Serum Catestatin Levels and Arterial Stiffness Parameters Are Increased in Patients with Inflammatory Bowel Disease
Abstract
:1. Introduction
2. Experimental Section
2.1. Study Design
2.2. Ethical Considerations
2.3. Subjects
2.4. Clinical Assessment and Anthropometric Measurements
2.5. Biochemical Analysis
2.6. Assessment of Disease Severity
2.7. Measurements of Arterial Stiffness
2.8. Statistical Analysis
2.9. Sample Size Analysis
3. Results
3.1. Basic Anthropometric and Related Characteristics of the Study Sample
3.2. Basic Characteristics of the IBD Group
3.3. Serum CST Levels
3.4. Arterial Stiffness Parameters
3.5. Bivariate Correlation Analysis of CST and Selected Parameters
3.6. Multiple Linear Regression Analysis of Selected Parameters as Independent Predictors of CST
3.7. Odds for Selected Variables in Prediction of the IBD Status
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- de Souza, H.S.P. Etiopathogenesis of inflammatory bowel disease: Today and tomorrow. Curr. Opin. Gastroenterol. 2017, 33, 222–229. [Google Scholar] [CrossRef] [PubMed]
- Ribaldone, D.; Pellicano, R.; Actis, G. Pathogenesis of inflammatory bowel disease: Basic science in the light of real-world epidemiology. Gastrointest. Disord. 2018, 1, 10. [Google Scholar] [CrossRef] [Green Version]
- Hatoum, O.A.; Binion, D.G. The vasculature and inflammatory bowel disease: Contribution to pathogenesis and clinical pathology. Inflamm. Bowel Dis. 2005, 11, 304–313. [Google Scholar] [CrossRef] [PubMed]
- Harbord, M.; Annese, V.; Vavricka, S.R.; Allez, M.; Barreiro-de Acosta, M.; Boberg, K.M.; Burisch, J.; De Vos, M.; De Vries, A.M.; Dick, A.D.; et al. The first European evidence-based consensus on extra-intestinal manifestations in inflammatory bowel disease. J. Crohns Colitis 2016, 10, 239–254. [Google Scholar] [CrossRef] [PubMed]
- Yarur, A.J.; Deshpande, A.R.; Pechman, D.M.; Tamariz, L.; Abreu, M.T.; Sussman, D.A. Inflammatory bowel disease is associated with an increased incidence of cardiovascular events. Am. J. Gastroenterol. 2011, 106, 741–747. [Google Scholar] [CrossRef]
- Cappello, M.; Licata, A.; Calvaruso, V.; Bravatà, I.; Aiello, A.; Torres, D.; Della Corte, V.; Tuttolomondo, A.; Perticone, M.; Licata, G.; et al. Increased expression of markers of early atherosclerosis in patients with inflammatory bowel disease. Eur. J. Intern. Med. 2017, 37, 83–89. [Google Scholar] [CrossRef] [Green Version]
- Principi, M.; Mastrolonardo, M.; Scicchitano, P.; Gesualdo, M.; Sassara, M.; Guida, P.; Bucci, A.; Zito, A.; Caputo, P.; Albano, F.; et al. Endothelial function and cardiovascular risk in active inflammatory bowel diseases. J. Crohns Colitis 2013, 7, e427–e433. [Google Scholar] [CrossRef] [Green Version]
- Korkmaz, H.; Sahin, F.; Ipekci, S.H.; Temel, T.; Kebapcilar, L. Increased pulse wave velocity and relationship with inflammation, insulin, and insulin resistance in inflammatory bowel disease. Eur. J. Gastroenterol. Hepatol. 2014, 26, 725–732. [Google Scholar] [CrossRef]
