Projection of Rice and Maize Productions in Northern Thailand under Climate Change Scenario RCP8.5
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area Description
2.2. Regional Climate Data
2.3. Crop Model Simulation
2.3.1. Mean–Variance (EV) Analysis
2.3.2. Stochastic Dominance Analysis
2.3.3. Mean-Gini Dominance Analysis
2.4. Validation
3. Results and Discussion
3.1. Climate Model Data Evaluation
3.2. Crop Model Evaluation
3.3. Prediction of Rice and Maize
3.4. Crop Production Risk Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arritt, R.W.; Rummukainen, M. Challenges in Regional-Scale Climate Modeling. Bull. Am. Meteorol. Soc. 2011, 92, 365–368. [Google Scholar] [CrossRef] [Green Version]
- Peng, S.; Huang, J.; Sheehy, J.E.; Laza, R.C.; Visperas, R.M.; Zhong, X.; Centeno, G.S.; Khush, G.S.; Cassman, K.G. Rice yields decline with higher night temperature from global warming. Proc. Natl. Acad. Sci. USA 2004, 101, 9971–9975. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, C.; Liu, B.; Piao, S.; Wang, X.; Lobell, D.B.; Huang, Y.; Huang, M.; Yao, Y.; Bassu, S.; Ciais, P.; et al. Temperature increase reduces global yields of major crops in four independent estimates. Proc. Natl. Acad. Sci. USA 2017, 114, 9326–9331. [Google Scholar] [CrossRef] [Green Version]
- Dabi, T.; Khanna, V.K. Effect of Climate Change on Rice. Agrotechnology 2018, 7, 1–7. [Google Scholar] [CrossRef]
- Jones, J.; Hoogenboom, G.; Porter, C.; Boote, K.; Batchelor, W.; Hunt, L.; Wilkens, P.; Singh, U.; Gijsman, A.; Ritchie, J. The DSSAT cropping system model. Eur. J. Agron. 2003, 18, 235–265. [Google Scholar] [CrossRef]
- Hasan, M.M.; Rahman, M.M. Simulating climate change impacts on T. aman (BR-22) rice yield: A predictive approach using DSSAT model. Water Environ. J. 2019. [Google Scholar] [CrossRef]
- Alejo, L.A. Assessing the impacts of climate change on aerobic rice production using the DSSAT-CERES-Rice model. J. Water Clim. Chang. 2020. [Google Scholar] [CrossRef]
- Araya, A.; Kisekka, I.; Lin, X.; Prasad, P.V.V.; Gowda, P.; Rice, C.; Andales, A. Evaluating the impact of future climate change on irrigated maize production in Kansas. Clim. Risk Manag. 2017, 17, 139–154. [Google Scholar] [CrossRef]
- Townsend, R.; Felkner, J.; Tazhibayeva, K. Impact of climate change on rice production in Southeast Asia: Towards better farmer production functions. IOP Conf. Ser. Earth Environ. Sci. 2009, 6, 372044. [Google Scholar] [CrossRef]
- Azdawiyah, A.T.; Mohamad Zabawi, A.G.; Mohammad Hariz, A.R.; Mohd Fairuz, M.S.; Fauzi, J.; Mohd Syazwan Faisal, M. Simulating Climate Change Impact on Rice Yield in Malaysia Using DSSAT 4.5: Shifting Planting Date as an Adaptation Strategy. NIAES Series 2016, 115–125. Available online: https://www.naro.affrc.go.jp/archive/niaes/marco/marco2015/text/ws1-3-4_a_t_s_azdawiyah.pdf (accessed on 14 December 2020).
