Effects of Sugammadex on Post-Operative Pulmonary Complications in Laparoscopic Gastrectomy: A Retrospective Cohort Study
Abstract
:1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- King, M.; Sujirattanawimol, N.; Danielson, D.R.; Hall, B.A.; Schroeder, D.R.; Warner, D.O. Requirements for muscle relaxants during radical retropubic prostatectomy. Anesthesiology 2000, 93, 1392–1397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lieutaud, T.; Billard, V.; Khalaf, H.; Debaene, B. Muscle relaxation and increasing doses of propofol improve intubating conditions. Can. J. Anaesth. 2003, 50, 121–126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sauer, M.; Stahn, A.; Soltesz, S.; Noeldge-Schomburg, G.; Mencke, T. The influence of residual neuromuscular block on the incidence of critical respiratory events. A randomised, prospective, placebo-controlled trial. Eur. J. Anaesthesiol 2011, 28, 842–848. [Google Scholar] [CrossRef]
- Berg, H.; VibyMogensen, J.; Roed, J.; Mortensen, C.R.; Engbaek, J.; Skovgaard, L.T.; Krintel, J.J. Residual neuromuscular block is a risk factor for postoperative pulmonary complications—A prospective, randomised, and blinded study of postoperative pulmonary complications after atracurium, vecuronium and pancuronium. Acta Anaesth. Scand. 1997, 41, 1095–1103. [Google Scholar] [CrossRef] [PubMed]
- Miller, R.D.; Cohen, N.H.; Eriksson, L.I.; Fleisher, L.A.; Wiener-Kronish, J.P.; Young, W.L. Miller’s Anesthesia, 8th ed.; Elsevier: Philadelphia, PA, USA, 2015; p. 1620. [Google Scholar]
- Caldwell, J.E. Clinical limitations of acetylcholinesterase antagonists. J. Crit. Care 2009, 24, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Herbstreit, F.; Zigrahn, D.; Ochterbeck, C.; Peters, J.; Eikermann, M. Neostigmine/glycopyrrolate administered after recovery from neuromuscular block increases upper airway collapsibility by decreasing genioglossus muscle activity in response to negative pharyngeal pressure. Anesthesiology 2010, 113, 1280–1288. [Google Scholar] [CrossRef]
- Sherman, A.; Abelansky, Y.; Evron, S.; Ezri, T. The effect of sugammadex vs. neostigmine on the postoperative respiratory complications following laparoscopic sleeve gastrectomy. Eur. J. Anaesth. 2014, 31, 152. [Google Scholar] [CrossRef]
- Brueckmann, B.; Sasaki, N.; Grobara, P.; Li, M.K.; Woo, T.; de Bie, J.; Maktabi, M.; Lee, J.; Kwo, J.; Pino, R.; et al. Effects of sugammadex on incidence of postoperative residual neuromuscular blockade: A randomized, controlled study. Br. J. Anaesth. 2015, 115, 743–751. [Google Scholar] [CrossRef] [Green Version]
- Hristovska, A.M.; Duch, P.; Allingstrup, M.; Afshari, A. Efficacy and safety of Sugammadex versus Neostigmine in reversing neuromuscular blockade in adults: A Cochrane systematic review with trial sequential analysis. Acta Anaesth. Scand. 2017, 61, 967–968. [Google Scholar]
- Ledowski, T. Muscle Relaxation in Laparoscopic Surgery: What is the Evidence for Improved Operating Conditions and Patient Outcome? A Brief Review of the Literature. Surg. Laparo. Endo. Per. 2015, 25, 281–285. [Google Scholar] [CrossRef]
