Identification Process of Selected Graphic Features Apple Tree Pests by Neural Models Type MLP, RBF and DNN
Abstract
:1. Introduction
2. Materials and Methods
- Apple blossom weevil—Anthonomus pomorum L.
- Apple sawfly—Hoplocampa testudinea Klug
- Apple ermine moth—Yponomeuta malinellus Zeller
- Codling moth—Cydia pomonella L.
- Apple clearwing—Synanthedon myopaeformis (Borkhausen)
- -
- shape coefficient Rs (cohesion), which is a measure of description of shape, independent from linear transformations (scale, rotation or translation)—it has no unit:
- L—circumference of the object,
- S—surface area of the object.
- -
- coefficient W8, which provides the ration of maximum dimension to the circumference of the object. For objects (insects) with varied, irregular shape, it assumes low values:
- Lmax—maximum dimension of the object,
- L—circumference of the object.
- -
- Feret coefficient RF, which characterizes the elongation of the object (it assumes low values for elongated objects and is characterized by high variability):
- Lh—maximum dimension of the object (horizontal),
- Lv—maximum dimension of the object (vertical).
- -
- regularity coefficient RE:
- S—surface area of the object,
- a—length of the object,
- b—width of the object.
- -
- Malinowska coefficient RM:
- L—circumference of the object,
- S—surface area of the object.
- -
- object surface area S, which is a sum of pixels of the object
- -
- object circumference L, which is a sum of pixels forming the contour of the object
- -
- learning file, containing 500 cases,
- -
- validation file, containing 250 cases,
- -
- test file, containing 250 cases.
3. Results and Discussion
- n—number of cases,
- yi—real values,
- zi—values determined using the network.
- − decreasing learning coefficient: η = 0.3 to η = 0.1,
- − momentum coefficient: α = 0.5.
4. Conclusions
- -
- The acquired test results demonstrated that ANN are an effective tool supporting the process of identifying chosen pests feeding in apple tree orchards.
- -
- Qualitative analysis of the generated neural models demonstrated that the highest classification capability was reached by a neural topology of the multilayer perceptron type, with the structure: 7:7-27-5:1.
- -
- The MLP network demonstrated a markedly higher classification capability in comparison to the DNN and RBF models. This may mean that the identification problem is linear in nature.
- -
- The study indicates a utilitarian aspect of the created neural model. Potential applications of the generated ANN can be specified as a dedicated information tool that may form the core of an expert system effectively supporting decision processes occurring in the broadly defined apple production process.
Author Contributions
Funding
Conflicts of Interest
References
- Nowakowski, K.; Raba, B.; Tomczak, R.J.; Boniecki, P.; Kujawa, S.; Nowak, P.J.; Matz, R. Identification of Physical Parameters of Cereal Grain using Computer image Analysis and Neural Models. In Proceedings of the 5th International Conference on Digital Image Processing (ICDIP 2013), Proceedings of SPIE, Beijing, China, 21–22 April 2013; Volume 8878. [Google Scholar] [CrossRef]
