Changes in Iris Perfusion Following Scleral Buckle Surgery for Rhegmatogenous Retinal Detachment: An Anterior Segment Optical Coherence Tomography Angiography (AS-OCTA) Study
Abstract
:1. Introduction
2. Methods
2.1. Study Participants
2.2. Surgical Procedure
2.3. Imaging
2.4. Image Processing
2.5. Statistical Analysis
3. Results
3.1. Characteristics of Subjects Included in the Analysis
3.2. Changes in Iris Perfusion Density
4. Discussions
5. Conclusions
Author Contributions
Conflicts of Interest
References
- D’Amico, D.J. Clinical practice. Primary retinal detachment. N. Engl. J. Med. 2008, 359, 2346–2354. [Google Scholar]
- Carpineto, P.; Agnifili, L.; Senatore, A.; Agbeanda, A.; Lappa, A.; Borrelli, E.; Di Martino, G.; Oddone, F.; Mastropasqua, R. Scleral and conjunctival features in patients with rhegmatogenous retinal detachment undergoing scleral buckling: An anterior segment optical coherence tomography and in vivo confocal microscopy study. Acta Ophthalmol. 2019, 97, 1069–1076. [Google Scholar] [CrossRef] [PubMed]
- Tsen, C.-L.; Sheu, S.-J.; Chen, S.-C.; Wu, T.-T. Imaging analysis with optical coherence tomography angiography after primary repair of macula-off rhegmatogenous retinal detachment. Graefes Arch. Clin. Exp. Ophthalmol. 2019, 257, 1847–1855. [Google Scholar] [CrossRef] [PubMed]
- Kreissig, I.; Failer, J.; Lincoff, H.; Ferrari, F. Results of a temporary balloon buckle in the treatment of 500 retinal detachments and a comparison with pneumatic retinopexy. Am. J. Ophthalmol. 1989, 107, 381–389. [Google Scholar] [CrossRef]
- Hassan, T.S.; Sarrafizadeh, R.; Ruby, A.J.; Garretson, B.R.; Kuczynski, B.; Williams, G.A. The effect of duration of macular detachment on results after the scleral buckle repair of primary, macula-off retinal detachments. Ophthalmology 2002, 109, 146–152. [Google Scholar] [CrossRef]
- Schepens, C.L.; Okamura, I.D.; Brockhurst, R.J. The scleral buckling procedures. I. Surgical techniques and management. AMA Arch. Ophthalmol. 1957, 58, 797–811. [Google Scholar] [CrossRef]
- Kwartz, J.; Charles, S.; McCormack, P.; Jackson, A.; Lavin, M. Anterior segment ischaemia following segmental scleral buckling. Br. J. Ophthalmol. 1994, 78, 409–410. [Google Scholar] [CrossRef] [Green Version]
- Doi, N. Complications Associated With Vortex Vein Damage in Scleral Buckling Surgery for Rhegmatogenous Retinal Detachment. Jpn. J. Ophthalmol. 1999, 43, 232–238. [Google Scholar] [CrossRef]
- Robertson, D.M. Anterior segment ischemia after segmental episcleral buckling and cryopexy. Am. J. Ophthalmol. 1975, 79, 871–874. [Google Scholar] [CrossRef]
- Borrelli, E.; Uji, A.; Toto, L.; Viggiano, P.; Evangelista, F.; Mastropasqua, R. In Vivo Mapping of the Choriocapillaris in Healthy Eyes: A Widefield Swept Source Optical Coherence Tomography Angiography Study. Ophthalmol. Retin. 2019, 3, 979–984. [Google Scholar] [CrossRef]
- Toto, L.; Borrelli, E.; Di Antonio, L.; Carpineto, P.; Mastropasqua, R. Retinal Vascular Plexuses’ Changes in Dry Age-Related By Means of Optical Coherence. Retina 2016, 36, 1566–1572. [Google Scholar] [CrossRef] [PubMed]