- Madsen, M.V.; Staehr-Rye, A.K.; Gatke, M.R.; Claudius, C. Neuromuscular blockade for optimising surgical conditions during abdominal and gynaecological surgery: A systematic review. Acta Anaesthesiol. Scand. 2015, 59, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Hunter, J.M. Reversal of residual neuromuscular block: Complications associated with perioperative management of muscle relaxation. Br. J. Anaesth 2017, 119 (Suppl. 1), i53–i62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cammu, G.V.; Smet, V.; De Jongh, K.; Vandeput, D. A prospective, observational study comparing postoperative residual curarisation and early adverse respiratory events in patients reversed with neostigmine or sugammadex or after apparent spontaneous recovery. Anaesth. Intens. Care 2012, 40, 999–1006. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martinez-Ubieto, J.; Ortega-Lucea, S.; Pascual-Belosta, A.; Arazo-Iglesias, I.; Gil-Bona, J.; Jimenez-Bernardo, T.; Munoz-Rodriguez, L. Prospective study of residual neuromuscular block and postoperative respiratory complications in patients reversed with neostigmine versus sugammadex. Minerva Anestesiol. 2016, 82, 735–742. [Google Scholar] [PubMed]
- Jammer, I.; Wickboldt, N.; Sander, M.; Smith, A.; Schultz, M.J.; Pelosi, P.; Leva, B.; Rhodes, A.; Hoeft, A.; Walder, B.; et al. Standards for definitions and use of outcome measures for clinical effectiveness research in perioperative medicine: European Perioperative Clinical Outcome (EPCO) definitions A statement from the ESA-ESICM joint taskforce on perioperative outcome measures. Eur. J. Anaesth. 2015, 32, 88–105. [Google Scholar] [CrossRef] [Green Version]
- Jemal, A.; Bray, F.; Center, M.M.; Ferlay, J.; Ward, E.; Forman, D. Global cancer statistics. CA Cancer J. Clin. 2011, 61, 69–90. [Google Scholar] [CrossRef] [Green Version]
- Haverkamp, L.; Weijs, T.J.; van der Sluis, P.C.; van der Tweel, I.; Ruurda, J.P.; van Hillegersberg, R. Laparoscopic total gastrectomy versus open total gastrectomy for cancer: A systematic review and meta-analysis. Surg. Endosc. 2013, 27, 1509–1520. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, X.; Shen, C.; Zhi, X.; Wang, B.; Xu, Z. Laparoscopic versus open total gastrectomy for gastric cancer: An updated meta-analysis. PLoS ONE 2014, 9, e88753. [Google Scholar] [CrossRef] [Green Version]
- Celik, S.; Yilmaz, E.M. Effects of Laparoscopic and Conventional Methods on Lung Functions in Colorectal Surgery. Med. Sci. Monit. 2018, 24, 3244–3248. [Google Scholar] [CrossRef] [PubMed]
- Smetana, G.W.; Lawrence, V.A.; Cornell, J.E. Preoperative pulmonary risk stratification for noncardiothoracic surgery: Systematic review for the American College of Physicians. Ann. Intern. Med. 2006, 144, 581–595. [Google Scholar] [CrossRef]
- Kumar, G.V.; Nair, A.P.; Murthy, H.S.; Jalaja, K.R.; Ramachandra, K.; Parameshwara, G. Residual Neuromuscular Blockade Affects Postoperative Pulmonary Function. Anesthesiology 2012, 117, 1234–1244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paone, G.; Rose, G.D.; Giudice, G.C.; Cappelli, S.J.J.o.X.M. Physiology of pleural space after pulmonary resection. J. Xiangya Med. 2018. [Google Scholar] [CrossRef]
- Light, R.W.; George, R.B. Incidence and significance of pleural effusion after abdominal surgery. Chest 1976, 69, 621–625. [Google Scholar] [CrossRef] [PubMed]
