Alcohol Hangover Does Not Alter the Application of Model-Based and Model-Free Learning Strategies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Design
2.3. Questionnaires
2.4. Two-Step Decision-Making Task
2.5. Statistical Analyses
3. Results
3.1. Sample Characteristics and Intoxication Procedure
3.2. Two-Step Decision-Making Task
3.3. Add-On Analyses of Alcohol Consumption Habits
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- WHO. Global Status Report on Alcohol and Health 2018. Available online: http://www.who.int/substance_abuse/publications/global_alcohol_report/en/ (accessed on 30 September 2019).
- Verster, J.C.; Kruisselbrink, L.D.; Slot, K.A.; Anogeianaki, A.; Adams, S.; Alford, C.; Arnoldy, L.; Ayre, E.; Balikji, S.; Benson, S.; et al. Sensitivity to Experiencing Alcohol Hangovers: Reconsideration of the 0.11% Blood Alcohol Concentration (BAC) Threshold for Having a Hangover. J. Clin. Med. 2020, 9, 179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verster, J.C.; Scholey, A.; van de Loo, A.J.A.E.; Benson, S.; Stock, A.-K. Updating the Definition of the Alcohol Hangover. J. Clin. Med. 2020, 9, 823. [Google Scholar] [CrossRef] [Green Version]
- Van Schrojenstein Lantman, M.; van de Loo, A.J.A.E.; Mackus, M.; Verster, J.C. Development of a Definition for the Alcohol Hangover: Consumer Descriptions and Expert Consensus. Curr. Drug Abus. Rev. 2017, 9, 148–154. [Google Scholar] [CrossRef] [PubMed]
- Bush, D.M.; Lipari, R.N. Workplace Policies and Programs Concerning Alcohol and Drug Use. In The CBHSQ Report; Substance Abuse and Mental Health Services Administration (US): Rockville, MD, USA, 2013. [Google Scholar]
- Gunn, C.; Mackus, M.; Griffin, C.; Munafò, M.R.; Adams, S. A systematic review of the next-day effects of heavy alcohol consumption on cognitive performance. Addiction 2018, 113, 2182–2193. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, C.P.; Lyons, F. Alcohol and the athlete. Sports Med. 2000, 29, 295–300. [Google Scholar] [CrossRef]
- Barker, C.T. The alcohol hangover and its potential impact on the UK armed forces: A review of the literature on post-alcohol impairment. J. R. Army Med. Corps 2004, 150, 168–174. [Google Scholar] [CrossRef] [Green Version]
- Verster, J.C.; Anogeianaki, A.; Kruisselbrink, D.; Alford, C.; Stock, A.-K. Relationship between Alcohol Hangover and Physical Endurance Performance: Walking the Samaria Gorge. J. Clin. Med. 2019, 9, 114. [Google Scholar] [CrossRef] [Green Version]
- Ling, J.; Stephens, R.; Heffernan, T.M. Cognitive and psychomotor performance during alcohol hangover. Curr. Drug Abus. Rev. 2010, 3, 80–87. [Google Scholar] [CrossRef]
- Zink, N.; Bensmann, W.; Beste, C.; Stock, A.-K. Alcohol Hangover Increases Conflict Load via Faster Processing of Subliminal Information. Front. Hum. Neurosci. 2018, 12, 316. [Google Scholar] [CrossRef]
- Stock, A.-K.; Hoffmann, S.; Beste, C. Effects of binge drinking and hangover on response selection sub-processes-a study using EEG and drift diffusion modeling. Addict. Biol. 2017, 22, 1355–1365. [Google Scholar] [CrossRef]