- Borrelli, E.; Mastropasqua, R.; Senatore, A.; Palmieri, M.; Toto, L.; Sadda, S.R.; Mastropasqua, L. Impact of Choriocapillaris Flow on Multifocal Electroretinography in Intermediate Age-Related Macular Degeneration Eyes. Investig. Ophthalmol. Vis. Sci. 2018, 59, 25–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borrelli, E.; Lonngi, M.; Balasubramanian, S.; Tepelus, T.C.; Baghdasaryan, E.; Iafe, N.A.; Pineles, S.L.; Velez, F.G.; Sarraf, D.; Sadda, S.R.; et al. Macular Microvascular Networks in Healthy Pediatric Subjects. Retina 2019, 39, 1216–1224. [Google Scholar] [CrossRef]
- Al-Sheikh, M.; Phasukkijwatana, N.; Dolz-Marco, R.; Rahimi, M.; Iafe, N.A.; Freund, K.B.; Sadda, S.R.; Sarraf, D. Quantitative OCT Angiography of the Retinal Microvasculature and the Choriocapillaris in Myopic Eyes. Investig. Opthalmol. Vis. Sci. 2017, 58, 2063. [Google Scholar] [CrossRef] [Green Version]
- Zett, C.; Stina, D.M.R.; Kato, R.T.; Novais, E.A.; Allemann, N. Comparison of anterior segment optical coherence tomography angiography and fluorescein angiography for iris vasculature analysis. Graefe’s Arch. Clin. Exp. Ophthalmol. 2018, 256, 683–691. [Google Scholar] [CrossRef]
- Siddiqui, Y.; Yin, J. Anterior Segment Applications of Optical Coherence Tomography Angiography. Semin. Ophthalmol. 2019, 34, 264–269. [Google Scholar] [CrossRef]
- Velez, F.G.; Davila, J.P.; Diaz, A.; Corradetti, G.; Sarraf, D.; Pineles, S.L. Association of Change in Iris Vessel Density in Optical Coherence Tomography Angiography With Anterior Segment Ischemia After Strabismus Surgery. JAMA Ophthalmol. 2018, 136, 1041–1045. [Google Scholar] [CrossRef]
- Allegrini, D.; Montesano, G.; Pece, A. Optical Coherence Tomography Angiography in a Normal Iris. Ophthalmic Surg. Lasers Imaging Retin. 2016, 47, 1138–1139. [Google Scholar] [CrossRef]
- Virdi, P.S.; Hayreh, S.S. Anterior segment ischemia after recession of various recti. An experimental study. Ophthalmology 1987, 94, 1258–1271. [Google Scholar] [CrossRef]
- Olver, J.M.; Lee, J.P. Recovery of anterior segment circulation after strabismus surgery in adult patients. Ophthalmology 1992, 99, 305–315. [Google Scholar] [CrossRef]
- Chan, T.K.; Rosenbaum, A.L.; Rao, R.; Schwartz, S.D.; Santiago, P.; Thayer, D. Indocyanine green angiography of the anterior segment in patients undergoing strabismus surgery. Br. J. Ophthalmol. 2001, 85, 214–218. [Google Scholar] [CrossRef] [Green Version]
- Hayreh, S.S.; Scott, W.E. Fluorescein Iris Angiography. Arch. Ophthalmol. 1978, 96, 1390. [Google Scholar] [CrossRef]
- Boniuk, M.; Zimmerman, L.E. Necrosis of the iris, ciliary body, lens and retina following scleral buckling operations with circling polythylene tubes. Trans. Am. Acad. Ophthalmol. Otolaryngol. 1961, 65, 671–693. [Google Scholar]
- Oltra, E.Z.; Pineles, S.L.; Demer, J.L.; Quan, A.V.; Velez, F.G. The effect of rectus muscle recession, resection and plication on anterior segment circulation in humans. Br. J. Ophthalmol. 2015, 99, 556–560. [Google Scholar] [CrossRef] [Green Version]
- Ogasawara, H.; Feke, G.T.; Yoshida, A.; Milbocker, M.T.; Weiter, J.J.; McMeel, J.W. Retinal blood flow alterations associated with scleral buckling and encircling procedures. Br. J. Ophthalmol. 1992, 76, 275–279. [Google Scholar] [CrossRef] [Green Version]
- Diddie, K.R.; Ernest, J.T. Uveal Blood Flow after 360 Constriction in the Rabbit. Arch. Ophthalmol. 1980, 98, 729–730. [Google Scholar] [CrossRef]