- Li, D.; Wang, R.; Xie, C.; Liu, L.; Zhang, J.; Li, R.; Wang, F.; Zhou, M.; Liu, W. A Recognition Method for Rice Plant Diseases and Pests Video Detection Based on Deep Convolutional Neural Network. Sensors 2020, 20, 578. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boniecki, P.; Nowakowski, K.; Tomczak, R.Ł. Neural networks type MLP in the process of identification chosen varieties of maize. In Proceedings of the 3rd International Conference on Digital Image Processing (ICDIP 2011), SPIE Proceedings, Chengdu, China, 8 July 2011; Volume 8009, pp. 15–17. [Google Scholar] [CrossRef]
- Pilarska, A.; Pilarski, K.; Witaszek, K.; Waliszewska, H.; Zborowska, M.; Waliszewska, B.; Kolasiński, M.; Szwarc-Rzepka, K. Treatment of dairy waste by anaerobic co-digestion with sewage sludge. Ecol. Chem. Eng. 2016, 23, 99–115. [Google Scholar] [CrossRef] [Green Version]
- Boniecki, P.; Koszela, K.; Świerczyński, K.; Skwarcz, J.; Zaborowicz, M.; Przybył, J. Neural Visual Detection of Grain Weevil (Sitophilus granarius L.). Agriculture 2020, 10, 25. [Google Scholar] [CrossRef] [Green Version]
- Boniecki, P.; Koszela, K.; Piekarska-Boniecka, H.; Nowakowski, K.; Przybył, J.; Zaborowicz, M.; Raba, B.; Dach, J. Identification of selected apple pests, based on selected graphical parameters. In Proceedings of the 5th International Conference on Digital Image Processing, Proceedings of SPIE, Beijing, China, 19 July 2013; Volume 8878. [Google Scholar] [CrossRef]
- Boniecki, P.; Nowakowski, K.; Ślósarz, P.; Dach, J.; Pilarski, K. Neural image analysis for estimating aerobic and anaerobic decomposition of organic matter based on the example of straw decomposition. In Proceedings of the 4th International Conference on Digital Image Processing, Proceedings of SPIE, Kuala Lumpur, Malaysia, 8 June 2012; Volume 8334. [Google Scholar] [CrossRef]
- Nowakowski, K.; Boniecki, P.; Dach, J. The Identification of Mechanical Damages of Kernels Basis on Neural Image Analysis. In Proceedings of the International Conference on Digital Image Processing (ICDIP 2009), Proceedings Paper, Bangkok, Thailand, 7–9 March 2009; pp. 412–414. [Google Scholar] [CrossRef]
- Kujawa, S.; Tomczak, R.J.; Kluza, T.; Weres, J.; Boniecki, P. A stand for the image acquisition of composted material based on the sewage sludge. In Proceedings of the 4th International Conference on Digital Image Processing, Proceedings of SPIE, Kuala Lumpur, Malaysia, 8 June 2012; Volume 8334. [Google Scholar] [CrossRef]
- Hinton, G.; Osindero, S.; Teh, Y.-W. A Fast Learning Algorithm for Deep Belief Nets. Neural Comput. 2006, 18, 1527–1554. [Google Scholar] [CrossRef] [PubMed]
- Sakr, G.E.; Mokbel, M.; Darwich, A.; Khneisser, M.N.; Hadi, A. Comparing Deep Learning And Support Vector Machines for Autonomous Waste Sorting. In Proceedings of the IEEE International Multidisciplinary Conference on Engineering Technologu (IMCET), Beirut, Lebanon, 2–4 November 2016; pp. 207–2012. [Google Scholar]
- Zhu, H.; Akrout, M.; Zheng, B.; Pelegris, A.; Jayarajan, A.; Phanishayee, A.; Schroeder, B.; Pekhimenko, G. Benchmarking and Analyzing Deep Neural Network Training. In Proceedings of the IEEE International Symposium on Workload Characterization (IISWC), Raleigh, NC, USA, 30 September–2 October 2018; pp. 88–100. [Google Scholar] [CrossRef]
- Sun, J.; He, X.; Ge, X.; Wu, X.; Shen, J.; Song, Y. Detection of Key Organs in Tomato Based on Deep Migration Learning in a Complex Background. Agriculture 2018, 8, 196. [Google Scholar] [CrossRef] [Green Version]
