P.; Ala-Korpela, M.; Marre, M.; Poulter, N.; Hamet, P.; Chalmers, J.; et al. Circulating amino acids and the risk of macrovascular, microvascular and mortality outcomes in individuals with type 2 diabetes: Results from the ADVANCE trial. Diabetologia 2018, 61, 1581–1591. [Google Scholar] [CrossRef] [PubMed]
- Kopple, J.D. Phenylalanine and tyrosine metabolism in chronic kidney failure. J. Nutr. 2007, 137, 1586S–1590S. [Google Scholar] [CrossRef] [PubMed]
- Fernstrom, J.D.; Fernstrom, M.H. Tyrosine, phenylalanine, and catecholamine synthesis and function in the brain. J. Nutr. 2007, 137, 1539S–1547S. [Google Scholar] [CrossRef] [PubMed]
- Hellmuth, C.; Kirchberg, F.F.; Lass, N.; Harder, U.; Peissner, W.; Koletzko, B.; Reinehr, T. Tyrosine is associated with insulin resistance in longitudinal metabolomic profiling of obese children. J. Diabetes Res. 2016, 2016, 2108909. [Google Scholar] [CrossRef] [PubMed]
- Kawanaka, M.; Nishino, K.; Oka, T.; Urata, N.; Nakamura, J.; Suehiro, M.; Kawamoto, H.; Chiba, Y.; Yamada, G. Tyrosine levels are associated with insulin resistance in patients with nonalcoholic fatty liver disease. Hepat. Med. 2015, 7, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Jones, L.L.; McDonald, D.A.; Borum, P.R. Acylcarnitines: Role in brain. Prog. Lipid Res. 2010, 49, 61–75. [Google Scholar] [CrossRef]
- Samuel, V.T.; Shulman, G.I. The pathogenesis of insulin resistance: Integrating signaling pathways and substrate flux. J. Clin. Invest. 2016, 126, 12–22. [Google Scholar] [CrossRef]
Number | |
---|---|
Median Age (Range) | 64 (55–72) |
Gender | |
Male | 7/13 |
Female | 6/13 |
Complications | |
Neuropathy | 9/13 |
Nephropathy | 7/13 |
Retinopathy | 12/13 |
Chronic renal failure | 4/13 |
Lower limb arteriopathy | 5/13 |
Mace | 5/13 |
T2DM-NC | T2DM-C | |
---|---|---|
ACE inhibitors | 1 | 8 |
Diuretics | - | 5 |
Vasodilators | - | 4 |
Beta blockers | - | 4 |
Antiarrhythmic drugs | - | 2 |
Calcium channel blockers | - | 3 |
Statins | 1 | 1 |
Antiplatelet drugs | - | 5 |
NSAIDs | - | 7 |
Proton-pump inhibitors | 1 | 2 |
CNS agents | 2 | 2 |
CG | T2DM-NC | T2DM-C | |
---|---|---|---|
Number of subjects (n) | 7 | 13 | 13 |
Male gender (n, %) | 4, 57.1% | 8, 61.5% | 7, 53.8% |
Age (years) | 63 ± 2 | 64 ± 3 | 64 ± 4 |
BMI (kg/m2) | 26.94 ± 3.05 | 28.78 ± 4.05 | 29.31 ± 3.82 |
WHR | 0.90 ± 0.07 | 0.94 ± 0.06 | 0.94 ± 0.06 |
Fasting glucose (mg/dL) | 93 ± 6.2 | 165 ± 59.4 ***,b | 247 ± 65.0 ***,a |