- Ang, M.; Cai, Y.; MacPhee, B.; Sim, D.A.; Keane, P.A.; Sng, C.C.A.; Egan, C.A.; Tufail, A.; Larkin, D.F.; Wilkins, M.R. Optical coherence tomography angiography and indocyanine green angiography for corneal vascularisation. Br. J. Ophthalmol. 2016, 100, 1557–1563. [Google Scholar] [CrossRef]
- Ang, M.; Cai, Y.; Shahipasand, S.; Sim, D.A.; Keane, P.A.; Sng, C.C.A.; Egan, C.A.; Tufail, A.; Wilkins, M.R. En face optical coherence tomography angiography for corneal neovascularisation. Br. J. Ophthalmol. 2016, 100, 616–621. [Google Scholar] [CrossRef]
- Ang, M.; Sim, D.A.; Keane, P.A.; Sng, C.C.A.; Egan, C.A.; Tufail, A.; Wilkins, M.R. Optical Coherence Tomography Angiography for Anterior Segment Vasculature Imaging. Ophthalmology 2015, 122, 1740–1747. [Google Scholar] [CrossRef]
- Akagi, T.; Uji, A.; Huang, A.S.; Weinreb, R.N.; Yamada, T.; Miyata, M.; Kameda, T.; Ikeda, H.O.; Tsujikawa, A. Conjunctival and Intrascleral Vasculatures Assessed Using Anterior Segment Optical Coherence Tomography Angiography in Normal Eyes. Am. J. Ophthalmol. 2018, 196, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Roberts, P.K.; Goldstein, D.A.; Fawzi, A.A. Anterior Segment Optical Coherence Tomography Angiography for Identification of Iris Vasculature and Staging of Iris Neovascularization: A Pilot Study. Curr. Eye Res. 2017, 42, 1136–1142. [Google Scholar] [CrossRef] [Green Version]
- Chien, J.L.; Sioufi, K.; Ferenczy, S.; Say, E.A.T.; Shields, C.L. Optical Coherence Tomography Angiography Features of Iris Racemose Hemangioma in 4 Cases. JAMA Ophthalmol. 2017, 135, 1106. [Google Scholar] [CrossRef] [Green Version]
- Skalet, A.H.; Li, Y.; Lu, C.D.; Jia, Y.; Lee, B.K.; Husvogt, L.; Maier, A.; Fujimoto, J.G.; Thomas, C.R.; Huang, D. Optical Coherence Tomography Angiography Characteristics of Iris Melanocytic Tumors. Ophthalmology 2017, 124, 197–204. [Google Scholar] [CrossRef] [Green Version]
- Dugan, J.D.; Green, W.R. Ophthalmologic manifestations of carotid occlusive disease. Eye 1991, 5, 226–238. [Google Scholar] [CrossRef] [Green Version]
Variables | Description |
---|---|
Age (years) | 50.3 ± 17.6 |
Gender (male/female, %) | 9 (60%)/6 (40%) |
Axial length | 25.2 ± 1.5 |
Refractive Status (n, %) | |
---|---|
High myopia (+) | 10 (66) |
High myopia (−) | 5 (33) |
Lens status (n, %) | |
Phakia | 8 (53) |
Pseudophakia | 7 (47) |
Number of breaks (mean ± SD (range)) | 1.5 ± 1.3 [1,2,3,4,5] |
Extent of retinal detachment (n, %) | |
1 quadrant | 5 (33) |
2 quadrants | 6 (40) |
3 quadrants | 3 (20) |
4 quadrants | 1 (7) |
Quadrants segmental buckles | |
Superior | 4 (26) |
Superior-temporal | 5 (33) |
Inferior | 2 (13) |
Inferior-nasal | 2 (13) |
Temporal | 2 (13) |
Complication (n, %) | |
Secondary glaucoma (IOP > 21 mmHg) | 1 (7) |
Hypotony (IOP < 5 mmHg) | 1 (7) |
IOP mmHg (average) | |
Pre-operative | 14 mmHg |
Post-operative | 18 mmHg |
Iris Perfusion Density Baseline | |||
---|---|---|---|
RRD Eyes | Healthy Eyes | p-Value | |
Superior | 77.8 ± 11.2 | 77.2 ± 10.9 | <0.0001 |
Supero-temporal | 69.5 ± 15.4 | 68.5 ± 11.9 | <0.0001 |
Supero-nasal | 66.8 ± 13.2 | 67.3 ± 12.0 | <0.0001 |
Temporal | 84.4 ± 11.4 | 86.2 ± 5.7 | <0.0001 |
Nasal | 80.2 ± 7.4 | 81.5 ± 9.6 | <0.0001 |
