Can Miscanthus Fulfill Its Expectations as an Energy Biomass Source in the Current Conditions of the Czech Republic?—Potentials and Barriers
Abstract
:1. Introduction
1.1. Experience with Miscanthus and Energy Crops
1.2. Miscanthus Resources and Services
1.3. Invasive Risks of Miscanthus
1.4. Objectives of the Article—Potentials and Barriers of Miscanthus as an Energy Crop
2. Materials and Methods
2.1. Climatic and Soil Conditions of Experimental Sites
2.2. Assortment and Design of the Clonal Experiment
2.3. Establishment and Maintenance of the Clonal Experiment
2.4. Evaluation of Yield and Biometric Characteristics
2.5. Modeling the Economic Efficiency of Miscanthus Plantations
- cmin,t—minimum price of biomass in year t (EUR/GJ)
- Qt—biomass production measured in heat energy (GJ)
- St—project subsidies in year t (EUR)
- Et—project expenditure in year t (EUR)
- rn—nominal discount (−)
- Tn—evaluation period (here, 10 years)
- CFt—cash flow in year t (EUR).
- Project and land preparation: Land preparation in the autumn before spring planting includes moderate deep plowing and harrowing, fertilization with NPK (eventually, lime) according to the land’s condition. Pre-fertilization in the form of NPK is equivalent to approximately 60 kg N/ha.
- Costs of establishing a stand: Planting 8000 rhizomes per hectare using a potato planter, post-emergence weeding using a herbicide (eradication of dicotyledonous weeds after one year of Miscanthus growth).
- Planting material: Price used is 0.12 EUR/Miscanthus rhizome, which has been typical for a larger amount of purchased material.
- Harvesting and processes between harvests: Harvesting (bales 80 × 90 cm) takes place in the winter season, with a Miscanthus moisture content of 20% at harvest and a calorific value of 13.75 GJ/t (raw biomass). Yield curves already respect the assumed losses of biomass due to the winter harvest. Fertilizer costs (60 kg N/ha in NPK) are estimated from experience with experimental plots once every three years. After the fifth harvest, Ca fertilizing with approximately 2–2.5 tons of dolomitic limestone per hectare is expected.
- Crop management, subsidies, and land rent: Rent for land is assumed to be 200 EUR/ha/year (approximate median Czech cost of land rent), and overheads are estimated at 40 EUR/ha/year.
- Costs of stand eradication: After the tenth harvest, the crop is eradicated by deep plowing.
- Subsidy: Single Area Payment Scheme (SAPS), including a Greening Payment is approximately 210 EUR/ha/year.
3. Results
3.1. Climatic Conditions During Experiments
3.2. Survival and Lodging
3.3. Biomass Yields
3.4. Biomass Parameters in Autumn and Spring Harvests
3.5. Invasive Behavior
3.6. Economic Analysis
4. Discussion
- (1)
- In contrast to conventional crops, Miscanthus plantations have high one-off costs for stand establishment. These one-off costs represent around 1/3 of the total cost for the Miscanthus stand (in present value) over its entire life cycle (10 years). In this way, the grower must, at the outset, invest significantly more money per unit of area than in the case of conventional agricultural production.
- (2)
- The maximum production of biomass is reached up to 2–3 years after establishment, which, from the producer’s point of view, means that cash flow is initially worse.
- (3)
- Having multiyear plantations of energy crops is significantly riskier for producers, both in terms of the higher one-off costs of establishing the stands and losses after establishment due to crop damage or possible changes in the biomass market. An investor or farmer of perennial energy crops cannot react as quickly to market changes as someone who has invested in conventional crops with a one-year production cycle. One reason for this is that most agricultural land in the Czech Republic is still farmed on leased land (about 70%—see [90]), and rental periods are generally shorter than the life cycle of the energy crop plantation, thus further increasing the risk.
- Providing targeted subsidies for plantation establishment to decrease the investor’s risk.
- Supporting long-term contracts to purchase biomass for energy crops using a price formula.
- Using plantations of perennial energy crops for additional benefits, i.e., non-production functions (e.g., decreasing soil erosion, phytoremediation, increasing the soil’s humus content and water capacity).
5. Conclusions
- Improvement of Miscanthus × giganteus gene pool (new varieties) and agrotechnology (to lower establishment cost, prolong production period to 15–20 years, improve the precision of fertilization, minimize the invasive risk) continues.
- Climate change trends continue with growing effects of weather extremes and changes (droughts, temperature growth) in CEE countries, which may improve growing conditions for Miscanthus (C4 plant) over conventional crops (mostly C3 plants).
- A new approach of EC or member states to current agriculture subsidy policy (CAP), which would evaluate environmental services of Miscanthus and other new biomass crops, is implemented.
- Further development of the bioeconomy in the EU occurs, thus increasing demand for Miscanthus biomass for utilization in products with higher additional value, e.g., construction materials, industrial products, and second-generation biofuels.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Eurostat. Renewable Energy Statistics—Statistics Explained. 2020. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Renewable_energy_statistics_ (accessed on 25 September 2020).