- Zanoli, L.; Rastelli, S.; Granata, A.; Inserra, G.; Empana, J.P.; Boutouyrie, P.; Laurent, S.; Castellino, P. Arterial stiffness in inflammatory bowel disease: A systematic review and meta-analysis. J. Hypertens. 2016, 34, 822–829. [Google Scholar] [CrossRef]
- Mahata, S.K.; Mahata, M.; Fung, M.M.; O’Connor, D.T. Catestatin: A multifunctional peptide from chromogranin A. Regul. Pept. 2010, 162, 33–43. [Google Scholar] [CrossRef] [Green Version]
- Mahata, S.K.; O’Connor, D.T.; Mahata, M.; Yoo, S.H.; Taupenot, L.; Wu, H.; Gill, B.M.; Parmer, R.J. Novel autocrine feedback control of catecholamine release. A discrete chromogranin a fragment is a noncompetitive nicotinic cholinergic antagonist. J. Clin. Investig. 1997, 100, 1623–1633. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Livett, B.G.; Boksa, P.; Dean, D.M.; Mizobe, F.; Lindenbaum, M.H. Use of isolated chromaffin cells to study basic release mechanisms. J. Auton. Nerv. Syst. 1983, 7, 59–86. [Google Scholar] [CrossRef]
- Fung, M.M.; Salem, R.M.; Mehtani, P.; Thomas, B.; Lu, C.F.; Perez, B.; Rao, F.; Stridsberg, M.; Ziegler, M.G.; Mahata, S.K.; et al. Direct vasoactive effects of the chromogranin A (CHGA) peptide catestatin in humans in vivo. Clin. Exp. Hypertens. 2010, 32, 278–287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aung, G.; Niyonsaba, F.; Ushio, H.; Kajiwara, N.; Saito, H.; Ikeda, S.; Ogawa, H.; Okumura, K. Catestatin, a neuroendocrine antimicrobial peptide, induces human mast cell migration, degranulation and production of cytokines and chemokines. Immunology 2011, 132, 527–539. [Google Scholar] [CrossRef]
- Simunovic, M.; Supe-Domic, D.; Karin, Z.; Degoricija, M.; Paradzik, M.; Bozic, J.; Unic, I.; Skrabic, V. Serum catestatin concentrations are decreased in obese children and adolescents. Pediatr. Diabetes 2019, 20, 549–555. [Google Scholar] [CrossRef]
- Ying, W.; Mahata, S.; Bandyopadhyay, G.K.; Zhou, Z.; Wollam, J.; Vu, J.; Mayoral, R.; Chi, N.W.; Webster, N.; Corti, A.; et al. Catestatin inhibits obesity-induced macrophage infiltration and inflammation in the liver and suppresses hepatic glucose production, leading to improved insulin sensitivity. Diabetes 2018, 67, 841–848. [Google Scholar] [CrossRef] [Green Version]
- Bandyopadhyay, G.; Vu, C.; Gentile, S.; Lee, H.; Biswas, N.; Chi, N.W.; O’Connor, D.T.; Mahata, S.K. Catestatin (Chromogranin A352–372) and novel effects on mobilization of fat from adipose tissue through regulation of adrenergic and leptin signaling. J. Biol. Chem. 2012, 287, 23141–23151. [Google Scholar] [CrossRef] [Green Version]
- Radek, K.A.; Lopez-Garcia, B.; Hupe, M.; Niesman, I.R.; Elias, P.M.; Taupenot, L.; Mahata, S.K.; O’Connor, D.T.; Gallo, R.L. The neuroendocrine peptide catestatin is a cutaneous antimicrobial and induced in the skin after injury. J. Investig. Dermatol. 2008, 128, 1525–1534. [Google Scholar] [CrossRef] [Green Version]
- Briolat, J.; Wu, S.D.; Mahata, S.K.; Gonthier, B.; Bagnard, D.; Chasserot-Golaz, S.; Helle, K.B.; Aunis, D.; Metz-Boutigue, M.H. New antimicrobial activity for the catecholamine release-inhibitory peptide from chromogranin A. Cell Mol. Life Sci. 2005, 62, 377–385. [Google Scholar] [CrossRef]