- Crofton, J. Extent and costs of alcohol problems in employment: A review of British data. Alcohol Alcohol. 1987, 22, 321–325. [Google Scholar] [PubMed]
- Devenney, L.E.; Coyle, K.B.; Verster, J.C. Memory and attention during an alcohol hangover. Hum. Psychopharmacol. 2019, 34, e2701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verster, J.C.; Bervoets, A.C.; de Klerk, S.; Vreman, R.A.; Olivier, B.; Roth, T.; Brookhuis, K.A. Effects of alcohol hangover on simulated highway driving performance. Psychopharmacology 2014, 231, 2999–3008. [Google Scholar] [CrossRef]
- Stock, A.-K. Barking up the Wrong Tree: Why and How We May Need to Revise Alcohol Addiction Therapy. Front. Psychol. 2017, 8, 884. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Opitz, A.; Hubert, J.; Beste, C.; Stock, A.-K. Alcohol Hangover Slightly Impairs Response Selection but not Response Inhibition. J. Clin. Med. 2019, 8, 1317. [Google Scholar] [CrossRef] [Green Version]
- Chmielewski, W.X.; Zink, N.; Chmielewski, K.Y.; Beste, C.; Stock, A.-K. How high-dose alcohol intoxication affects the interplay of automatic and controlled processes. Addict. Biol. 2018. [Google Scholar] [CrossRef]
- Stock, A.-K.; Bensmann, W.; Zink, N.; Münchau, A.; Beste, C. Automatic aspects of response selection remain unchanged during high-dose alcohol intoxication. Addict. Biol. 2019, e12852. [Google Scholar] [CrossRef]
- Heinz, A.; Kiefer, F.; Smolka, M.N.; Endrass, T.; Beste, C.; Beck, A.; Liu, S.; Genauck, A.; Romund, L.; Banaschewski, T.; et al. Addiction Research Consortium: Losing and regaining control over drug intake (ReCoDe)-From trajectories to mechanisms and interventions. Addict. Biol. 2019, e12866. [Google Scholar] [CrossRef] [Green Version]
- Doñamayor, N.; Strelchuk, D.; Baek, K.; Banca, P.; Voon, V. The involuntary nature of binge drinking: Goal directedness and awareness of intention. Addict. Biol. 2018, 23, 515–526. [Google Scholar] [CrossRef]
- Montgomery, C.; Fisk, J.E.; Murphy, P.N.; Ryland, I.; Hilton, J. The effects of heavy social drinking on executive function: A systematic review and meta-analytic study of existing literature and new empirical findings. Hum. Psychopharmacol. 2012, 27, 187–199. [Google Scholar] [CrossRef]
- Heinz, A.; Beck, A.; Halil, M.G.; Pilhatsch, M.; Smolka, M.N.; Liu, S. Addiction as Learned Behavior Patterns. J. Clin. Med. 2019, 8, 1086. [Google Scholar] [CrossRef] [Green Version]
- Heinz, A.; Deserno, L.; Zimmermann, U.S.; Smolka, M.N.; Beck, A.; Schlagenhauf, F. Targeted intervention: Computational approaches to elucidate and predict relapse in alcoholism. Neuroimage 2017, 151, 33–44. [Google Scholar] [CrossRef]
- Sebold, M.; Deserno, L.; Nebe, S.; Schad, D.J.; Garbusow, M.; Hägele, C.; Keller, J.; Jünger, E.; Kathmann, N.; Smolka, M.; et al. Model-based and model-free decisions in alcohol dependence. Neuropsychobiology 2014, 70, 122–131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dayan, P.; Niv, Y. Reinforcement learning: The good, the bad and the ugly. Curr. Opin. Neurobiol. 2008, 18, 185–196. [Google Scholar] [CrossRef] [PubMed]