- Scarlat, N.; Dallemand, J.-F.; Taylor, N.; Banja, M. Brief on Biomass for Energy in the European Union; Publications Office of the European Union: Luxembourg, 2019. [Google Scholar]
- European Commission. National Energy and Climate Plans (NECPs), European Commission. 2019. Available online: https://ec.europa.eu/info/energy-climate-change-environment/overall-targets/national-energy-and-climate-plans-necps_en (accessed on 4 October 2020).
- International Renewable Energy Agency. IRENA Global Bioenergy Supply and Demand Projections A Working Paper for REmap 2030. 2014. Available online: www.irena.org/remap (accessed on 4 October 2020).
- European Commission. The European Green Deal, Brussels. 2019. Available online: https://ec.europa.eu/info/sites/info/files/european-green-deal-communication_en.pdf (accessed on 4 October 2020).
- Knápek, J.; Králík, T.; Vávrová, K.; Weger, J. Dynamic biomass potential from agricultural land. Renew. Sustain. Energy Rev. 2020, 134, 110319. [Google Scholar] [CrossRef]
- Laurent, A.; Pelzer, E.; Loyce, C.; Makowski, D. Ranking Yields of Energy Crops: A Meta-Analysis Using Direct and Indirect Comparisons. Renew. Sustain. Energy Rev. 2015, 46, 41–50. [Google Scholar] [CrossRef]
- Stolarski, M.J.; Krzyżaniak, M.; Tworkowski, J.; Szczukowski, S.; Gołaszewski, J. Energy intensity and energy ratio in producing willow chips as feedstock for an integrated biorefinery. Biosyst. Eng. 2014, 123, 19–28. [Google Scholar] [CrossRef]
- Stolarski, M.J.; Krzyżaniak, M.; Warmiński, K.; Olba-Zięty, E.; Penni, D.; Bordiean, A. Energy efficiency indices for lignocellulosic biomass production: Short rotation coppices versus grasses and other herbaceous crops. Ind. Crops Prod. 2019, 135, 10–20. [Google Scholar] [CrossRef]
- Havlíčková, K.; Suchý, J.; Weger, J.; Šedivá, J.; Táborová, M.; Bureš, M.; Hána, J.; Nikl, M.; Jirásková, L.; Petruchová, J.; et al. Analýza Potenciálu Biomasy v České Republice (Analysis of Biomass Potential in the Czech Republic); Výzkumný Ústav Silva Taroucy Pro Krajinu a Okrasné Zahradnictví, v.v.i.: Průhonice, Czech Republic, 2010; p. 498. [Google Scholar]
- Heděnec, P.; Novotný, D.; Ustak, S.; Cajthaml, T.; Slejška, A.; Šimáčková, H.; Honzík, R.; Kovářová, M.; Jan, F. The effect of native and introduced biofuel crops on the composition of soil biota communities. Biomass Bioenergy 2014, 60, 137–146. [Google Scholar] [CrossRef]
- Rahman, M.M.; Mostafiz, S.B.; Paatero, J.V.; Lahdelma, R. Extension of energy crops on surplus agricultural lands: A potentially viable option in developing countries while fossil fuel reserves are diminishing. Renew. Sustain. Energy Rev. 2014, 29, 108–119. [Google Scholar] [CrossRef] [Green Version]
- Lewandowski, I.; Clifton-Brown, J.; Trindade, L.M.; Van Der Linden, G.C.; Schwarz, K.-U.; Müller-Sämann, K.; Anisimov, A.; Chen, C.-L.; Dolstra, O.; Donnison, I.S.; et al. Progress on Optimizing Miscanthus Biomass Production for the European Bioeconomy: Results of the EU FP7 Project OPTIMISC. Front. Plant Sci. 2016, 7, 1620. [Google Scholar] [CrossRef] [Green Version]
- Biedermann, J. Zemědělství 2013 (Agriculture 2013); Ministry of Agriculture: Praha, Czech Republic, 2014.
- European Commission. Cereals, Oilseeds, Protein Crops and Rice, European Commission. 2016. Available online: https://ec.europa.eu/info/food-farming-fisheries/plants-and-plant-products/plant-products/cereals (accessed on 25 September 2020).
- Schorling, M.; Enders, C.; Voigt, C.A. Assessing the cultivation potential of the energy crop Miscanthus × giganteus for Germany. GCB Bioenergy. 2015, 7, 763–773. [Google Scholar] [CrossRef]
- Lewandowski, I.; Clifton-Brown, J.; Kiesel, A.; Hastings, A.; Iqbal, Y. Perennial Grasses for Bioenergy and Bioproducts: Production, Uses Sustainability and Markets for Giant Reed, Miscanthus, Switchgrass, Reed Canary Grass and Bamboo; Efthymia, A., Ed.; Academic Press: London, UK, 2018; pp. 35–60. [Google Scholar]
- Bioenergy Europe. Bioenergy Europe Statistical Report. 2018. Available online: https://bioenergyeurope.org/statistical-report-2018 (accessed on 26 October 2020).