- Borovac, J.; Dogas, Z.; Supe-Domic, D.; Galic, T.; Bozic, J. Catestatin serum levels are increased in male patients with obstructive sleep apnea. Sleep Breath 2018, 23, 473–481. [Google Scholar] [CrossRef]
- Kojima, M.; Ozawa, N.; Mori, Y.; Takahashi, Y.; Watanabe-Kominato, K.; Shirai, R.; Watanabe, R.; Sato, K.; Matsuyama, T.A.; Ishibashi-Ueda, H.; et al. Catestatin prevents macrophage-driven atherosclerosis but not arterial injury-induced neointimal hyperplasia. Thromb. Haemost. 2018, 118, 182–194. [Google Scholar] [CrossRef] [PubMed]
- Chu, S.Y.; Peng, F.; Wang, J.; Liu, L.; Meng, L.; Zhao, J.; Xiao-Ning, H.; Wen-Hui, D. Catestatin in defense of oxidative-stress-induced apoptosis: A novel mechanism by activating the beta2 adrenergic receptor and PKB/Akt pathway in ischemic-reperfused myocardium. Peptides 2020, 123, 170200. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Liu, D.; Ge, L.; Wang, T.; Ma, Z.; Han, Y.; Duan, Y.; Xu, X.; Liu, W.; Yuan, J.; et al. Catestatin prevents endothelial inflammation and promotes thrombus resolution in acute pulmonary embolism in mice. Biosci. Rep. 2019, 39, BSR20192236. [Google Scholar] [CrossRef] [PubMed]
- Angelone, T.; Quintieri, A.M.; Brar, B.K.; Limchaiyawat, P.T.; Tota, B.; Mahata, S.K.; Cerra, M.C. The antihypertensive chromogranin a peptide catestatin acts as a novel endocrine/paracrine modulator of cardiac inotropism and lusitropism. Endocrinology 2008, 149, 4780–4793. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahapatra, N.R. Catestatin is a novel endogenous peptide that regulates cardiac function and blood pressure. Cardiovasc. Res. 2008, 80, 330–338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borovac, J.; Glavas, D.; Susilovic Grabovac, Z.; Supe Domic, D.; D’Amario, D.; Bozic, J. Catestatin in acutely decompensated heart failure patients: insights from the CATSTAT-HF study. J. Clin. Med. 2019, 8, 1132. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Zhu, D. Potential applications of catestatin in cardiovascular diseases. Biomark. Med. 2016, 10, 877–888. [Google Scholar] [CrossRef]
- Mahata, S.K.; Kiranmayi, M.; Mahapatra, N.R. Catestatin: A master regulator of cardiovascular functions. Curr. Med. Chem. 2018, 25, 1352–1374. [Google Scholar] [CrossRef]
- El-Salhy, M.; Danielsson, A.; Stenling, R.; Grimelius, L. Colonic endocrine cells in inflammatory bowel disease. J. Intern. Med. 1997, 242, 413–419. [Google Scholar] [CrossRef]
- Rabbi, M.F.; Munyaka, P.M.; Eissa, N.; Metz-Boutigue, M.H.; Khafipour, E.; Ghia, J.E. Human catestatin alters gut microbiota composition in mice. Front. Microbiol. 2017, 7, 2151. [Google Scholar] [CrossRef] [Green Version]
- Rabbi, M.F.; Eissa, N.; Munyaka, P.M.; Kermarrec, L.; Elgazzar, O.; Khafipour, E.; Bernstein, C.N.; Ghia, J.E. Reactivation of intestinal inflammation is suppressed by catestatin in a murine model of colitis via m1 macrophages and not the gut microbiota. Front. Immunol. 2017, 8, 985. [Google Scholar] [CrossRef] [Green Version]
- Rabbi, M.F.; Labis, B.; Metz-Boutigue, M.H.; Bernstein, C.N.; Ghia, J.E. Catestatin decreases macrophage function in two mouse models of experimental colitis. Biochem. Pharmacol. 2014, 89, 386–398. [Google Scholar] [CrossRef] [PubMed]