- Kool, W.; Cushman, F.A.; Gershman, S.J. When Does Model-Based Control Pay Off? PLoS Comput. Biol. 2016, 12, e1005090. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daw, N.D.; Gershman, S.J.; Seymour, B.; Dayan, P.; Dolan, R.J. Model-based influences on humans’ choices and striatal prediction errors. Neuron 2011, 69, 1204–1215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Voon, V.; Derbyshire, K.; Rück, C.; Irvine, M.A.; Worbe, Y.; Enander, J.; Schreiber, L.R.N.; Gillan, C.; Fineberg, N.A.; Sahakian, B.J.; et al. Disorders of compulsivity: A common bias towards learning habits. Mol. Psychiatry 2015, 20, 345–352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sebold, M.; Nebe, S.; Garbusow, M.; Guggenmos, M.; Schad, D.J.; Beck, A.; Kuitunen-Paul, S.; Sommer, C.; Frank, R.; Neu, P.; et al. When Habits Are Dangerous: Alcohol Expectancies and Habitual Decision Making Predict Relapse in Alcohol Dependence. Biol. Psychiatry 2017, 82, 847–856. [Google Scholar] [CrossRef] [Green Version]
- Carbia, C.; Cadaveira, F.; López-Caneda, E.; Caamaño-Isorna, F.; Rodríguez Holguín, S.; Corral, M. Working memory over a six-year period in young binge drinkers. Alcohol 2017, 61, 17–23. [Google Scholar] [CrossRef] [Green Version]
- Reiter, A.M.F.; Deserno, L.; Wilbertz, T.; Heinze, H.-J.; Schlagenhauf, F. Risk Factors for Addiction and Their Association with Model-Based Behavioral Control. Front. Behav. Neurosci. 2016, 10, 26. [Google Scholar] [CrossRef] [Green Version]
- Nebe, S.; Kroemer, N.B.; Schad, D.J.; Bernhardt, N.; Sebold, M.; Müller, D.K.; Scholl, L.; Kuitunen-Paul, S.; Heinz, A.; Rapp, M.A.; et al. No association of goal-directed and habitual control with alcohol consumption in young adults. Addict. Biol. 2018, 23, 379–393. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. AUDIT: The Alcohol Use Disorders Identification Test: Guidelines for Use in Primary Care/Thomas F. Babor … [et al.], 2nd ed.; Available online: https://apps.who.int/iris/handle/10665/67205 (accessed on 30 March 2020).
- Opitz, A.; Beste, C.; Stock, A.-K. Alcohol Hangover Differentially Modulates the Processing of Relevant and Irrelevant Information. J. Clin. Med. 2020, 9, 778. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Widmark, E.M.P. Die Theoretischen Grundlagen und Die Praktische Verwendbarkeit der Gerichtlich-medizinischen Alkoholbestimmung; Urban und Schwarzenberg: Berlin, Germany, 1932. [Google Scholar]
- Watson, P.E.; Watson, I.D.; Batt, R.D. Total body water volumes for adult male and females estimated from simple anthropometric measurements. Am. J. Clin. Nutr. 1980, 33, 27–39. [Google Scholar] [CrossRef] [PubMed]
- Rohsenow, D.J.; Marlatt, G.A. The balanced placebo design: Methodological considerations. Addict. Behav. 1981, 6, 107–122. [Google Scholar] [CrossRef]
- Verster, J.C.; Stephens, R.; Penning, R.; Rohsenow, D.; McGeary, J.; Levy, D.; McKinney, A.; Finnigan, F.; Piasecki, T.M.; Adan, A.; et al. The alcohol hangover research group consensus statement on best practice in alcohol hangover research. Curr. Drug Abus. Rev. 2010, 3, 116–126. [Google Scholar] [CrossRef] [Green Version]