HbA1c (%) | 5.68 ± 0.38 | 6.92 ± 0.90 ***,b | 8.87 ± 1.73 ***,a |
Fasting insulin (mU/L) | 5.2 ± 1.6 | 9.2 ± 7.8 | 8.5 ± 4 |
hsCRP (mg/L) | 2.4 ± 2.1 | 3.5 ± 3.1 | 3.9 ± 2.8 |
PAI-1 (ng/mL) | 18.9 ± 5.7 | 24.7 ± 11 | 16 ± 8* |
Creatinine (mg/dL) | 0.81 ± 0.17 | 0.91 ± 0.19 | 1.33 ± 0.70 * |
Azotemia (mg/dL) | 38 ± 7.9 | 38 ± 9.7 b | 54 ± 30 **,a |
Ferritin (ng/mL) | 111 ± 71 | 236 ± 177 ** | 140 ± 113 |
Total cholesterol (mg/dL) | 237 ± 25 | 230 ± 36 | 215 ± 43 |
HDL cholesterol (mg/dL) | 59 ± 11 | 58 ± 15 | 51 ± 14 |
LDL cholesterol (mg/dL) | 141 ± 24 | 136 ± 36 | 116 ± 34 |
Triglycerides (mg/dL) | 106 ± 46 | 142 ± 128 | 160 ± 95 |
ApoB (mg/dL) | 109 ± 2 | 112.8 ± 30 | 105.1 ± 30 |
IGF1 (ng/mL) | 32.7 ± 6.5 | 38.5 ± 9.7 | 32.9 ± 5.8 |
β-Galactosidase (nM/ml/h) | 5.47 ± 1.73 | 3.77 ± 3.11 | 6.65 ± 3.87 |
α-Fucosidase (nM/ml/h) | 374 ± 179 | 328 ± 208 | 389 ± 219 |
HOMA-IR | 1.2 ± 0.4 | 2.9 ± 2.0 * | 4.3 ± 1.9 *** |
eGRF (ml/min) | 89.7 ± 28.1 | 82.8 ± 14.7 | 60.5 ± 25.3 * |
Disease duration (years) | n/a | n/a | 22 ± 12 |
Metabolite | Chemical Shift (ppm) | Integral in CG Group a (Mean ± SD) × 10−2 | Integral in T2DM-NC a Group (Mean ± SD) × 10−2 | Integral in T2DM-C a Group (Mean ± SD) × 10−2 | p-Value | Tukey’s HSD Adjusted p-Value (FDR) Cutoff: 0.05 b |
---|---|---|---|---|---|---|
Alanine | 1.49 (d) | 1.95 ± 0.27 | 1.14 ± 0.38 (↓) | 0.96 ± 0.25 (↓) | 6.89 × 10−7 | T2DM-C/CG; T2DM-NC/CG |
α-glucose | 5.25 (d) | 1.57 ± 0.14 | 3.16 ± 0.45 (↑) | 3.37 ± 0.77 (↑) | 5.35 × 10−7 | T2DM-C/CG; T2DM-NC/CG |
β-glucose | 4.66 (d) | 1.54 ± 0.14 | 2.33 ± 0.18 (↑) | 2.56 ± 0.33 (↑) | 6.26 × 10−9 | T2DM-C/CG; T2DM-NC/CG |
Carnitine | 3.22 (s) | 2.35 ± 0.4 | 2.04 ± 0.45 (↓) | 1.54 ± 0.33 (↓) | 3.38 × 10−4 | T2DM-C/CG; T2DM-NC/T2DM-C |
Citrate | 2.65 (d)-2.56(d) | 0.17 ± 0.006 | 0.14 ± 0.04 (↓) | 0.11 ± 0.035 (↓) | 1.2 × 10−2 | T2DM-C/CG |
Creatine/creatinine | 3.05 (s) | 0.82 ± 0.13 | 0.6 ± 0.16 (↓) | 0.53 ± 0.17 (↓) | 2.1 × 10−3 | T2DM-C/CG; T2DM-NC/CG |
Glutamate | 2.38 (m) | 0.61 ± 0.16 | 0.41 ± 0.08 (↓) | 0.34 ± 0.08 (↓) | 2.35 × 10−5 | T2DM-C/CG; T2DM-NC/CG |
Glutamine | 2.45 (m) | 0.37 ± 0.008 | 0.26 ± 0.07 (↓) | 0.2 ± 0.05 (↓) | 5.34 × 10−5 | T2DM-C/CG; T2DM-NC/CG |
Isoleucine | 1.02 (d) | 1.32 ± 0.25 | 1.15 ± 0.24 (↓) | 0.88 ± 0.1 (↓) | 1.15 × 10−4 | T2DM-C/CG; T2DM-NC/T2DM-C |
Leucine | 0.98 (d) | 1.99 ± 0.31 | 1.64 ± 0.24 (↓) | 1.32 ± 0.2 (↓) | 9.48 × 10−6 | T2DM-C/CG; T2DM-NC/CG; T2DM-NC/T2DM-C |