- Eissa, N.; Hussein, H.; Mesgna, R.; Bonin, S.; Hendy, G.N.; Metz-Boutigue, M.H.; Bernstein, C.N.; Ghia, J.E. Catestatin regulates epithelial cell dynamics to improve intestinal inflammation. Vaccines 2018, 6, 67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muntjewerff, E.M.; Dunkel, G.; Nicolasen, M.J.T.; Mahata, S.K.; van den Bogaart, G. Catestatin as a target for treatment of inflammatory diseases. Front. Immunol. 2018, 9, 2199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maaser, C.; Sturm, A.; Vavricka, S.R.; Kucharzik, T.; Fiorino, G.; Annese, V.; Calabrese, E.; Baumgart, D.C.; Bettenworth, D.; Borralho Nunes, P.; et al. ECCO-ESGAR Guideline for Diagnostic Assessment in IBD Part 1: Initial diagnosis, monitoring of known IBD, detection of complications. J. Crohn Colitis 2019, 13, 144–164K. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Travis, S.; Schnell, D.; Krzeski, P.; Abreu, M.T.; Altman, D.G.; Colombel, J.F.; Feagan, B.G.; Hanauer, S.B.; Lichtenstein, G.R.; Marteau, P.R.; et al. Reliability and initial validation of the ulcerative colitis endoscopic index of severity. Gastroenterology 2013, 145, 987–995. [Google Scholar] [CrossRef] [Green Version]
- Xie, T.; Zhang, T.; Ding, C.; Dai, X.; Li, Y.; Guo, Z.; Wei, Y.; Gong, J.; Zhu, W.; Li, J. Ulcerative colitis endoscopic index of severity (UCEIS) versus Mayo endoscopic score (MES) in guiding the need for colectomy in patients with acute severe colitis. Gastroenterol. Rep. 2017, 6, 38–44. [Google Scholar] [CrossRef]
- Lewis, J.; Chuai, S.; Nessel, L.; Lichtenstein, G.R.; Aberra, F.N.; Ellenberg, J.H. Use of the noninvasive components of the mayo score to assess clinical response in ulcerative colitis. Inflamm. Bowel Dis. 2008, 14, 1660–1666. [Google Scholar] [CrossRef] [Green Version]
- Daperno, M.; D’Haens, G.; van Assche, G.; Baert, F.; Bulois, P.; Maunoury, V.; Sostegni, R.; Rocca, R.; Pera, A.; Gevers, A.; et al. Development and validation of a new, simplified endoscopic activity score for Crohn’s disease: The SES-CD. Gastrointest. Endosc. 2004, 60, 505–512. [Google Scholar] [CrossRef]
- Best, W. Predicting the Crohnʼs disease activity index from the Harvey-bradshaw index. Inflamm. Bowel Dis. 2006, 12, 304–310. [Google Scholar] [CrossRef]
- Williams, B.; Mancia, G.; Spiering, W.; Agabiti Rosei, E.; Azizi, M.; Burnier, M.; Clement, D.L.; Coca, A.; de Simone, G.; Dominiczak, A.; et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension. Eur. Heart J. 2018, 39, 3021–3104. [Google Scholar] [CrossRef]
- Van Bortel, L.M.; Laurent, S.; Boutouyrie, P.; Chowienczyk, P.; Cruickshank, J.K.; De Backer, T.; Filipovsky, J.; Huybrechts, S.; Mattace-Raso, F.U.; Protogerou, A.D.; et al. Expert consensus document on the measurement of aortic stiffness in daily practice using carotid-femoral pulse wave velocity. J. Hypertens. 2012, 30, 445–448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mattace-Raso, F.; Hofman, A.; Verwoert, G.C.; Wittemana, J.C.; Wilkinson, I.; Cockcroft, J.; McEniery, C.; Yasmin Laurent, S.; Boutouyrie, P.; Bozec, E.; et al. Determinants of pulse wave velocity in healthy people and in the presence of cardiovascular risk factors: Establishing normal and reference values. Eur. Heart J. 2010, 31, 2338–2350. [Google Scholar]