- McKinney, A.; Coyle, K.; Penning, R.; Verster, J.C. Next day effects of naturalistic alcohol consumption on tasks of attention. Hum. Psychopharmacol. 2012, 27, 587–594. [Google Scholar] [CrossRef]
- Howland, J.; Rohsenow, D.J.; Greece, J.A.; Littlefield, C.A.; Almeida, A.; Heeren, T.; Winter, M.; Bliss, C.A.; Hunt, S.; Hermos, J. The effects of binge drinking on college students’ next-day academic test-taking performance and mood state. Addiction 2010, 105, 655–665. [Google Scholar] [CrossRef] [Green Version]
- Swift, R.; Davidson, D. Alcohol hangover: Mechanisms and mediators. Alcohol Health Res. World 1998, 22, 54–60. [Google Scholar]
- Chapman, L.F. Experimental induction of hangover. Q. J. Stud. Alcohol 1970, 5 (Suppl. S5), 67–86. [Google Scholar]
- Rohsenow, D.J.; Howland, J.; Arnedt, J.T.; Almeida, A.B.; Greece, J.; Minsky, S.; Kempler, C.S.; Sales, S. Intoxication with bourbon versus vodka: Effects on hangover, sleep, and next-day neurocognitive performance in young adults. Alcohol. Clin. Exp. Res. 2010, 34, 509–518. [Google Scholar] [CrossRef] [Green Version]
- McKinney, A.; Coyle, K. Next day effects of a normal night’s drinking on memory and psychomotor performance. Alcohol Alcohol. 2004, 39, 509–513. [Google Scholar] [CrossRef] [PubMed]
- Rohsenow, D.J.; Howland, J.; Winter, M.; Bliss, C.A.; Littlefield, C.A.; Heeren, T.C.; Calise, T.V. Hangover sensitivity after controlled alcohol administration as predictor of post-college drinking. J. Abnorm. Psychol. 2012, 121, 270–275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hogewoning, A.; Van de Loo, A.; Mackus, M.; Raasveld, S.J.; De Zeeuw, R.; Bosma, E.R.; Bouwmeester, N.H.; Brookhuis, K.A.; Garssen, J.; Verster, J.C. Characteristics of social drinkers with and without a hangover after heavy alcohol consumption. Subst. Abus. Rehabil. 2016, 7, 161–167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Schrojenstein Lantman, M.; Mackus, M.; Roth, T.; Verster, J.C. Total sleep time, alcohol consumption, and the duration and severity of alcohol hangover. Nat. Sci. Sleep 2017, 9, 181–186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Devenney, L.E.; Coyle, K.B.; Roth, T.; Verster, J.C. Sleep after Heavy Alcohol Consumption and Physical Activity Levels during Alcohol Hangover. J. Clin. Med. 2019, 8, 752. [Google Scholar] [CrossRef] [Green Version]
- van Schrojenstein Lantman, M.; Mackus, M.; van de Loo, A.J.A.E.; Verster, J.C. The impact of alcohol hangover symptoms on cognitive and physical functioning, and mood. Hum. Psychopharmacol. 2017, 32, e2623. [Google Scholar] [CrossRef]
- Rummery, G.A.; Niranjan, M. On-Line Q-Learning Using Connectionist Systems; Cambridge University Engineering Department: Cambridge, UK, 1994; Volume 166. [Google Scholar]
- Eppinger, B.; Walter, M.; Li, S.-C. Electrophysiological correlates reflect the integration of model-based and model-free decision information. Cogn. Affect. Behav. Neurosci. 2017, 17, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Gershman, S.J. Empirical priors for reinforcement learning models. J. Math. Psychol. 2016, 71, 1–6. [Google Scholar] [CrossRef]
- Jarosz, A.F.; Wiley, J. What Are the Odds? A Practical Guide to Computing and Reporting Bayes Factors. J. Probl. Solving 2014, 7, 2–9. [Google Scholar] [CrossRef] [Green Version]