- Stolarski, M.J.; Průhonice, Czech Republic. Personal communication, 2018.
- Lewandowski, I.; Kicherer, A.; Vonier, P. CO2-balance for the cultivation and combustion of Miscanthus. Biomass Bioenergy 1995, 8, 81–90. [Google Scholar] [CrossRef]
- Venturi, P.; Huisman, W.; Atzema, A. The effect of harvest methods of Miscanthus × giganteus on available harvest time, Sustainable Agriculture for Food Energy and Industry. In Proceedings of the International Conference, Braunschweig, Germany, 17–20 June 1997; p. 45. [Google Scholar]
- Clifton-Brown, J.C.; Stampfl, P.F.; Jones, M.B. Miscanthus biomass production for energy in Europe and its potential contribution to decreasing fossil fuel carbon emissions. Glob. Chang. Biol. 2004, 10, 509–518. [Google Scholar] [CrossRef]
- Everard, C.D.; Schmidt, M.; McDonnell, K.P.; Finnan, J. Heating processes during storage of Miscanthus chip piles and numerical simulations to predict self-ignition. J. Loss Prev. Process Ind. 2014, 30, 188–196. [Google Scholar] [CrossRef]
- Moudrý, J.; Strašil, Z. Alternativní Plodiny (Alternative Crops); University of South Bohemia—Faculty of Agriculture: České Budějovice, Czech Republic, 1996; p. 90. [Google Scholar]
- Weger, J.; Průhonice, Czech Republic. Personal communication, 2020.
- Hodkinson, T.R.; Chase, M.W.; Lledó, M.D.; Salamin, N.; Renvoize, S.A. Phylogenetics of Miscanthus, Saccharum and related genera (Saccharinae, Andropogoneae, Poaceae) based on DNA sequences from ITS nuclear ribosomal DNA and plastid trnL intron and trnL-F intergenic spacers. J. Plant Res. 2002, 115, 381–392. [Google Scholar] [CrossRef] [PubMed]
- Maucieri, C.; Camarotto, C.; Florio, G.; Albergo, R.; Ambrico, A.; Trupo, M.; Borin, M. Bioethanol and biomethane potential production of thirteen pluri-annual herbaceous species. Ind. Crops Prod. 2019, 129, 694–701. [Google Scholar] [CrossRef]
- Szulczewski, W.; Żyromski, A.; Jakubowski, W.; Biniak-Pieróg, M. A new method for the estimation of biomass yield of giant Miscanthus (Miscanthus giganteus) in the course of vegetation. Renew. Sustain. Energy Rev. 2018, 82, 1787–1795. [Google Scholar] [CrossRef]
- Stewart, J.R.; Toma, Y.; Fernández, F.G.; Nishiwaki, A.; Yamada, T.; Bollero, G. The ecology and agronomy of Miscanthus sinensis, a species important to bioenergy crop development, in its native range in Japan: A review. GCB Bioenergy 2009, 1, 126–153. [Google Scholar] [CrossRef]
- Cerazy-Waliszewska, J.; Jeżowski, S.; Łysakowski, P.; Waliszews, B.; Zborowska, M.; Sobańska, K.; Ślusarkiewicz-Jarzina, A.; Białas, W.; Pniewski, T. Potential of bioethanol production from biomass of various Miscanthus genotypes cultivated in three-year plantations in west-central Poland. Ind. Crops Prod. 2019, 141, 111790. [Google Scholar] [CrossRef]
- Grams, J.; Kwapińska, M.; Jędrzejczyk, M.; Rzeźnicka, I.; Leahy, J.J.; Ruppert, A.M. Surface characterization of Miscanthus × giganteus and Willow subjected to torrefaction. J. Anal. Appl. Pyrolysis 2018, 138, 231–241. [Google Scholar] [CrossRef]
- McCarthy, S.; Mooney, M. European Miscanthus network. In Biomass for Energy, Environment, Agriculture and Industry; Guildford and King’s Lynn: Biddles Ltd.: Pergamon, MI, USA, 1995; pp. 380–388. ISBN 0080421350. [Google Scholar]
- Harvey, J.J.; Hutchens, M. Progress in commercial development of Miscanthus in England. In Biomass for Energy, Environment, Agriculture and Industry; Guildford and King’s Lynn: Biddles Ltd.: Pergamon, MI, USA, 1995; pp. 587–594. [Google Scholar]
- Walsh, M.; McCarthy, S. Miscanthus handbook. In Proceedings of the 10th European Conference and Technology Exhibition Biomass for Energy and Industry, Würzburg, Germany, 8–11 June 1998. [Google Scholar]
- Eiland, F.; Leth, M.; Klamer, M.; Lind, A.-M.; Jensen, H.; Iversen, J. C and N Turnover and Lignocellulose Degradation During Composting of Miscanthus Straw and Liquid Pig Manure. Compost. Sci. Util. 2001, 9, 186–196. [Google Scholar] [CrossRef]
- Weger, J.; Bubeník, J.; Dubský, M. Hodnocení vlivu hnojení na růst a výnos klonů vrb a topolů v prvních čtyřech letech pěstování (Evaluation of influence of fertilization on growth and yield of willow and poplar clones in first four years). Acta Pruhoniciana 2010, 94, 13–20. Available online: https://www.vukoz.cz/acta/dokumenty/acta_94/Acta-94_komplet-cz.pdf (accessed on 25 August 2020).