- Choi, Y.; Miura, M.; Nakata, Y.; Sugasawa, T.; Nissato, S.; Otsuki, T.; Sugawara, J.; Iemitsu, M.; Kawakami, Y.; Shimano, H.; et al. A common genetic variant of the chromogranin A-derived peptide catestatin is associated with atherogenesis and hypertension in a Japanese population. Endocr. J. 2015, 62, 797–804. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sciola, V.; Massironi, S.; Conte, D.; Caprioli, F.; Ferrero, S.; Ciafardini, C.; Peracchi, M.; Bardella, M.T.; Piodi, L. Plasma chromogranin a in patients with inflammatory bowel disease. Inflamm. Bowel Dis. 2009, 15, 867–871. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wagner, M.; Stridsberg, M.; Peterson, C.; Sangfelt, P.; Lampinen, M.; Carlson, M. Increased fecal levels of chromogranin A, chromogranin B, and secretoneurin in collagenous colitis. Inflammation 2013, 36, 855–861. [Google Scholar] [CrossRef]
- Sugimoto, K. Role of STAT3 in inflammatory bowel disease. World J. Gastroenterol. 2008, 14, 5110. [Google Scholar] [CrossRef] [Green Version]
- Chelakkot, C.; Ghim, J.; Ryu, S. Mechanisms regulating intestinal barrier integrity and its pathological implications. Exp. Mol. Med. 2018, 50, 103. [Google Scholar] [CrossRef] [Green Version]
- Zhernakova, A.; Kurilshikov, A.; Bonder, M.; Tigchelaar, E.F.; Schirmer, M.; Vatanen, T.; Mujagic, Z.; Vila, A.V.; Falony, G.; Vieira-Silva, S.; et al. Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity. Science 2016, 352, 565–569. [Google Scholar] [CrossRef] [Green Version]
- Egger, M.; Beer, A.; Theurl, M.; Schgoer, W.; Hotter, B.; Tatarczyk, T.; Vasiljevic, D.; Frauscher, S.; Marksteiner, J.; Patsch, J.R.; et al. Monocyte migration: A novel effect and signaling pathways of catestatin. Eur. J. Pharmacol. 2008, 598, 104–111. [Google Scholar] [CrossRef]
- Figueiredo, V.; Yugar-Toledo, J.; Martins, L.; Martins, L.B.; de Faria, A.P.; de Haro Moraes, C.; Sierra, C.; Coca, A.; Moreno, H. Vascular stiffness and endothelial dysfunction: Correlations at different levels of blood pressure. Blood Press. 2011, 21, 31–38. [Google Scholar] [CrossRef]
- Andersen, N.; Jess, T. Risk of cardiovascular disease in inflammatory bowel disease. World J. Gastrointest. Pathophysiol. 2014, 5, 359. [Google Scholar] [CrossRef]
- Zanoli, L.; Cannavò, M.; Rastelli, S.; Di Pino, L.; Monte, I.; Di Gangi, M.; Boutouyrie, P.; Inserra, G.; Laurent, S.; Castellino, P. Arterial stiffness is increased in patients with inflammatory bowel disease. J. Hypertens. 2012, 30, 1775–1781. [Google Scholar] [CrossRef] [Green Version]
- Nardone, M.; Incognito, A.V.; Millar, P.J. Evidence for pressure-independent sympathetic modulation of central pulse wave velocity. J. Am. Heart Assoc. 2018, 7, e007971. [Google Scholar] [CrossRef] [Green Version]
- Dienno, F.A.; Jones, P.P.; Seals, D.R.; Tanaka, H. Age-associated arterial wall thickening is related to elevations in sympathetic activity in healthy humans. Am. J. Physiol. Heart Circ. Physiol. 2000, 278, H1205–H1210. [Google Scholar] [CrossRef]