- Obst, E.; Schad, D.J.; Huys, Q.J.; Sebold, M.; Nebe, S.; Sommer, C.; Smolka, M.N.; Zimmermann, U.S. Drunk decisions: Alcohol shifts choice from habitual towards goal-directed control in adolescent intermediate-risk drinkers. J. Psychopharmacol. 2018, 32, 855–866. [Google Scholar] [CrossRef]
- Stock, A.-K.; Schulz, T.; Lenhardt, M.; Blaszkewicz, M.; Beste, C. High-dose alcohol intoxication differentially modulates cognitive subprocesses involved in response inhibition. Addict. Biol. 2014. [Google Scholar] [CrossRef] [PubMed]
- Stock, A.-K.; Riegler, L.; Chmielewski, W.X.; Beste, C. Paradox effects of binge drinking on response inhibition processes depending on mental workload. Arch. Toxicol. 2016, 90, 1429–1436. [Google Scholar] [CrossRef] [PubMed]
- Stock, A.-K.; Blaszkewicz, M.; Beste, C. Effects of binge drinking on action cascading processes: An EEG study. Arch. Toxicol. 2014, 88, 475–488. [Google Scholar] [CrossRef]
- Verster, J.C.; van de Loo, A.J.A.E.; Benson, S.; Scholey, A.; Stock, A.-K. The Assessment of Overall Hangover Severity. J. Clin. Med. 2020, 9, 786. [Google Scholar] [CrossRef] [Green Version]
- Zwosta, K.; Ruge, H.; Goschke, T.; Wolfensteller, U. Habit strength is predicted by activity dynamics in goal-directed brain systems during training. Neuroimage 2018, 165, 125–137. [Google Scholar] [CrossRef]
- Vaghi, M.M.; Cardinal, R.N.; Apergis-Schoute, A.M.; Fineberg, N.A.; Sule, A.; Robbins, T.W. Action-Outcome Knowledge Dissociates From Behavior in Obsessive-Compulsive Disorder Following Contingency Degradation. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2019, 4, 200–209. [Google Scholar] [CrossRef]
- Schad, D.J.; Jünger, E.; Sebold, M.; Garbusow, M.; Bernhardt, N.; Javadi, A.-H.; Zimmermann, U.S.; Smolka, M.N.; Heinz, A.; Rapp, M.A.; et al. Processing speed enhances model-based over model-free reinforcement learning in the presence of high working memory functioning. Front. Psychol. 2014, 5, 1450. [Google Scholar] [CrossRef]
- Deserno, L.; Wilbertz, T.; Reiter, A.; Horstmann, A.; Neumann, J.; Villringer, A.; Heinze, H.-J.; Schlagenhauf, F. Lateral prefrontal model-based signatures are reduced in healthy individuals with high trait impulsivity. Transl. Psychiatry 2015, 5, e659. [Google Scholar] [CrossRef] [Green Version]
- Kool, W.; Gershman, S.J.; Cushman, F.A. Cost-benefit arbitration between multiple reinforcement learning systems. Psychol. Sci. 2017, 28, 1321–1333. [Google Scholar] [CrossRef]
- Bolenz, F.; Kool, W.; Reiter, A.M.; Eppinger, B. Metacontrol of decision-making strategies in human aging. Elife 2019, 8, e49154. [Google Scholar] [CrossRef]
- Bensmann, W.; Kayali, Ö.F.; Beste, C.; Stock, A.-K. Young frequent binge drinkers show no behavioral deficits in inhibitory control and cognitive flexibility. Prog. Neuropsychopharmacol. Biol. Psychiatry 2019, 93, 93–101. [Google Scholar] [CrossRef]
- Patzelt, E.H.; Kool, W.; Millner, A.J.; Gershman, S.J. Incentives Boost Model-Based Control Across a Range of Severity on Several Psychiatric Constructs. Biol. Psychiatry 2019, 85, 425–433. [Google Scholar] [CrossRef]