- Schwarz, H.; Liebhard, P.; Ehrendorfer, K.; Ruckenbauer, P. The effect of fertilization on yield and quality of Miscanthus sinensis ‘Giganteus’. Ind. Crop. Prod. 1994, 2, 153–159. [Google Scholar] [CrossRef]
- Nazli, R.I.; Tansi, V.; Öztürk, H.H.; Kusvuran, A. Miscanthus, switchgrass, giant reed, and bulbous canary grass as potential bioenergy crops in a semi-arid Mediterranean environment. Ind. Crop. Prod. 2018, 125, 9–23. [Google Scholar] [CrossRef]
- Iqbal, Y.; Gauder, M.; Claupein, W.; Graeff-Hönninger, S.; Lewandowski, I. Yield and quality development comparison between Miscanthus and switchgrass over a period of 10 years. Energy 2015, 89, 268–276. [Google Scholar] [CrossRef]
- Loeffel, K.; Nentwig, W. Ökologische Beurteilung des Anbaus Von Chinaschilf (Miscanthus Sinensis) Anhand Faunistischer Untersuchung; Agrarökologie Verlag Agrarökologie: Hannover, Germany, 1997. [Google Scholar]
- Witzel, C.-P.; Finger, R. Economic evaluation of Miscanthus production—A review. Renew. Sustain. Energy Rev. 2016, 53, 681–696. [Google Scholar] [CrossRef]
- Xue, S.; Lewandowski, I.; Kalinina, O. Miscanthus establishment and management on permanent grassland in southwest Germany. Ind. Crop. Prod. 2017, 108, 572–582. [Google Scholar] [CrossRef]
- Hůla, J.; Procházková, B. Vliv Minimalizačních a Půdoochranných Technologií na Plodiny, Půdní Prostředí a Ekonomiku (The Impact of Minimizing and Soil Protection Technologies on Crops, Soil Environment and Economy); Ústav Zemědělských a Potravinářských Informací: Praha, Czech Republic, 2002. [Google Scholar]
- Raus, A.; Čechová, V.; Šabatka, J. The Effect of Soil Protection Treatment on Soil Organic Matter. Úroda 1999, 47, 16–17. [Google Scholar]
- Strašil, Z. Study of Miscanthus sinensis—Source for energy utilization. In Proceedings of the 15th European Biomass Conference and Exhibition, From Research to Market Deployment, Berlin, Germany, 7–11 May 2007; pp. 824–827. [Google Scholar]
- McCalmont, J.P.; Hastings, A.; McNamara, N.P.; Richter, G.M.; Robson, P.R.H.; Donnison, I.S.; Clifton-Brown, J. Environmental costs and benefits of growing Miscanthus for bioenergy in the UK. GCB Bioenergy 2017, 9, 489–507. [Google Scholar] [CrossRef] [PubMed]
- Sage, R.B.; Cunningham, M.; Haughton, A.J.; Mallott, M.D.; Bohan, D.A.; Riche, A.; Karp, A. The environmental impacts of biomass crops: Use by birds of Miscanthus in summer and winter in southwestern England. IBIS 2010, 152, 487–499. [Google Scholar] [CrossRef] [Green Version]
- Kalinina, O. Potential Ecological Impacts of Miscanthus, a Prospective Bioenergy Crop, in Agro- and Natural-Ecosystems. In Proceedings of the Book of Abstracts of the 43rd Annual Meeting of the Ecological Society of Germany, Austria and Switzerland, Potsdam, Germany, 9–13 September 2013; Available online: https://www.researchgate.net/publication/258225927_Potential_ecological_impacts_of_Miscanthus_a_prospective_bioenergy_crop_in_agro--_and_natural_ecosystems (accessed on 29 September 2020).
- Lewandowski, I.; Clifton-Brown, J.; Scurlock, J.; Huisman, W. Miscanthus: European experience with a novel energy crop. Biomass Bioenergy 2000, 19, 209–227. [Google Scholar] [CrossRef]
- Global Invasive Species Database Species Profile: Miscanthus Sinensis. 2011. Available online: http://www.iucngisd.org/gisd/speciesname/Miscanthus+sinensis (accessed on 29 September 2020).