- Koyuncu, O.; Turhanoglu, S.; Ozbakis Akkurt, C.; Karcioglu, M.; Ozkan, M.; Ozer, C.; Sessler, D.I.; Turan, A. Comparison of sugammadex and conventional reversal on postoperative nausea and vomiting: A randomized, blinded trial. J. Clin. Anesth. 2015, 27, 51–56. [Google Scholar] [CrossRef]
- Rahe-Meyer, N.; Fennema, H.; Schulman, S.; Klimscha, W.; Przemeck, M.; Blobner, M.; Wulf, H.; Speek, M.; McCrary Sisk, C.; Williams-Herman, D.; et al. Effect of reversal of neuromuscular blockade with sugammadex versus usual care on bleeding risk in a randomized study of surgical patients. Anesthesiology 2014, 121, 969–977. [Google Scholar] [CrossRef] [Green Version]
- Tas, N.; Korkmaz, H.; Yagan, O.; Korkmaz, M. Effect of Sugammadex on Postoperative Bleeding and Coagulation Parameters After Septoplasty: A Randomized Prospective Study. Med. Sci. Monit. 2015, 21, 2382–2386. [Google Scholar] [CrossRef] [Green Version]
- Oh, T.K.; Oh, A.Y.; Ryu, J.H.; Koo, B.W.; Song, I.A.; Nam, S.W.; Jee, H.J. Retrospective analysis of 30-day unplanned readmission after major abdominal surgery with reversal by sugammadex or neostigmine. Br. J. Anaesth. 2019, 122, 370–378. [Google Scholar] [CrossRef] [Green Version]
- Ledowski, T.; Falke, L.; Johnston, F.; Gillies, E.; Greenaway, M.; De Mel, A.; Tiong, W.S.; Phillips, M. Retrospective investigation of postoperative outcome after reversal of residual neuromuscular blockade Sugammadex, neostigmine or no reversal. Eur. J. Anaesth. 2014, 31, 423–429. [Google Scholar] [CrossRef]
- Kirmeier, E.; Eriksson, L.I.; Lewald, H. Post-anaesthesia pulmonary complications after use of muscle relaxants (POPULAR): A multicentre, prospective observational study. Lancet Resp. Med. 2019, 7, E9. [Google Scholar] [CrossRef]
- de Boer, H.D.; Brull, S.J.; Naguib, M.; Murphy, G.S.; Kopman, A.F. Neuromuscular monitoring and reversal: Responses to the POPULAR study. Lancet Resp. Med. 2019, 7, e4. [Google Scholar] [CrossRef] [Green Version]
- Plaud, B.; Gayat, E.; Nicolas, P. Neuromuscular monitoring and reversal: Responses to the POPULAR study. Lancet Resp. Med. 2019, 7, e5. [Google Scholar] [CrossRef]
- Lindberg, P.; Gunnarsson, L.; Tokics, L.; Secher, E.; Lundquist, H.; Brismar, B.; Hedenstierna, G. Atelectasis and Lung-Function in the Postoperative Period. Acta Anaesth. Scand. 1992, 36, 546–553. [Google Scholar] [CrossRef]
- Fisher, B.W.; Majumdar, S.R.; McAlister, F.A. Predicting pulmonary complications after nonthoracic surgery: A systematic review of blinded studies. Am. J. Med. 2002, 112, 219–225. [Google Scholar] [CrossRef]
- Mazo, V.; Sabate, S.; Canet, J.; Gallart, L.; de Abreu, M.G.; Belda, J.; Langeron, O.; Hoeft, A.; Pelosi, P. Prospective external validation of a predictive score for postoperative pulmonary complications. Anesthesiology 2014, 121, 219–231. [Google Scholar] [CrossRef] [PubMed]
- Ntutumu, R.; Liu, H.; Zhen, L.; Hu, Y.F.; Mou, T.Y.; Lin, T. Risk factors for pulmonary complications following laparoscopic gastrectomy: A single-center study. Medicine 2016, 95, e4567. [Google Scholar] [CrossRef] [PubMed]