- Erol, A.; Karpyak, V.M. Sex and gender-related differences in alcohol use and its consequences: Contemporary knowledge and future research considerations. Drug Alcohol Depend. 2015, 156, 1–13. [Google Scholar] [CrossRef]
- Prat, G.; Adan, A.; Sánchez-Turet, M. Alcohol hangover: A critical review of explanatory factors. Hum. Psychopharmacol. 2009, 24, 259–267. [Google Scholar] [CrossRef]
- van Lawick van Pabst, A.E.; Devenney, L.E.; Verster, J.C. Sex Differences in the Presence and Severity of Alcohol Hangover Symptoms. J. Clin. Med. 2019, 8, 867. [Google Scholar] [CrossRef] [Green Version]
- Vatsalya, V.; Stangl, B.L.; Schmidt, V.Y.; Ramchandani, V.A. Characterization of hangover following intravenous alcohol exposure in social drinkers: Methodological and clinical implications. Addict. Biol. 2018, 23, 493–502. [Google Scholar] [CrossRef] [Green Version]
- Nixon, S.J.; Prather, R.; Lewis, B. Sex differences in alcohol-related neurobehavioral consequences. Handb. Clin. Neurol. 2014, 125, 253–272. [Google Scholar] [CrossRef]
- Otto, A.R.; Raio, C.M.; Chiang, A.; Phelps, E.A.; Daw, N.D. Working-memory capacity protects model-based learning from stress. Proc. Natl. Acad. Sci. USA 2013, 110, 20941–20946. [Google Scholar] [CrossRef] [Green Version]
- Worthy, D.A.; Cooper, J.A.; Byrne, K.A.; Gorlick, M.A.; Maddox, W.T. State-based versus reward-based motivation in younger and older adults. Cogn. Affect Behav. Neurosci. 2014, 14, 1208–1220. [Google Scholar] [CrossRef] [Green Version]
- Eppinger, B.; Walter, M.; Heekeren, H.R.; Li, S.-C. Of goals and habits: Age-related and individual differences in goal-directed decision-making. Front. Neurosci. 2013, 7, 253. [Google Scholar] [CrossRef] [Green Version]
- Tolstrup, J.S.; Stephens, R.; Grønbaek, M. Does the severity of hangovers decline with age? Survey of the incidence of hangover in different age groups. Alcohol. Clin. Exp. Res. 2014, 38, 466–470. [Google Scholar] [CrossRef] [PubMed]
- Thumin, F.; Wims, E. The perception of the common cold, and other ailments and discomforts, as related to age. Int. J. Aging Hum. Dev. 1975, 6, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Shenhav, A.; Botvinick, M.M.; Cohen, J.D. The expected value of control: An integrative theory of anterior cingulate cortex function. Neuron 2013, 79, 217–240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Item | Sober | Hungover | p |
---|---|---|---|
Overall hangover severity | 0.167 ± 0.637 | 3.640 ± 2.119 | <0.001 |
Regret | 0.000 ± 0.000 | 0.440 ± 1.261 | 0.039 |
Headache | 0.240 ± 0.831 | 2.600 ± 2.769 | 0.001 |
Sensitivity to light | 0.040 ± 0.200 | 1.680 ± 2.076 | 0.001 |
Concentration problems | 0.440 ± 0.961 | 3.640 ± 2.464 | <0.001 |
Clumsy | 0.080 ± 0.400 | 2.120 ± 1.716 | <0.001 |
Confusion | 0.000 ± 0.000 | 1.120 ± 1.166 | 0.001 |
Dizziness | 0.040 ± 0.200 | 2.400 ± 2.380 | <0.001 |
Anxiety | 0.080 ± 0.277 | 0.560 ± 0.961 | 0.020 |
Depression | 0.000 ± 0.000 | 0.640 ± 1.497 | 0.008 |
Apathy | 0.120 ± 0.440 | 1.400 ± 1.780 | 0.004 |
Stomach pain | 0.120 ± 0.440 | 0.480 ± 1.229 | 0.129 |
Nausea | 0.160 ± 0.800 | 1.520 ± 1.828 | 0.001 |