- Holwerda, S.W.; Luehrs, R.E.; DuBose, L.; Collins, M.T.; Wooldridge, N.A.; Stroud, A.K.; Fadel, P.J.; Abboud, F.M.; Pierce, G.L. Elevated muscle sympathetic nerve activity contributes to central artery stiffness in young and middle-age/older adults. Hypertension 2019, 73, 1025–1035. [Google Scholar] [CrossRef]
- Maule, S.; Pierangeli, G.; Cevoli, S.; Grimaldi, D.; Gionchetti, P.; Barbara, G.; Riziello, F.; Stangellini, V.; Corinaldesi, R.; Campieri, M.; et al. Sympathetic hyperactivity in patients with ulcerative colitis. Clin. Auton. Res. 2007, 17, 217–220. [Google Scholar] [CrossRef]
- Furlan, R.; Ardizzone, S.; Palazzolo, L.; Rimoldi, A.; Perego, F.; Barbic, F.; Bevilacqua, M.; Vago, L.; Bianchi Porro, G.; Malliani, A. Sympathetic overactivity in active ulcerative colitis: Effects of clonidine. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2006, 290, R224–R232. [Google Scholar] [CrossRef] [PubMed]
- Pei, Z.; Ma, D.; Ji, L.; Zhang, J.; Su, J.; Xue, W.; Chen, X.; Wang, W. Usefulness of catestatin to predict malignant arrhythmia in patients with acute myocardial infarction. Peptides 2014, 55, 131–135. [Google Scholar] [CrossRef] [PubMed]
- Alam, M.J.; Gupta, R.; Mahapatra, N.R.; Goswami, S.K. Catestatin reverses the hypertrophic effects of norepinephrine in H9c2 cardiac myoblasts by modulating the adrenergic signaling. Mol. Cell Biochem. 2020, 464, 205–219. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Wang, X.; Yang, C.; Su, X.; Yang, W.; Dai, Y.; Han, H.; Jiang, J.; Lu, L.; Wang, H.; et al. Decreased circulating catestatin levels are associated with coronary artery disease: The emerging anti-inflammatory role. Atherosclerosis 2019, 281, 78–88. [Google Scholar] [CrossRef] [PubMed]
- Lurz, E.; Aeschbacher, E.; Carman, N.; Schibli, S.; Sokollik, C.; Simonetti, G. Pulse wave velocity measurement as a marker of arterial stiffness in pediatric inflammatory bowel disease: A pilot study. Eur. J. Pediatr. 2017, 176, 983–987. [Google Scholar] [CrossRef] [PubMed]
- Zanoli, L.; Boutouyrie, P.; Fatuzzo, P.; Granata, A.; Lentini, P.; Oztürk, K.; Cappello, M.; Theocharidou, E.; Tuttolomondo, A.; Pinto, A.; et al. Inflammation and aortic stiffness: An individual participant data meta-analysis in patients with inflammatory bowel disease. J. Am. Heart Assoc. 2017, 6, e007003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Parameter | IBD Group (n = 80) | Control Group (n = 75) | p | |
---|---|---|---|---|
Age (years) | 39.79 ± 14.42 | 38.47 ± 12.22 | 0.543 * | |
Male gender | 50 (62.5%) | 46 (61.3%) | 0.987 ** | |
Body weight (kg) | 75.03 ± 14.10 | 80.47 ± 13.28 | 0.015 * | |
Body height (cm) | 176.41 ± 9.27 | 180.03 ± 9.18 | 0.017 * | |
BMI (kg/m2) | 24.04 ± 3.83 | 24.69 ± 2.75 | 0.231 * | |
BMI categories | Underweight (<18.5 kg/m2) | 3 (3.7%) | 0 (0.0%) | 0.187 *** |
Normal weight (18.5–24.9 kg/m2) | 39 (48.8%) | 42 (56.0%) | ||
Overweight (25.0–29.9 kg/m2) | 36 (45.0%) | 30 (40.0%) | ||
Obesity class I (30.0–34.9 kg/m2) | 2 (2.5%) | 3 (4.0%) | ||