- Global Compendium of Weeds Miscanthus Sinensis (Poaceae). 2007. Available online: http://www.hear.org/gcw/species/Miscanthus_sinensis/ (accessed on 29 September 2020).
- Scally, L.; Hodkinson, T.; Jones, M.B. Origins and Taxonomy of Miscanthus. In Miscanthus for Energy and Fibre; Jones, M., Walsh, M., Eds.; Routledge: London, UK, 2007; pp. 1–9. [Google Scholar]
- Meyer, M.H.; Tchida, C.L. Miscanthus Anderss. Produces Viable Seed in Four USDA Hardiness Zones. J. Environ. Hortic. 1999, 17, 137–140. [Google Scholar] [CrossRef]
- Quinn, L.D.; Allen, D.J.; Stewart, J.R. Invasiveness potential of Miscanthus sinensis: Implications for bioenergy production in the United States. GCB Bioenergy 2010, 2, 310–320. [Google Scholar] [CrossRef]
- Barney, J.N.; Ditomaso, J.M. Nonnative Species and Bioenergy: Are We Cultivating the Next Invader? Bioscience 2008, 58, 64–70. [Google Scholar] [CrossRef] [Green Version]
- Severa, M.; Weger, J. Potvrzení generativního šíření vybraných druhů ozdobnic (Miscanthus sp.) v přírodních podmínkách České republiky (Confirmation of generative dispersal of selected species of Miscanthus species in environmental conditions of the Czech Republic). Acta Pruhoniciana 2010, 96, 75–78. [Google Scholar]
- Mareček, F. Zahradnický Slovník Naučný 3, CH-M (Horticultural Dictionary), 1st ed.; Ústav Zemědělských a Potravinářských Informací: Praha, Czech Republic, 1997. [Google Scholar]
- Kubát, K.; Hrouda, L.; Chrtek, J.J.; Kaplan, Z.; Kirschner, J.; Štěpánek, J. Klíč ke Květeně České Republiky (Key to the Flora of the Czech Republic); Academia: Praha, Czech Republic, 2002. [Google Scholar]
- Pyšek, P.; Sádlo, J.; Mandák, B. Catalogue of alien plants of the Czech Republic. Preslia 2002, 74, 97–186. [Google Scholar]
- Pyšek, P.; Danihelka, J.; Sádlo, J.; Chrtek, J., Jr.; Chytrý, M.; Jarošík, V.; Kaplan, Z.; Krahulec, F.; Moravcová, L.; Pergl, J.; et al. Catalogue of alien plants of the Czech Republic: Checklist update, taxonomic diversity and invasion patterns—2nd edition. Preslia 2012, 84, 155–255. [Google Scholar]
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014, Update 2015 International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; FAO: Rome, Italy, 2015. [Google Scholar]
- Kožnarová, V.; Klabzuba, J. Recommendation of World Meteorological Organization to describing meteorological or climatological conditions—Information. Plant Soil Environ. 2011, 48, 190–192. [Google Scholar] [CrossRef] [Green Version]
- Weger, J.; Vávrová, K.; Kašparová, L.; Bubeník, J.; Komárek, A. The influence of rotation length on the biomass production and diversity of ground beetles (Carabidae) in poplar short rotation coppice. Biomass Bioenergy 2013, 54, 284–292. [Google Scholar] [CrossRef]
- Weger, J.; Strašil, Z. Hodnocení polního pokusu s ozdobnicemi (Miscanthus sp.) po dvou letech růstu na různých stanovištích (Evaluation of field experiment with Miscanthus clones (Miscanthus sp.) on two sites after two years). Acta Pruhoniciana 2009, 92, 27–34. [Google Scholar]
- Vavrova, K.; Knápek, J. Economic Assessment of Miscanthus Cultivation for Energy Purposes in the Czech Republic. J. Jpn. Inst. Energy 2012, 91, 485–494. [Google Scholar] [CrossRef]
- Havlíčková, K.; Weger, J.; Knápek, J. Modelling of biomass prices for bio-energy market in the Czech Republic. Simul. Model. Pract. Theory 2011, 19, 1946–1956. [Google Scholar] [CrossRef]
- Stapleton, R.C.; Brealey, R.; Myers, S. Principles of Corporate Finance. J. Financ. 1981, 36, 982. [Google Scholar] [CrossRef]
- CHMI Portal. Historical Data: Weather: Territorial Precipitation. Available online: http://portal.chmi.cz/historicka-data/pocasi/uzemni-srazky?l=en (accessed on 25 September 2020).