Vomiting | 0.040 ± 0.200 | 0.800 ± 1.384 | 0.011 |
Reduced appetite | 0.240 ± 1012 | 1.440 ± 2.022 | 0.021 |
Thirst | 0.440 ± 1083 | 3.840 ± 2.267 | <0.001 |
Heart pounding | 0.160 ± 0.554 | 1.280 ± 1.768 | 0.003 |
Heart racing | 0.000 ± 0.000 | 0.400 ± 0.707 | 0.015 |
Shivering | 0.080 ± 0.400 | 1.083 ± 1.176 | 0.001 |
Weakness | 0.040 ± 0.200 | 2.480 ± 2.084 | <0.001 |
Sweating | 0.080 ± 0.277 | 0.920 ± 1.552 | 0.004 |
Tired | 0.560 ± 1083 | 4.080 ± 2.448 | <0.001 |
Sleepiness | 0.440 ± 0.961 | 3.680 ± 2.410 | <0.001 |
Sleeping problems | 0.120 ± 0.332 | 0.720 ± 1.242 | 0.036 |
Mean | SEM | SD | Min | Max | |
---|---|---|---|---|---|
sober | |||||
MF-score | 0.08 | 0.04 | 0.18 | −0.25 | 0.39 |
MB-score | 0.50 | 0.07 | 0.33 | −0.10 | 1.10 |
Final score | 357.12 | 24.90 | 124.50 | 66 | 564 |
First stage RT | 491 | 28 | 141 | 136 | 728 |
Second stage RT | 585 | 27 | 136 | 198 | 886 |
hangover | |||||
MF-score | 0.06 | 0.04 | 0.18 | −0.28 | 0.35 |
MB-score | 0.49 | 0.05 | 0.25 | <−0.01 * | 0.98 |
Final score | 361.48 | 19.34 | 96.71 | 180 | 521 |
First stage RT | 489 | 24 | 121 | 204 | 617 |
Second stage RT | 597 | 12 | 62 | 505 | 762 |
Percentile | ω | α | β | λ | π |
---|---|---|---|---|---|
sober | |||||
25 | 0.70 | 0.81 | 3.39 | 0.00 | 0.11 |
50 | 0.83 | 0.89 | 4.70 | 0.48 | 0.16 |
75 | 0.90 | 1.00 | 5.48 | 0.84 | 0.19 |
hangover | |||||
25 | 0.68 | 0.75 | 3.16 | 0.28 | 0.09 |
50 | 0.88 | 0.86 | 4.04 | 0.51 | 0.20 |
75 | 0.95 | 0.98 | 5.52 | 0.79 | 0.23 |
r (p) | BF | τ (p) | |
---|---|---|---|
sober | |||
MF-score | 0.24 (0.24) | 3.26 | 0.15 (0.32) |
MB-score | 0.21 (0.32) | 3.94 | 0.16 (0.28) |
Final score | 0.30 (0.15) | 2.35 | 0.21 (0.17) |
ω | 0.21 (0.31) | 3.88 | 0.16 (0.28) |
π | 0.06 (0.76) | 6.21 | −0.05 (0.74) |
hangover | |||
MF-score | <−0.01 * (0.98) | 6.50 | 0.03 (0.85) |
MB-score | 0.16 (0.45) | 4.90 | 0.13 (0.37) |
Final score | −0.11 (0.60) | 5.67 | −0.14 (0.34) |
ω | 0.08 (0.72) | 6.10 | 0.11 (0.45) |
π | −0.01 (0.95) | 6.49 | 0.03 (0.85) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Berghäuser, J.; Bensmann, W.; Zink, N.; Endrass, T.; Beste, C.; Stock, A.-K. Alcohol Hangover Does Not Alter the Application of Model-Based and Model-Free Learning Strategies. J. Clin. Med. 2020, 9, 1453. https://doi.org/10.3390/jcm9051453
Berghäuser J, Bensmann W, Zink N, Endrass T, Beste C, Stock A-K. Alcohol Hangover Does Not Alter the Application of Model-Based and Model-Free Learning Strategies. Journal of Clinical Medicine. 2020; 9(5):1453. https://doi.org/10.3390/jcm9051453
Chicago/Turabian StyleBerghäuser, Julia, Wiebke Bensmann, Nicolas Zink, Tanja Endrass, Christian Beste, and Ann-Kathrin Stock. 2020. "Alcohol Hangover Does Not Alter the Application of Model-Based and Model-Free Learning Strategies" Journal of Clinical Medicine 9, no. 5: 1453. https://doi.org/10.3390/jcm9051453
APA StyleBerghäuser, J., Bensmann, W., Zink, N., Endrass, T., Beste, C., & Stock, A. -K. (2020). Alcohol Hangover Does Not Alter the Application of Model-Based and Model-Free Learning Strategies. Journal of Clinical Medicine, 9(5), 1453. https://doi.org/10.3390/jcm9051453