- Anser, M.K.; Hina, T.; Hameed, S.; Nasir, M.H.; Ahmad, I.; Naseer, M.A.U.R. Modeling Adaptation Strategies against Climate Change Impacts in Integrated Rice-Wheat Agricultural Production System of Pakistan. Int. J. Environ. Res. Public Health 2020, 17, 2522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amnuaylojaroen, T.; Chanvichit, P. Projection of near-future climate change and agricultural drought in Mainland Southeast Asia under RCP8.5. Clim. Chang. 2019, 155, 175–193. [Google Scholar] [CrossRef]
- Bruyère, C.; Raktham, C.; Done, J.; Kreasuwun, J.; Thongbai, C.; Promnopas, W.; Thongbai, J. Major weather regime changes over Southeast Asia in a near-term future scenario. Clim. Res. 2017, 72, 1–18. [Google Scholar] [CrossRef]
- Done, J.M.; Holland, G.J.; Bruyère, C.L.; Leung, L.R.; Suzuki-Parker, A. Modeling high-impact weather and climate: Lessons from a tropical cyclone perspective. Clim. Chang. 2013, 129, 381–395. [Google Scholar] [CrossRef] [Green Version]
- Skamarock, W.; Klemp, J.; Dudhia, J.; Gill, D.; Barker, D.; Wang, W.; Powers, J. A Description of the Advanced Research WRF Version 3; NCAR Technical Note 475 2008; National Center for Atmospheric Research: Boulder, CO, USA, 2008. [Google Scholar]
- Gent, P.R.; Danabasoglu, G.; Donner, L.J.; Holland, M.M.; Hunke, E.C.; Jayne, S.R.; Lawrence, D.M.; Neale, R.B.; Rasch, P.J.; Vertenstein, M.; et al. The Community Climate System Model Version 4. J. Clim. 2011, 24, 4973–4991. [Google Scholar] [CrossRef]
- Price, J.F.; Weller, R.A.; Pinkel, R. Diurnal cycling: Observations and models of the upper ocean response to diurnal heating, cooling, and wind mixing. J. Geophys. Res. Space Phys. 1986, 91, 8411–8427. [Google Scholar] [CrossRef] [Green Version]
- Mukerjee, S.; Tandon, A. Comparison of the simulated upper-ocean vertical structure using 1-dimensional mixed-layer model. Ocean Sci. Diss. 2016. [Google Scholar] [CrossRef]
- Amnuaylojaroen, T.; Barth, M.C.; Pfister, G.; Bruyere, C. Simulations of Emissions, Air Quality, and Climate Contribution in Southeast Asia for March and December. In Land-Atmospheric Research Applications in South and Southeast Asia; Vadrevu, K., Ohara, T., Justice, C., Eds.; Springer: Cham, Switzerland. [CrossRef]
- Thompson, G.; Rasmussen, R.M.; Manning, K. Explicit Forecasts of Winter Precipitation Using an Improved Bulk Microphysics Scheme. Part I: Description and Sensitivity Analysis. Mon. Weather. Rev. 2004, 132, 519–542. [Google Scholar] [CrossRef] [Green Version]
- Chen, F.; Dudhia, J. Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Weather Rev. 2001, 129, 569–585. [Google Scholar] [CrossRef] [Green Version]
- Stauffer, D.R.; Seaman, N.L. Use of four-dimensional data assimilation in a limited-area mesoscale model. Part I: Experiments with synoptic-scale data. Mon. Weather Rev. 1990, 118, 1250–1277. [Google Scholar] [CrossRef] [Green Version]
- Ritchie, J. IBSNAT/CERES rice model. Agrotechnol. Transfer. 1986, 3, 1–5. [Google Scholar]
- Jones, C.A.; Kiniry, J.R. (Eds.) CERES-Maize: A Simulation Model of Maize Growth and Development; Texas A&M University Press: College Station, TX, USA, 1986. [Google Scholar]
- Intaboot, N. The study of water demand to grow rice in Thailand. In Proceedings of the 6th International Symposium on the Fusion of Science and Technologies (ISFT2017), Jeju, Korea, 17–21 July 2017; Available online: http://www.rdi.rmutsb.ac.th/2011/digipro/isft2017/CA/11.%5BCA003%5D_F.pdf (accessed on 2 August 2020).
- Buddhaboon, C.; Kongton, S.; Jintrawet, A. Climate Scenario Verification and Impact on Rainfed Rice Production. Report of APN CAPABLE Project. Southeast Asia START Regional Center, Chulalongkorn University, Bangkok. 2004. Available online: http://startcc.iwlearn.org/doc/Doc_eng_1.pdf (accessed on 14 December 2020).