- Němec, J. Bonitace a Oceňování Zemědělské Půdy České Republiky (Typology and Valuation of Agricultural Land in the Czech Republic); VUZE: Praha, Czech Republic, 2002. [Google Scholar]
- Strašil, Z.; Weger, J. Preliminary zoning of agricultural land for Miscanthus (M. × giganteus) for the Czech Republic. Ital. J. Agron. 2008, 3, 559–560. [Google Scholar]
- Strašil, Z.; Weger, J.; Hutla, P.; Kára, J. Ozdobnice (Miscanthus) jako energetická surovina (Miscanthus as a source of energy). Agri-Tech Sci. 2015, 9, 1–11. [Google Scholar]
- Vávrová, K.; Knápek, J.; Weger, J. Modeling of biomass potential from agricultural land for energy utilization using high resolution spatial data with regard to food security scenarios. Renew. Sustain. Energy Rev. 2014, 35, 436–444. [Google Scholar] [CrossRef]
- Vávrová, K.; Knápek, J.; Weger, J.; Králík, T.; Beranovský, J. Model for evaluation of locally available biomass competitiveness for decentralized space heating in villages and small towns. Renew. Energy 2018, 129, 853–865. [Google Scholar] [CrossRef]
- Knápek, J.; Vávrová, K.; Valentová, M.; Vašíček, J.; Králík, T. Energy biomass competitiveness-three different views on biomass price. Wiley Interdiscip. Rev. Energy Environ. 2017, 6, e261. [Google Scholar] [CrossRef]
- Tzbinfo. Porovnání Nákladů na Vytápění Podle Druhu Paliva—TZB-Info (Comparison of Heating Costs by Type of Fuel). 2020. Available online: https://vytapeni.tzb-info.cz/tabulky-a-vypocty/139-porovnani-nakladu-na-vytapeni-podle-druhu-paliva (accessed on 4 October 2020).
- ERO. Cenové Rozhodnutí Energetického Regulačního Úřadu č. 7/2020 (Price Decision of Energy Regulatory Office of the Czech Republic NO. 7/2020), Jihlava. 2020. Available online: https://www.eru.cz/-/cenove-rozhodnuti-c-7-2020 (accessed on 29 October 2020).
- Gauder, M.; Graeff-Hönninger, S.; Lewandowski, I.; Claupein, W. Long-term yield and performance of 15 different Miscanthus genotypes in southwest Germany. Ann. Appl. Biol. 2012, 160, 126–136. [Google Scholar] [CrossRef]
- Ben Fradj, N.; Rozakis, S.; Borzęcka, M.; Matyka, M. Miscanthus in the European bio-economy: A network analysis. Ind. Crop. Prod. 2020, 148, 112281. [Google Scholar] [CrossRef]
- Weger, J.; Havlíčko, K.V. The Evaluation of selected willow and poplar clones for short rotation coppice (SRC) after three harvests. In Proceedings of the 17th European Biomass Conference & Exhibition, Hamburg, Germany, 29 June–3 July 2009; pp. 227–230. [Google Scholar]
- Strašil, Z.; Weger, J. Studium kostřavy rákosovité (Festuca arundinacea Schreb.) pěstované pro energetické využití (Study of tall fescue (Festuca arundinacea Schreb.) grown for energy purposes). Acta Pruhoniciana 2010, 96, 19–26. [Google Scholar]
- Petříková, V.; Weger, J. Pěstování Rostlin Pro Energetické a Technické Využití (Growing of Plants for Energy and Technical Utilization); Profi Press: Praha, Czech Republic, 2015. [Google Scholar]
- Kätterer, T.; Andrén, O. Growth dynamics of reed canarygrass (Phalaris arundinacea L.) and its allocation of biomass and nitrogen below ground in a field receiving daily irrigation and fertilisation. Nutr. Cycl. Agroecosyst. 1999, 54, 21–29. [Google Scholar] [CrossRef]
- Stolarski, M.J.; Śnieg, M.; Krzyżaniak, M.; Tworkowski, J.; Szczukowski, S.; Graban, Ł.; Lajszner, W. Short rotation coppices, grasses and other herbaceous crops: Biomass properties versus 26 genotypes and harvest time. Ind. Crop. Prod. 2018, 119, 22–32. [Google Scholar] [CrossRef]
- Weger, J.; Hutla, P.; Bubeník, J. Yield and fuel characteristics of willows tested for biomass production on agricultural soil. Res. Agric. Eng. 2016, 62, 155–161. [Google Scholar] [CrossRef] [Green Version]
- Tröger, F.; Barbu, M.C.; Seemann, C. Verstärkung von Miscanthus und Holzspanplatten mit Flachsfasermatten. Holz Roh- Werkst. 1995, 53, 268. [Google Scholar] [CrossRef]
- Schubert, B.; Simatupang, M.H. Eignung von Miscanthus sinensis zur Herstellung von Zementspanplatten. Holz Roh- Werkst. 1992, 50, 492. [Google Scholar] [CrossRef]
- Winkler, B.; Mangold, A.; Von Cossel, M.; Clifton-Brown, J.; Pogrzeba, M.; Lewandowski, I.; Iqbal, Y.; Kiesel, A. Implementing Miscanthus into farming systems: A review of agronomic practices, capital and labour demand. Renew. Sustain. Energy Rev. 2020, 132, 110053. [Google Scholar] [CrossRef]
- Jørgensen, U. Benefits versus risks of growing biofuel crops: The case of Miscanthus. Curr. Opin. Environ. Sustain. 2011, 3, 24–30. [Google Scholar] [CrossRef]
- VUKOZ. Seznam Rostlin Vhodných k Pěstování Za Účelem Využití Biomasy Pro Energetické Účely z Pohledu Minimalizace Rizik Pro Ochranu Přírody a Krajiny (List of Plants Suitable for Cultivation and Production of Energy Biomass and Minimizing Risks to Nature). 2020. Available online: https://www.vukoz.cz/index.php/sluzby/energeticke-plodiny (accessed on 4 October 2020).