Waist-hip ratio | 0.9 (0.8–0.9) | 0.9 (0.8–0.9) | 0.172 **** | |
Positive family history on CRC | 13 (16.3%) | 10 (13.3%) | 0.776 ** | |
Positive family history on IBD | 16 (20.0%) | 3 (4.0%) | 0.003 *** | |
Positive family history on CV disease | 29 (36.2%) | 36 (48.0%) | 0.187 ** | |
Alcohol consumption | 23 (28.7%) | 31 (41.3%) | 0.090 ** | |
Coffee consumption | 41 (51.2%) | 44 (58.7%) | 0.354 ** | |
Active smoking | 19 (23.7%) | 12 (16.4%) | 0.356 ** |
Parameter | Ulcerative Colitis (n = 35) | Crohn’s Disease (n = 45) | p | |
---|---|---|---|---|
Age (years) | 42.66 ± 15.57 | 37.56 ± 13.38 | 0.119 * | |
Male gender | 21 (60.0%) | 29 (64.4%) | 0.684 ** | |
Body weight (kg) | 77.31 ± 13.03 | 73.26 ± 14.92 | 0.206 * | |
Body height (cm) | 176.29 ± 8.47 | 176.51 ± 10.03 | 0.915 * | |
BMI (kg/m2) | 24.90 ± 3.98 | 23.38 ± 3.65 | 0.079 * | |
BMI categories | Underweight (<18.5 kg/m2) | 2 (5.7%) | 1 (2.2%) | 0.093 *** |
Normal weight (18.5–24.9 kg/m2) | 14 (40.0%) | 25 (55.6%) | ||
Overweight (25.0–29.9 kg/m2) | 18 (51.4%) | 18 (40.0%) | ||
Obesity class I (30.0–34.9 kg/m2) | 1 (2.9%) | 1 (2.2%) | ||
Waist-hip ratio | 0.9 (0.8–1.0) | 0.9 (0.8–0.9) | 0.284 **** | |
SES-CD | - | 10 (5–15) | - | |
CDAI | - | 57 (32–102) | - | |
HBI | - | 2 (1–4) | - | |
UCEIS | 6 (5–7) | - | - | |
MES | 2 (2–3) | - | - | |
Mayo/DAI | 4 (2–7) | - | - | |
Disease duration (years) | 9 (5–11) | 6 (3–13) | 0.268 **** | |
Positive family history on CRC | 6 (17.1%) | 7 (15.6%) | 0.849 ** | |
Positive family history on IBD | 7 (20.0%) | 9 (20.0%) | 1.000 ** | |
Positive family history on CV disease | 11 (31.4%) | 18 (40.0%) | 0.429 ** | |
Alcohol consumption | 9 (25.7%) | 14 (31.1%) | 0.597 ** | |
Active smoking | 7 (20.0%) | 12 (26.7%) | 0.487 ** | |
IBD-related surgical procedures | 1 (2.9%) | 16 (35.6%) | <0.001 *** | |
Extraintestinal manifestations | 6 (18.2%) | 27 (62.8%) | <0.001 ** | |
Aminosalicylates | 30 (85.7%) | 27 (60.0%) | 0.012 ** | |
DMARD | 12 (34.3%) | 11 (24.4%) | 0.335 ** | |
Monoclonal antibodies | 21 (60.0%) | 30 (66.7%) | 0.538 ** |
Parameter | Study Groups | Test Type | ||
---|---|---|---|---|
CST (ng/mL) | IBD (n = 80) | Control group (n = 75) | p * | p ** |
11.29 ± 9.14 | 7.13 ± 6.08 | 0.001 | 0.001 | |
Ulcerative colitis (n = 35) | Crohn’s disease (n = 45) | p * | p ** | |
13.50 ± 9.58 | 9.03 ± 6.92 | 0.021 | 0.036 |
Parameter | IBD Group (n = 80) | Control Group (n = 75) | p * | p ** |
---|---|---|---|---|
pSBP (mmHg) | 120.63 ± 7.15 | 118.57 ± 7.32 | 0.080 | 0.058 |
pDBP (mmHg) | 74.44 ± 6.71 | 73.39 ± 9.16 | 0.419 | 0.483 |
pMBP (mmHg) | 89.78 ± 5.98 | 88.44 ± 6.96 | 0.201 | 0.194 |
pPP (mmHg) | 46.19 ± 7.17 | 45.19 ± 10.67 | 0.497 | 0.333 |
cSBP (mmHg) | 106.13 ± 6.97 | 104.37 ± 6.43 | 0.106 | 0.087 |
cDBP (mmHg) | 75.29 ± 6.54 | 74.16 ± 6.49 | 0.283 | 0.264 |
cMBP (mmHg) | 85.55 ± 5.99 | 84.24 ± 6.17 | 0.182 | 0.154 |
cPP (mmHg) | 30.84 ± 6.27 | 30.21 ± 3.98 | 0.458 | 0.420 |
HR (bpm) | 72.04 ± 12.21 | 68.13 ± 9.14 | 0.027 | 0.037 |
pAIx (%) | −37.30 ± 16.13 | −40.41 ± 15.48 | 0.223 | 0.529 |
cAIx (%) | 16.36 ± 9.95 | 10.31 ± 8.19 | <0.001 | 0.005 |
cAIx-75 (%) | 14.88 ± 10.59 | 6.87 ± 9.50 | <0.001 | 0.003 |