- Przybył, K.; Gawałek, J.; Koszela, K.; Przybył, J.; Rudzińska, M.; Gierz, Ł.; Domian, E. Neural Image Analysis and Electron Microscopy to Detect and Describe Selected Quality Factors of Fruit and Vegetable Spray-Dried Powders—Case Study: Chokeberry Powder. Sensors 2019, 19, 4413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boniecki, P.; Nowakowski, K.; Tomczak, R.J.; Kujawa, S.; Piekarska-Boniecka, H. The application of the Kohonen neural network in the non-parametric quality-based classification of tomatoes. In Proceedings of the 4th International Conference on Digital Image Processing, Proceedings of SPIE, Kuala Lumpur, Malaysia, 8 June 2012; Volume 8334. [Google Scholar] [CrossRef]
- Zaborowicz, M.; Lisiak, D.; Koszela, K.; Boniecki, P.; Kujawa, S.; Mueller, W.; Gierz, Ł.; Przybył, K.; Ślósarz, P. Application of neural modelling methods in the evaluation of the quality of pork half-carcases. In Proceedings of the 11th International Conference on Digital Image Processing, Proceedings of SPIE, Guangzhou, China, 10–13 May 2019. [Google Scholar] [CrossRef]
- Cerbin, S.; Nowakowski, K.; Dach, J.; Pilarski, K.; Boniecki, P.; Przybyl, J.; Lewicki, A. Possibilities of neural image analysis implementation in monitoring of microalgae production as a substrate for biogas plant. In Proceedings of the 4th International Conference on Digital Image Processing (ICDIP 2012), Proceedings of SPIE, Kuala Lumpur, Malaysia, 8 June 2012; Volume 8334. [Google Scholar] [CrossRef]
- Koszela, K.; Otrząsek, J.; Zaborowicz, M.; Boniecki, P.; Mueller, W.; Raba, B.; Lewicki, A.; Przybył, K. Quality assessment of microwave-vacuum dried material with the use of computer image analysis and neural model. In Proceedings of the 6th International Conference on Digital Image Processing, Proceedings of SPIE, Athens, Greece, 16 April 2014; Volume 915913. [Google Scholar] [CrossRef]
- Rice, D.C.J.; Carriveau, R.; Ting, D.S.-K.; Bata, M.H. Evaluation of Crop to Crop Water Demand Forecasting: Tomatoes and Bell Peppers Grown in a Commercial Greenhouse. Agriculture 2017, 7, 104. [Google Scholar] [CrossRef] [Green Version]
- Nowakowski, K.; Boniecki, P.; Tomczak, R.J. Identification process of corn and barley kernels damages using neural image analysis. In Proceedings of the 3rd International Conference on Digital Image Processing, Proceedings of SPIE, Chengdu, China, 8 July 2011; Volume 8009, pp. 15–17. [Google Scholar] [CrossRef]
- Pilarski, K.; Boniecki, P.; Ślósarz, P.; Dach, J.; Piekarska-Boniecka, H.; Koszela, K. Classification of chosen orchard pests with using the SOFM neural network. Afr. J. Agric. Res. 2012, 7, 6357–6362. [Google Scholar]
- Przybylak, A.; Boniecki, P.; Koszela, K.; Ludwiczak, A.; Zaborowicz, M.; Lisiak, D.; Stanisz, M.; Ślósarz, P. Estimation of intramuscular level of marbling among Whiteheaded Mutton Sheep lambs. J. Food Eng. 2016, 168, 199–204. [Google Scholar] [CrossRef]
- Boniecki, P.; Piekarska-Boniecka, H.; Świerczyński, K.; Koszela, K.; Zaborowicz, M.; Przybył, J. Detection of the granary weevil based on x-ray images of damaged wheat kernels. J. Stored Prod. Res. 2014, 56, 38–42. [Google Scholar] [CrossRef]
- Zaborowicz, M.; Fojud, A.; Koszela, K.; Mueller, W.; Gorna, K.; Okon, P.; Piekarska-Boniecka, H. Dedicates computer system AOTK for image processing and analysis of horse navicular bone. In Proceedings of the 9th International Conference on Digital Image Processing (ICDIP), SPIE Proceedings, Hong Kong, China, 21 July 2017; Volume 10420. [Google Scholar] [CrossRef]