- Hruška, M.; Gimunová, T.; Kohlíček, V.; Novotný, I.; Perglerová, M.; Reininger, D.; Smatanová, M.; Trapl, K.; Voltr, V.; Havelka, J.; et al. Situační a Výhledová Zpráva Půda (Situational and Outlook Report—Soil); Ministry of Agriculture: Praha, Czech Republic, 2018; ISBN 978-80-7434-476-3.
Factor | Průhonice Michovky | Průhonice Zelinářská Zahrada | Lukavec |
---|---|---|---|
Latitude | 49°59′ | 49°59′ | 49°34′ |
Longitude | 14°34′ | 14°34′ | 14°59′ |
Altitude (m) | 332 | 310 | 570 |
Soil texture | clay-loess | clay-loess | sandy-loam |
Soil type | Cambisol | Cambisol | Cambisol |
Mean year temperature (°C) | 8.8 | 8.8 | 7.3 |
Mean year sum of precipitation (mm) | 580 | 580 | 682 |
Agrochemical properties of soil (before establishment): | |||
Content of humus (%) | 1.0 | 1.3 | 3.4 |
pH (H2O) | 6.22 | 7.11 | 6.14 |
Content of P (Mehlich III, mg.kg−1) | 54 | 395 | 112 |
Content of Mg (Mehlich III, mg.kg−1) | 179 | 190 | 114 |
Content of K (Mehlich III, mg.kg−1) | 143 | 354 | 337 |
No. | Year | Average Annual Temperature | Annual Sum of Precipitation | ||
---|---|---|---|---|---|
- | Průhonice | Lukavec | Průhonice | Lukavec | |
(°C) | (°C) | (mm) | (mm) | ||
1 | 2007 | 10.2 | 8.5 | 517 | 777 |
2 | 2008 | 9.8 | 8.6 | 502 | 604 |
3 | 2009 | 9.4 | 8.4 | 599 | 788 |
4 | 2010 | 8.0 | 7.2 | 764 | 940 |
5 | 2011 | 9.6 | 8.4 | 563 | 670 |
6 | 2012 | 9.5 | 8.1 | 553 | 724 |
7 | 2013 | 9.0 | 7.3 | 667 | 876 |
8 | 2014 | 10.6 | 8.6 | 548 | 707 |
9 | 2015 | 10.7 | 8.7 | 427 | 576 |
10 | 2016 | 10.0 | 7.9 | 499 | 601 |
11 | 2017 | 10.0 | 7.9 | 553 | 777 |
12 | 2018 | 11.0 | 8.8 | 354 | 509 |
13 | 2019 | 10.7 | 9.1 | 521 | 680 |
Average | 9.9 | 8.3 | 544 | 710 |
Clone No. | Clone Code | Taxonomical Classification | Origin | Number of Individuals | Number of Individuals |
---|---|---|---|---|---|
- | Clonal field experiment | Průhonice Michovky | Lukavec | ||
M1 | M-GigM53-003 | M. × giganteus | Germany | 144 | 144 |
M2 | M-GigFou-009 | M. × giganteus | Denmark | 72 | 72 |
M3 | M-sin902-005 | M. sinensis | Denmark | 72 | 72 |
M4 | M-sinGOF-002 | M. sinensis | Germany | 72 | 72 |
M5 | M-sin903-006 | M. sinensis | Denmark | 72 | 72 |
M6 | M-sinM43-004 | M. sinensis | Germany | 144 | 144 |
M12 ** | M-GigVUR-012 | M. × giganteus | Czech Rep. | 100 | 100 |
- | Genotype collection | Průhonice Zelinářská zahrada | - | ||
M7 * | M-sin101-007 | M. sinensis | Denmark | 27 | - |
M8 * | M-sin906-008 | M. sinensis | Denmark | 27 | - |
M9 * | M-GigFou-009 | M. × giganteus | Denmark | 27 | - |
M10 * | M-sacHon-010 | M. sacchariflorus | Denmark | 27 | - |
M11 * | ‘Goliath’ | M. sinensis | Czech Rep. | 27 | - |