- Lana, M.A.; Eulenstein, F.; Schlindwein, S.L.; Graef, F.; Sieber, S.; Bittencourt, H.V.H. Yield stability and lower susceptibility to abiotic stresses of improved open-pollinated and hybrid maize cultivars. Agron. Sustain. Dev. 2017, 37, 30. [Google Scholar] [CrossRef] [Green Version]
- Jongkaewattana, S.; Vejpas, C. Validation of CERES-RICE Model. 2020. Available online: http://www.mcc.cmu.ac.th/research/DSSARM/ThaiRice/ricevalid.html (accessed on 4 December 2020).
- ICRISAT. International Benchmark Sites Network for Agrotechnology Transfer. In Proceedings of the International Symposium on Minimum Data Sets for Agrotechnology Transfer, Patancheru, India, 21–26 March 1983. [Google Scholar]
- Tsuji, G.Y.; Uehara, G.; Balas, S. (Eds.) DSSAT Version 3; University of Hawaii: Honolulu, HI, USA, 1994. [Google Scholar]
- Boonprakub, S.; Jongkaewwattana, S. Estimation of Genetic Coefficient of Maize and Validation of the CRES-Maize Model. Available online: https://www.lib.ku.ac.th/KU/CR000220010018.pdf (accessed on 4 December 2020).
- Anderson, J.R.; Dillon, J.L.; Hardaker, J.B. Agricultural Decision Analysis; Iowa State University Press: Iowa City, IA, USA, 1977. [Google Scholar]
- Buccola, S.T.; Subaei, A. Mean-gini analysis, stochastic efficiency and weak risk aversion. Aust. J. Agric. Econ. 1984, 28, 77–86. [Google Scholar] [CrossRef] [Green Version]
- Fawcett, R.; Thornton, P. Mean-Gini Dominance in Decision Analysis. IMA J. Manag. Math. 1989, 2, 309–317. [Google Scholar] [CrossRef]
- Markowitz, H.M. Mean—Variance Analysis. In Finance. The New Palgrave; Eatwell, J., Milgate, M., Newman, P., Eds.; Palgrave Macmillan: London, UK, 1989. [Google Scholar]
- Davidson, R.; Duclos, J.Y. Statistical inference for stochastic dominance and for the measurement of poverty and inequality. Econometrica 2000, 68, 1435–1464. [Google Scholar] [CrossRef] [Green Version]
- Kisekka, I.; Aguilar, J.; Rogers, D.H.; Holman, J.; O’Brien, D.M.; Klocke, N. Assessing Deficit Irrigation Strategies for Corn Using Simulation. Trans. ASABE 2016, 59, 303–317. [Google Scholar] [CrossRef] [Green Version]
- Kisekka, I.; Oker, T.; Nguyen, G.; Aguilar, J.; Rogers, D. Mobile drip irrigation evaluation in corn. Kans. Agric. Exp. Stn. Res. Rep. 2016, 2, 8. [Google Scholar] [CrossRef] [Green Version]
- Tsuji, G.Y.; Hoogenboom, G.; Thornton, P.K. Understanding Options for Agricultural Production; Springer Science and Business Media LLC: Berlin, Germany, 1998; Volume 7. [Google Scholar]
- Yasutomi, N.; Hamada, A.; Yatagai, A. Development of a long-term daily gridded temperature dataset and its application to rain/snow discrimination of daily precipitation. Glob. Environ. Res. 2011, 15, 165–172. [Google Scholar]
- Willmott, C.J.; Robeson, S.M.; Matsuura, K. A refined index of model performance. Int. J. Clim. 2012, 32, 2088–2094. [Google Scholar] [CrossRef]
- Huang, Q.; Rozelle, S.; Lohmar, B.; Huang, J.; Wang, J. Irrigation, agricultural performance and poverty reduction in China. Food Policy 2006, 31, 30–52. [Google Scholar] [CrossRef] [Green Version]
- Oramah, B.O. The Direct Private Benefits of Participation in a Publicly Provided Surface Irrigation Scheme in the High Rainfall Area of Nigeria. Afr. Dev. Rev. 1996, 8, 146–172. [Google Scholar] [CrossRef]