- Christopher, C.Y.; Erica, M.H.; Charles, V.; Stephan, B.; Brooks, B.; Ryland, D.E.; Jaclyn, M.; Chad, R.; Brittany, T.; Amanda, W.; et al. Lung-protective ventilation for the surgical patient: International expert panel-based consensus recommendations. BJA 2019, 123, 898–913. [Google Scholar] [CrossRef] [Green Version]
- Mulier, J.P.; Dillemans, B. Anaesthetic factors affecting outcome after bariatric surgery, a retrospective levelled regression analysis. Obes. Surg. 2019, 29, 1841–1850. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fuchs-Buder, T.; Schmartz, D.; Baumann, C.; Hilt, L.; Nomine-Criqui, C.; Meistelman, C.; Brunaud, L. Deep neuromuscular blockade improves surgical conditions during gastric bypass surgery for morbid obesity: A randomised controlled trial. Eur. J. Anaesth. 2019, 36, 486–493. [Google Scholar] [CrossRef] [PubMed]
Complication | Definition |
---|---|
Respiratory infection | Patient has received antibiotics for a suspected respiratory infection and met one or more of the following criteria: new or changed sputum, new or changed lung opacities, fever, white blood cell count > 12 × 109 /L |
Respiratory failure | Post-operative PaO2 < 8 kPa (60 mmHg) on room air, a PaO2:FiO2 ratio < 40 kPa (300 mmHg) or arterial oxyhemoglobin saturation measured with pulse oximetry < 90% and requiring oxygen therapy |
Pleural effusion | Chest radiograph demonstrating blunting of the costo-phrenic angle, loss of sharp silhouette of the ipsilateral hemidiaphragm in upright position, evidence of displacement of adjacent anatomical structures or (in supine position) a hazy opacity in one hemithorax with preserved vascular shadows |
Atelectasis | Lung opacification with a shift of the mediastinum, hilum or hemidiaphragm toward the affected area, and compensatory over-inflation in the adjacent non-atelectatic lung |
Pneumothorax | Air in the pleural space with no vascular bed surrounding the visceral pleura |
Aspiration pneumonitis | Acute lung injury after the inhalation of regurgitated gastric contents |
Variables | Unmatched Cohort (n = 3261) | Matched Cohort (n = 1232) | |||||
---|---|---|---|---|---|---|---|
Sugammadex | Neostigmine | p-Value | Sugammadex | Neostigmine | p-Value | SMD | |
(n = 1363) | (n = 1898) | (n = 616) | (n = 616) | ||||
Patient-related | |||||||
Age (year) | 60.5 (12.8) | 59.9 (12.4) | 0.208 | 63.5 (11.7) | 62.9 (11.6) | 0.328 | 0.016 |
Sex: Male | 859 (63%) | 1192 (62.8%) | 0.898 | 423 (68.7%) | 424 (68.8%) | 0.951 | 0.004 |
Height (cm) | 163 (8.7) | 163.1 (9.1) | 0.711 | 163.4 (8.8) | 163.3 (8.7) | 0.732 | 0.018 |
Weight (kg) | 63.6 (11.6) | 64.1 (11.3) | 0.209 | 64.7 (11) | 64.3 (11.3) | 0.72 | 0.02 |
Body mass index (kg/m2) | 23.9 (3.4) | 24 (3.2) | 0.198 | 23.9 (3.3) | 24 (3.3) | 0.523 | 0.071 |
ASA classification | 0.341 | 0.863 | 0.031 | ||||
1 | 600 (44%) | 841 (44.3%) | 231 (37.5%) | 235 (38.1%) | |||
2 | 700 (51.4%) | 1645 (53.2%) | 363 (58.9%) | 356 (57.8%) | |||
3 | 62 (4.5%) | 34 (1.1%) | 22 (3.6%) | 25 (4.1%) | |||
4 | 1 (0.1%) | 0 | 0 | 0 | |||
Anemia | 62 (4.5%) | 96 (5.1%) | 25 (4.1%) | 25 (4.1%) | 1 | <0.001 | |
GFR (mL/min/1.73 m2) | 0.683 | 1 | <0.001 | ||||
GFR ≥ 60 | 1297 (95.2%) | 1807 (95.3%) | 585 (95%) | 585 (95%) | |||
30 ≤ GFR < 60 | 63 (4.6%) | 88 (4.6%) | 31 (5%) | 31 (5%) | |||