- Przybył, K.; Zaborowicz, M.; Koszela, K.; Boniecki, P.; Mueller, W.; Raba, B.; Lewicki, A. Organoleptic damage classification of potatoes with use of image analysis in production process. In Proceedings of the 6th International Conference on Digital Image Processing (ICDIP 2014), SPIE Proceedings, Athens, Greece, 16 April 2014; Volume 9159. [Google Scholar] [CrossRef]
- Boniecki, P.; Dach, J.; Nowakowski, K.; Jakubek, A. Neural image analysis of maturity stage during composting of sewage sludge. In Proceedings of the International Conference on Digital Image Processing, Bangkok, Thailand, 7–9 March 2009; pp. 200–203. [Google Scholar] [CrossRef]
- Zaborowicz, M.; Foujd, A.; Boniecki, P.; Przybył, K.; Gierz, Ł.; Koszela, K.; Ślósarz, P.; Lisiak, D.; Przybył, J. Methodology of Data Processing in the Process of Neural Image Analysis of Pork Half Carcasses. In Proceedings of the 10th International Conference on Digital Image Processing (ICDIP), SPIE Proceedings, Shanghai, China, 9 August 2018; Volume 10806. [Google Scholar] [CrossRef]
- Zaborowicz, M.; Boniecki, P.; Piekarska-Boniecka, H.; Koszela, K.; Mueller, W.; Górna, K.; Okoń, P. Neural classification of the selected family of butterflies. In Proceedings of the 9th International Conference on Digital Image Processing (ICDIP), SPIE Proceedings, Hong Kong, China, 21 July 2017; Volume 10420/1. [Google Scholar] [CrossRef]
- Zaborowicz, M.; Boniecki, P.; Koszela, K.; Przybył, J. Application of neural image analysis in evaluating the quality of greenhouse tomatoes. Sci. Hortic. 2017, 218, 222–229. [Google Scholar] [CrossRef]
No. | RS (1) | W8 (2) | RF (3) | RE (4) | RM (5) | L (6) | S (7) | Pest (1, 2, 3, 4, 5) (Figure 1) |
---|---|---|---|---|---|---|---|---|
1 | 17.359 | 0.79 | 244.066 | 1016.879 | 3.166 | 46,761 | 3193 | apple moth |
2 | 1.964 | 0.423 | 293.177 | 410.828 | 0.401 | 67,473 | 1290 | apple clearwing |
3 | 3.685 | 0.301 | 261.12 | 501.274 | 0.92 | 53,524 | 1574 | apple moth |
4 | 1.538 | 0.709 | 378.825 | 469.745 | 0.24 | 112,654 | 1475 | apple clearwing |
… | … | … | … | … | … | … | … | … |
1000 | 1.157 | 0.606 | 350.848 | 377.389 | 0.076 | 96,629 | 1185 | apple moth |
RBF | MLP | DNN | |
---|---|---|---|
Training file | 0.165004 | 0.0001034 | 0.014921 |
Validation file | 0.183463 | 0.0001093 | 0.014921 |
Test file | 0.174319 | 0.0001063 | 0.014921 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boniecki, P.; Zaborowicz, M.; Pilarska, A.; Piekarska-Boniecka, H. Identification Process of Selected Graphic Features Apple Tree Pests by Neural Models Type MLP, RBF and DNN. Agriculture 2020, 10, 218. https://doi.org/10.3390/agriculture10060218
Boniecki P, Zaborowicz M, Pilarska A, Piekarska-Boniecka H. Identification Process of Selected Graphic Features Apple Tree Pests by Neural Models Type MLP, RBF and DNN. Agriculture. 2020; 10(6):218. https://doi.org/10.3390/agriculture10060218
Chicago/Turabian StyleBoniecki, Piotr, Maciej Zaborowicz, Agnieszka Pilarska, and Hanna Piekarska-Boniecka. 2020. "Identification Process of Selected Graphic Features Apple Tree Pests by Neural Models Type MLP, RBF and DNN" Agriculture 10, no. 6: 218. https://doi.org/10.3390/agriculture10060218
APA StyleBoniecki, P., Zaborowicz, M., Pilarska, A., & Piekarska-Boniecka, H. (2020). Identification Process of Selected Graphic Features Apple Tree Pests by Neural Models Type MLP, RBF and DNN. Agriculture, 10(6), 218. https://doi.org/10.3390/agriculture10060218