- Nonvide, G.M.A. A re-examination of the impact of irrigation on rice production in Benin: An application of the endogenous switching model. Kasetsart J. Soc. Sci. 2018, 40, 657–662. [Google Scholar] [CrossRef]
- Yousaf, M.; Li, J.; Lu, J.; Ren, T.; Cong, R.; Fahad, S.; Li, X. Effects of fertilization on crop production and nutrient-supplying capacity under rice-oilseed rape rotation system. Sci. Rep. 2017, 7, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Maclean, J.L.; Dawe, D.C.; Hardy, B.; Hettel, G.P. (Eds.) Rice Almanac, 3rd ed.; CABI Publishing: Wallingford, UK, 2002. [Google Scholar]
- Msowoya, K.; Madani, K.; Davtalab, R.; Mirchi, A.; Lund, J.R. Climate Change Impacts on Maize Production in the Warm Heart of Africa. Water Resour. Manag. 2016, 30, 5299–5312. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, N.V. Global Climate Changes and Rice Food Security; FAO: Rome, Italy, 2002. [Google Scholar]
- Mohandrass, S.; Kareem, A.A.; Ranganathan, T.B.; Jeyaraman, S. Rice production in India under the current and future climate. In Modeling the Impact of Climate Change on Rice Production in Asia; Mathews, R.B., Kroff, M.J., Bachelet, D., van Laar, H.H., Eds.; CAB International: Wallingford, UK, 1995; pp. 165–181. [Google Scholar]
Month | Water Demand (mm/month) |
---|---|
June | 274 |
July | 67.8 |
August | 49.3 |
September | 58.5 |
October | 32.2 |
Cultivar | P1 | P2 | P5 | P2R | P2O | G1 | G2 | G3 | G4 |
---|---|---|---|---|---|---|---|---|---|
KDML105 | 502.30 | - | 386.50 | 1233.00 | 12.70 | 45.47 | 0.027 | 1 | 0.95 |
SW3601 | 352.0 | 0.60 | 845 | - | - | - | 824 | 6.87 | - |
Statistical Analysis | Temperature | Precipitation | Crop Production | |||
---|---|---|---|---|---|---|
NRCM | Remapping | NRCM | Remapping | Rice | Maize | |
IOA | 0.76 | 0.78 | 0.63 | 0.65 | 0.89 | 0.81 |
Mean-Biased | −0.92 | 1.62 | −2.68 | −1.88 | −245 | −176 |
SDR | 1.87 | 1.21 | 2.54 | 2.38 | 615 | 226 |
Treatment | E(x) | E(x)–F(x) | Efficient (Yes/No) |
---|---|---|---|
Rice | −63 | −157.4 | Yes |
Maize | −203.7 | −253.6 | No |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amnuaylojaroen, T.; Chanvichit, P.; Janta, R.; Surapipith, V. Projection of Rice and Maize Productions in Northern Thailand under Climate Change Scenario RCP8.5. Agriculture 2021, 11, 23. https://doi.org/10.3390/agriculture11010023
Amnuaylojaroen T, Chanvichit P, Janta R, Surapipith V. Projection of Rice and Maize Productions in Northern Thailand under Climate Change Scenario RCP8.5. Agriculture. 2021; 11(1):23. https://doi.org/10.3390/agriculture11010023
Chicago/Turabian StyleAmnuaylojaroen, Teerachai, Pavinee Chanvichit, Radshadaporn Janta, and Vanisa Surapipith. 2021. "Projection of Rice and Maize Productions in Northern Thailand under Climate Change Scenario RCP8.5" Agriculture 11, no. 1: 23. https://doi.org/10.3390/agriculture11010023
APA StyleAmnuaylojaroen, T., Chanvichit, P., Janta, R., & Surapipith, V. (2021). Projection of Rice and Maize Productions in Northern Thailand under Climate Change Scenario RCP8.5. Agriculture, 11(1), 23. https://doi.org/10.3390/agriculture11010023