GFR < 30 | 2 (0.1%) | 1 (0.1%) | 0 | 0 | |||
Hypertension | 467 (34.3%) | 663 (34.9%) | 0.692 | 240 (39%) | 238 (38.6%) | 0.907 | 0.007 |
Diabetes Mellitus | 234 (17.2%) | 310 (16.3%) | 0.528 | 118 (19.2%) | 124 (20.1%) | 0.667 | 0.025 |
Heart disease | 91 (6.7%) | 104 (5.5%) | 0.155 | 41 (6.7%) | 46 (7.5%) | 0.578 | 0.032 |
Brain disease | 55 (4%) | 72 (3.8%) | 0.725 | 26 (4.2%) | 23 (3.7%) | 0.662 | 0.025 |
Smoking history | 0.732 | 0.954 | 0.017 | ||||
Never smoker | 704 (52%) | 1009 (53.4%) | 296 (48.1%) | 300 (48.7%) | |||
Ex-smoker | 407 (30.1%) | 555 (29.4%) | 200 (32.5%) | 195 (31.7%) | |||
Current smoker | 242 (17.9%) | 325 (17.2%) | 120 (19.5%) | 121 (19.6%) | |||
Preoperative lung disease | 0.094 | 0.947 | 0.085 | ||||
None | 1262 (92.6%) | 1798 (94.7%) | 562 (91.2%) | 566 (91.9%) | |||
Asthma | 13 (1.4%) | 18.6 (1%) | 7 (1.1%) | 6 (1%) | |||
COPD | 32 (2.3%) | 38.4 (1.8%) | 16 (2.6%) | 19 (3.1%) | |||
Old Tb | 17 (1.2%) | 23 (1.2%) | 9 (1.5%) | 9 (1.5%) | |||
Tb destroyed lung | 4 (0.3%) | 3 (0.2%) | 3 (0.5%) | 3 (0.5%) | |||
Lung cancer | 11 (0.8%) | 7 (0.4%) | 7 (1.1%) | 3 (0.5%) | |||
Others | 16 (1.2%) | 9 (0.5%) | 9 (1.5%) | 8 (1.3%) | |||
Combination | 8 (0.6%) | 5 (0.3%) | 3 (0.5%) | 2 (0.3%) | |||
Pulmonary Function Test | 0.071 | 0.994 | 0.016 | ||||
FEV1/FVC ≥ 70% | 787 (76.3%) | 980 (73%) | 461 (74.8%) | 457 (74.2%) | |||
FEV1 ≥ 80%, FVC < 70% | 181 (17.5%) | 288 (21.4%) | 121 (19.6%) | 125 (20.3%) | |||
50 ≤ FEV1 < 80, FVC < 70% | 54 (5.2%) | 68 (5.1%) | 28 (4.5%) | 28 (4.5%) | |||
30 ≤ FEV1 < 50, FVC < 70% | 10 (1%) | 7 (0.5%) | 6 (1%) | 6 (1%) | |||
Cancer and Surgery-related | |||||||
Type of operation | 0.000 | 0.791 | 0.088 | ||||
Gastric wedge resection | 92 (6.7%) | 122 (6.4%) | 36 (5.8%) | 40 (6.5%) | |||
LADG | 818 (60%) | 1307 (68.9%) | 396 (64.3%) | 381 (61.9%) | |||
LAPG | 164 (12%) | 141 (7.4%) | 54 (8.8%) | 69 (11.2%) | |||
LATG | 139 (10.2%) | 201 (10.6%) | 64 (10.4%) | 62 (10.1%) | |||
Pylorus preserving gastrectomy | 27 (2%) | 27 (1.4%) | 15 (2.4%) | 15 (2.4%) | |||
TLDG | 123 (9%) | 100 (5.3%) | 51 (8.3%) | 49 (8%) | |||
Diagnosis | 0.052 | 0.545 | 0.1 | ||||
EGC | 834 (61.2%) | 1167 (61.5%) | 368 (59.7%) | 373 (60.6%) | |||
AGC | 422 (31%) | 582 (30.7%) | 206 (33.4%) | 193 (31.3%) | |||
Benign | 18 (1.3%) | 20 (1.1%) | 3 (0.5%) | 6 (1%) | |||
NEC | 15 (1.1%) | 6 (0.3%) | 3 (0.5%) | 1 (0.2%) | |||
GIST | 74 (5.4%) | 122 (6.4%) | 36 (5.8%) | 43 (7%) | |||
Anesthesia-related | |||||||
Anesthetic agent | 0.000 | 0.293 | 0.089 | ||||
Total Intravenous Anesthesia | 120 (9%) | 316 (16.9%) | 64 (10.4%) | 66 (10.7%) | |||
Desflurane | 1118 (83.6%) | 972 (51.9%) | 480 (77.9%) | 460 (74.7%) | |||
Sevoflurane | 99 (7.4%) | 584 (31.2%) | 72 (11.7%) | 90 (14.6%) | |||
Anesthetic time (min) | 220 (68.4) | 226 (70) | 0.46 | 222.2 (70.3) | 221.4 (63.5) | 0.837 | 0.012 |
Positive End Expiratory Pressure | 774 (56.8%) | 497 (26.2%) | 0.000 | 261 (42.4%) | 250 (40.6%) | 0.525 | 0.036 |
Peak Inspiratory Pressure (mmHg) | 18 (3.6) | 18 (3.5) | 0.168 | 18 (3.6) | 18 (3.3) | 0.658 | 0.025 |
Crystalloid (cc) | 1085.4 (464.4) | 1118 (492.5) | 0.057 | 1101.4 (484.7) | 1093.7 (454.4) | 0.775 | 0.016 |
Colloid (cc) | 31.7 (127.7) | 51.3 (167.2) | 0.000 | 43.4 (153.1) | 33.7 (135) | 0.241 | 0.07 |