Inferior | 82.0 ± 9.4 | 79.4 ± 7.6 | <0.0001 |
Infero-nasal | 53.6 ± 11.8 | 54.3 ± 13.5 | <0.0001 |
Infero-temporal | 64.0 ± 17.2 | 65.2 ± 11.9 | <0.0001 |
Iris perfusion density (PD) | |||
---|---|---|---|
Baseline | 1 Week | p-Value | |
Superior | 77.8 ± 11.2 | 78.2 ± 10.9 | >0.050 |
Supero-temporal | 69.5 ± 15.4 | 70.5 ± 11.9 | >0.050 |
Supero-nasal | 66.8 ± 13.2 | 58.5 ± 12.0 | <0.0001 |
Temporal | 84.4 ± 11.4 | 86.2 ± 6.7 | >0.050 |
Nasal | 80.2 ± 7.4 | 78.5 ± 9.6 | >0.050 |
Inferior | 82.0 ± 9.4 | 82.9 ± 7.6 | >0.050 |
Infero-nasal | 53.6 ± 11.8 | 55.3 ± 13.5 | >0.050 |
Infero-temporal | 64.0 ± 17.2 | 64.9 ± 11.9 | >0.050 |
Iris Perfusion Density (PD) | |||
---|---|---|---|
Baseline | 1 Month | p-Value | |
Superior | 77.8 ± 11.2 | 68.6 ± 20.5 | >0.050 |
Supero-temporal | 69.5 ± 15.4 | 62.1 ± 9.0 | <0.0001 |
Supero-nasal | 66.8 ± 13.2 | 45.5 ± 8.5 | <0.0001 |
Temporal | 84.4 ± 11.4 | 71.8 ± 22.1 | <0.0001 |
Nasal | 80.2 ± 7.4 | 64.5 ± 16.4 | <0.0001 |
Inferior | 82.0 ± 9.4 | 72.1 ± 17.9 | <0.0001 |
Infero-nasal | 53.6 ± 11.8 | 46.5 ± 14.1 | <0.0001 |
Infero-temporal | 64.0 ± 17.2 | 56.3 ± 11.7 | <0.0001 |
Iris Perfusion Density (PD) | |||
---|---|---|---|
Baseline | 6 Months | p-Value | |
Superior | 77.8 ± 11.2 | 67.2 ± 19.6 | >0.050 |
Supero-temporal | 69.5 ± 15.4 | 61.1 ± 8.2 | >0.050 |
Supero-nasal | 66.8 ± 13.2 | 46.9 ± 9.5 | <0.0001 |
Temporal | 84.4 ± 11.4 | 69.8 ± 19.5 | <0.0001 |
Nasal | 80.2 ± 7.4 | 66.3 ± 18.4 | <0.0001 |
Inferior | 82.0 ± 9.4 | 72.4 ± 18.1 | <0.0001 |
Infero-nasal | 53.6 ± 11.8 | 46.7 ± 14.4 | <0.0001 |
Infero-temporal | 64.0 ± 17.2 | 55.9 ± 10.9 | <0.0001 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
D’Aloisio, R.; Viggiano, P.; Borrelli, E.; Parravano, M.; Agbèanda, A.-G.; Evangelista, F.; Ferro, G.; Toto, L.; Mastropasqua, R. Changes in Iris Perfusion Following Scleral Buckle Surgery for Rhegmatogenous Retinal Detachment: An Anterior Segment Optical Coherence Tomography Angiography (AS-OCTA) Study. J. Clin. Med. 2020, 9, 1231. https://doi.org/10.3390/jcm9041231
D’Aloisio R, Viggiano P, Borrelli E, Parravano M, Agbèanda A-G, Evangelista F, Ferro G, Toto L, Mastropasqua R. Changes in Iris Perfusion Following Scleral Buckle Surgery for Rhegmatogenous Retinal Detachment: An Anterior Segment Optical Coherence Tomography Angiography (AS-OCTA) Study. Journal of Clinical Medicine. 2020; 9(4):1231. https://doi.org/10.3390/jcm9041231
Chicago/Turabian StyleD’Aloisio, Rossella, Pasquale Viggiano, Enrico Borrelli, Mariacristina Parravano, Aharrh-Gnama Agbèanda, Federica Evangelista, Giada Ferro, Lisa Toto, and Rodolfo Mastropasqua. 2020. "Changes in Iris Perfusion Following Scleral Buckle Surgery for Rhegmatogenous Retinal Detachment: An Anterior Segment Optical Coherence Tomography Angiography (AS-OCTA) Study" Journal of Clinical Medicine 9, no. 4: 1231. https://doi.org/10.3390/jcm9041231
APA StyleD’Aloisio, R., Viggiano, P., Borrelli, E., Parravano, M., Agbèanda, A. -G., Evangelista, F., Ferro, G., Toto, L., & Mastropasqua, R. (2020). Changes in Iris Perfusion Following Scleral Buckle Surgery for Rhegmatogenous Retinal Detachment: An Anterior Segment Optical Coherence Tomography Angiography (AS-OCTA) Study. Journal of Clinical Medicine, 9(4), 1231. https://doi.org/10.3390/jcm9041231