Lactate | 1.33 (d) | 6.05 ± 0.82 | 5.4 ± 1.6 (↓) | 4.1 ± 1.4 (↓) | 1.18 × 10−2 | T2DM-C/CG; T2DM-NC/T2DM-C |
Lysine | 1.74 (m) | 0.41 ± 0.005 | 0.29 ± 0.05 (↓) | 0.24 ± 0.05 (↓) | 6.20 × 10−7 | T2DM-C/CG; T2DM-NC/CG; T2DM-NC/T2DM-C |
Methionine | 2.14 (m) | 1.72 ± 0.19 | 1.21 ± 0.33 (↓) | 0.96 ± 0.26 (↓) | 1.17 × 10−5 | T2DM-C/CG; T2DM-NC/CG |
N-acetylglycoproteins | 2.05 (m) | 2.61 ± 0.55 | 2.02 ± 0.55 (↓) | 1.53 ± 0.35 (↓) | 0.2 × 10−3 | T2DM-C/CG; T2DM-NC/CG; T2DM-NC/T2DM-C |
Phenylalanine | 7.34 (d) | 0.29 ± 0.006 | 0.21 ± 0.04 (↓) | 0.17 ± 0.04 (↓) | 2.54 × 10−5 | T2DM-C/CG; T2DM-NC/CG |
Tyrosine | 7.18 (m) | 1.92 ± 0.004 | 0.14 ± 0.04 (↓) | 0.1 ± 0.03 (↓) | 4.09 × 10−5 | T2DM-C/CG; T2DM-NC/CG; T2DM-NC/T2DM-C |
Valine | 1.04 (d) | 1.28 ± 0.24 | 1.10 ± 0.19 (↓) | 0.86 ± 0.12 (↓) | 7.35 × 10−5 | T2DM-C/CG; T2DM-NC/T2DM-C |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Del Coco, L.; Vergara, D.; De Matteis, S.; Mensà, E.; Sabbatinelli, J.; Prattichizzo, F.; Bonfigli, A.R.; Storci, G.; Bravaccini, S.; Pirini, F.; et al. NMR-Based Metabolomic Approach Tracks Potential Serum Biomarkers of Disease Progression in Patients with Type 2 Diabetes Mellitus. J. Clin. Med. 2019, 8, 720. https://doi.org/10.3390/jcm8050720
Del Coco L, Vergara D, De Matteis S, Mensà E, Sabbatinelli J, Prattichizzo F, Bonfigli AR, Storci G, Bravaccini S, Pirini F, et al. NMR-Based Metabolomic Approach Tracks Potential Serum Biomarkers of Disease Progression in Patients with Type 2 Diabetes Mellitus. Journal of Clinical Medicine. 2019; 8(5):720. https://doi.org/10.3390/jcm8050720
Chicago/Turabian StyleDel Coco, Laura, Daniele Vergara, Serena De Matteis, Emanuela Mensà, Jacopo Sabbatinelli, Francesco Prattichizzo, Anna Rita Bonfigli, Gianluca Storci, Sara Bravaccini, Francesca Pirini, and et al. 2019. "NMR-Based Metabolomic Approach Tracks Potential Serum Biomarkers of Disease Progression in Patients with Type 2 Diabetes Mellitus" Journal of Clinical Medicine 8, no. 5: 720. https://doi.org/10.3390/jcm8050720
APA StyleDel Coco, L., Vergara, D., De Matteis, S., Mensà, E., Sabbatinelli, J., Prattichizzo, F., Bonfigli, A. R., Storci, G., Bravaccini, S., Pirini, F., Ragusa, A., Casadei-Gardini, A., Bonafè, M., Maffia, M., Fanizzi, F. P., Olivieri, F., & Giudetti, A. M. (2019). NMR-Based Metabolomic Approach Tracks Potential Serum Biomarkers of Disease Progression in Patients with Type 2 Diabetes Mellitus. Journal of Clinical Medicine, 8(5), 720. https://doi.org/10.3390/jcm8050720