Estimated Blood Loss (cc) | 50.8 (104.3) | 75.2 (119) | 0.000 | 57.6 (133.7) | 56.3 (83.8) | 0.833 | 0.012 |
Urine Output (cc) | 133.6 (130) | 145.5 (160.1) | 0.024 | 139.6 (138.8) | 138.3 (130.3) | 0.866 | 0.01 |
Transfusion (cc) | 0.8 (15) | 1.4 (20) | 0.306 | 0.97 (13.9) | 0.73 (12.9) | 0.318 | 0.018 |
Phenylephrine continuous infusion | 48 (3.5%) | 62 (3.3%) | 0.691 | 21 (3.4%) | 27 (4.4%) | 0.377 | 0.05 |
Norepinephrine continuous infusion | 17 (1.2%) | 8 (0.4%) | 0.008 | 9 (1.5%) | 4 (0.6%) | 0.163 | 0.08 |
Dopamine continuous infusion | 6 (0.4%) | 5 (0.3%) | 0.391 | 4 (0.6%) | 2 (0.3%) | 0.413 | 0.047 |
Dobutamine continuous infusion | 1 (0.1%) | 0 (0%) | 0.238 | 0 | 0 | <0.001 | |
Nitroglycerin continuous infusion | 6 (0.4%) | 9 (0.5%) | 0.888 | 3 (0.5%) | 1 (0.2%) | 0.317 | 0.057 |
Ephedrine | 936 (68.7%) | 1127 (59.4%) | 0.000 | 406 (65.9%) | 409 (66.4%) | 0.857 | 0.01 |
Phenylephrine | 587 (43.1%) | 559 (29.5%) | 0.000 | 236 (38.3%) | 229 (37.2%) | 0.681 | 0.023 |
Atropine | 34 (2.5%) | 80 (4.2%) | 0.008 | 20 (3.2%) | 12 (1.9%) | 0.152 | 0.082 |
Esmolol | 81 (5.9%) | 185 (9.7%) | 0.000 | 46 (7.5%) | 44 (7.1%) | 0.827 | 0.012 |
Sugammadex (n = 616) | Neostigmine (n = 616) | p Value | |
---|---|---|---|
Total | 286 (46.4%) | 304 (49.4%) | 0.305 |
Respiratory infection | 12 (1.9%) | 6 (1.0%) | 0.154 |
Respiratory failure | 3 (0.5%) | 3 (0.5%) | 1 |
Pleural effusion | 111 (18.0%) | 144 (23.4%) | 0.02 1 |
Atelectasis | 223 (36.2%) | 219 (35.6%) | 0.812 |
Pneumothorax | 3 (0.5%) | 4 (0.6%) | 0.705 |
Aspiration pneumonitis | 0 (0.0%) | 1 (0.2%) | 0.317 |
Others | 1 (0.2%) | 3 (0.5%) | 0.317 |
Sugammadex (n = 616) | Neostigmine (n = 616) | p Value | |
---|---|---|---|
Re-operation within 90 days | 17 (2.1%) | 13 (2.1%) | 1 |
Postoperative ICU admission | 44 (7.1%) | 48 (7.8%) | 0.665 |
Re-admission or emergency room visit within 30 days | 58 (9.4%) | 69 (11.2%) | 0.303 |
Length of hospital stay | 8.72 (4.1) | 9.09 (6.6) | 0.238 |
Death within 90days | 1 (0.2%) | 0 (0.0%) | 0.317 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, J.; Ryu, J.-H.; Koo, B.-W.; Nam, S.W.; Cho, S.-I.; Oh, A.-Y. Effects of Sugammadex on Post-Operative Pulmonary Complications in Laparoscopic Gastrectomy: A Retrospective Cohort Study. J. Clin. Med. 2020, 9, 1232. https://doi.org/10.3390/jcm9041232
Han J, Ryu J-H, Koo B-W, Nam SW, Cho S-I, Oh A-Y. Effects of Sugammadex on Post-Operative Pulmonary Complications in Laparoscopic Gastrectomy: A Retrospective Cohort Study. Journal of Clinical Medicine. 2020; 9(4):1232. https://doi.org/10.3390/jcm9041232
Chicago/Turabian StyleHan, Jiwon, Jung-Hee Ryu, Bon-Wook Koo, Sun Woo Nam, Sang-Il Cho, and Ah-Young Oh. 2020. "Effects of Sugammadex on Post-Operative Pulmonary Complications in Laparoscopic Gastrectomy: A Retrospective Cohort Study" Journal of Clinical Medicine 9, no. 4: 1232. https://doi.org/10.3390/jcm9041232
APA StyleHan, J., Ryu, J. -H., Koo, B. -W., Nam, S. W., Cho, S. -I., & Oh, A. -Y. (2020). Effects of Sugammadex on Post-Operative Pulmonary Complications in Laparoscopic Gastrectomy: A Retrospective Cohort Study. Journal of Clinical Medicine, 9(4), 1232. https://doi.org/10.3390/jcm9041232