PWV (m/s) | 8.06 ± 3.23 | 6.42 ± 1.47 | <0.001 | <0.001 |
End-organ damage a | 14 (17.5%) | 2 (2.7%) | 0.002 *** | n/a |
r/ρ * (p) | |||||||||||||||||||||
Anthropometric parameters | |||||||||||||||||||||
Age | BMI | Body weight | Body height | Waist-hip ratio | |||||||||||||||||
0.18 (0.023 **) | 0.15 (0.059 **) | −0.01 (0.919 **) | −0.16 (0.050 **) | 0.16 (0.058 **) | |||||||||||||||||
hs-CRP, WBC and lipid parameters | |||||||||||||||||||||
hs-CRP | Cholesterol | TG | LDL | HDL | WBC | ||||||||||||||||
−0.07 (0.393 **) | 0.10 (0.193 **) | 0.01 (0.894 **) | 0.06 (0.420 **) | 0.12 (0.142 **) | 0.03 (0.715 **) | ||||||||||||||||
Arterial stiffness parameters | |||||||||||||||||||||
HR | cSBP | cDBP | cMBP | cPP | pAIx | cAIx-75 | PWV | ||||||||||||||
0.11 (0.172 **) | 0.11 (0.161 **) | 0.08 (0.346 **) | 0.09 (0.251 **) | 0.13 (0.105 **) | 0.10 (0.209 **) | 0.19 (0.003 **) | 0.37 (<0.001 **) | ||||||||||||||
IBD-related parameters **** | |||||||||||||||||||||
CD | UC | Disease duration | FC | ||||||||||||||||||
SES-CD | UCEIS | MES | Mayo/DAI | ||||||||||||||||||
0.20 (0.188 ***) | 0.19 (0.285 ***) | 0.04 (0.812 ***) | 0.05 (0.776 ***) | −0.24 (0.032 ***) | 0.07 (0.531 **) |
Parameter | B * (t **) p | Overall |
---|---|---|
Age | −0.07 (−1.11) 0.270 | R2 adjusted = 0.133 F ratio = 5.739 p < 0.001 |
BMI | 0.10 (0.50) 0.620 | |
Waist-hip ratio | 0.36 (1.32) 0.189 | |
cAIx-75 | 0.07 (1.68) 0.095 | |
PWV | 1.20 (4.15) <0.001 |
Predictor | OR (95% CI) | p |
---|---|---|
CST | 1.089 (1.022–1.161) | 0.009 |
BMI | 0.793 (0.683–0.920) | 0.002 |
PWV | 1.515 (1.166–1.968) | 0.002 |
cAIx-75 | 1.060 (1.024–1.097) | 0.001 |
hs-CRP | 1.458 (1.116–1.906) | 0.006 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zivkovic, P.M.; Matetic, A.; Tadin Hadjina, I.; Rusic, D.; Vilovic, M.; Supe-Domic, D.; Borovac, J.A.; Mudnic, I.; Tonkic, A.; Bozic, J. Serum Catestatin Levels and Arterial Stiffness Parameters Are Increased in Patients with Inflammatory Bowel Disease. J. Clin. Med. 2020, 9, 628. https://doi.org/10.3390/jcm9030628
Zivkovic PM, Matetic A, Tadin Hadjina I, Rusic D, Vilovic M, Supe-Domic D, Borovac JA, Mudnic I, Tonkic A, Bozic J. Serum Catestatin Levels and Arterial Stiffness Parameters Are Increased in Patients with Inflammatory Bowel Disease. Journal of Clinical Medicine. 2020; 9(3):628. https://doi.org/10.3390/jcm9030628
Chicago/Turabian StyleZivkovic, Piero Marin, Andrija Matetic, Ivana Tadin Hadjina, Doris Rusic, Marino Vilovic, Daniela Supe-Domic, Josip Andelo Borovac, Ivana Mudnic, Ante Tonkic, and Josko Bozic. 2020. "Serum Catestatin Levels and Arterial Stiffness Parameters Are Increased in Patients with Inflammatory Bowel Disease" Journal of Clinical Medicine 9, no. 3: 628. https://doi.org/10.3390/jcm9030628
APA StyleZivkovic, P. M., Matetic, A., Tadin Hadjina, I., Rusic, D., Vilovic, M., Supe-Domic, D., Borovac, J. A., Mudnic, I., Tonkic, A., & Bozic, J. (2020). Serum Catestatin Levels and Arterial Stiffness Parameters Are Increased in Patients with Inflammatory Bowel Disease. Journal of Clinical Medicine, 9(3), 628. https://doi.org/10.3390/jcm9030628