M13 * | M-sinJes-001 | M. sinensis | Germany | 27 | - |
Clone | Průhonice Michovky 2007 (XII) | Průhonice Michovky 2017 (III) * | Lukavec 2017 (III) |
---|---|---|---|
M1 | 84 | 88 | 85 |
M2 | 88 | 99 | 85 |
M3 | 88 | 100 | 96 |
M4 | 93 | 88 | 79 |
M5 | 85 | 99 | 99 |
M6 | 95 | 99 | 94 |
Average | 89 | 96 | 90 |
Lukavec | ||||||||||||
Year † | M1 | s | M2 | s | M3 | s | M4 | s | M5 | s | M6 | s |
2008 * | - | - | - | - | - | - | - | - | - | - | - | - |
2009 | 1.2 AB | 0.45 | 1.4 ABC | 0.86 | 2.3 C | 0.94 | 1.1 A | 0.73 | 2.3 BC | 0.58 | 1.9 ABC | 0.62 |
2010 | 9.3 A | 3.63 | 10.4 | 4.69 | 7.7 | 3.18 | 7.5 | 5.03 | 10.5 | 0.54 | 10.0 A | 1.44 |
2011 | 11.2 A | 0.75 | 14.2 | 1.35 | 9.4 | 0.80 | 10.9 | 3.33 | 11.3 | 0.57 | 14.0 B | 1.62 |
2012 | 19.1 D | 1.74 | 18.5D | 2.75 | 10.9 A | 1.45 | 16.2 CD | 3.49 | 14.3 BC | 1.06 | 12.4 AB | 0.54 |
2013 | 14.2 B | 0.91 | 13.8 | 1.73 | 10.2 | 1.51 | 12.8 | 2.88 | 17.1 | 6.72 | 11.0 A | 1.75 |
2014 | 16.3 E | 1.46 | 14.9 DE | 2.16 | 8.0 A | 1.75 | 12.4 CD | 2.71 | 11.5 BC | 1.84 | 9.4 AB | 1.37 |
2015 | 11.6 C | 1.32 | 11.0 C | 1.82 | 6.4 A | 1.34 | 9.6 BC | 2.10 | 10.3 C | 1.99 | 7.3 AB | 0.66 |
2016 | 8.5 A | 2.13 | 8.6 A | 1.57 | 7.9 A | 0.45 | 11.4 BC | 2.42 | 14.2 D | 1.93 | 10.4 B | 0.78 |
2017 | 12.4 D | 2.5 | 11.1 C | 1.9 | 6.2 A | 1.7 | 9.8 C | 1.0 | 8.8 BC | 4.3 | 7.7 B | 0.9 |
2018 | 13.8 B | 2.21 | 11.0 AB | 1.03 | 7.9 A | 3.06 | 10.8 AB | 3.62 | 13.3 B | 2.64 | 9.0 A | 0.94 |
2019 | 9.3 AB | 1.68 | 8.3 A | 1.66 | 8.0 A | 2.02 | 7.8 A | 1.54 | 11.8 B | 3.01 | 7.8 A | 1.42 |
2020 | 13.2 B | 2.75 | 12.2 B | 0.67 | 7.6 A | 1.23 | 13.1 B | 1.00 | 11.8 B | 1.60 | 8.2 A | 0.95 |
Average ** | 10.8 | 10.4 | 6.9 | 9.2 | 10.2 | 8.1 | ||||||
Průhonice-Michovky | ||||||||||||
Year | M1 | s | M2 | s | M3 | s | M4 | s | M5 | s | M6 | s |
2008 * | - | - | - | - | - | - | - | - | - | - | - | - |
2009 | 2.1 AB | 0.93 | 1.4 A | 0.86 | 1.9 AB | 1.14 | 1.3 A | 0.78 | 1.5 A | 0.59 | 3.5 B | 1.59 |
2010 | 12.2 B | 2.64 | 10.6 AB | 2.47 | 7.7 A | 1.76 | 9.2 AB | 3.09 | 8.0 A | 1.36 | 11.7 B | 1.54 |
2011 | 17.5 D | 2.10 | 19.9 D | 1.36 | 6.0 A | 0.95 | 14.1 C | 1.77 | 8.1 AB | 0.44 | 9.9 B | 2.33 |
2012 | 18.8 B | 1.48 | 21.1 B | 1.97 | 8.6 A | 0.87 | 19.3 B | 3.24 | 10.5 A | 1.04 | 10.8 A | 1.63 |
2013 | 15.4 B | 2.19 | 16.9 B | 1.60 | 9.1 A | 1.16 | 16.1 B | 2.40 | 9.9 A | 1.04 | 9.2 A | 1.41 |
2014 | 15.8 CD | 1.91 | 17.9 D | 2.22 | 8.6 AB | 0.86 | 14.0 C | 1.28 | 10.6 B | 1.02 | 8.0 A | 1.25 |
2015 | 15.9 CD | 2.00 | 17.3 D | 1.18 | 7.9 AB | 0.68 | 14.9 C | 1.36 | 10.0 B | 1.18 | 7.3 A | 2.18 |
2016 | 14.4 C | 0.97 | 16.1 C | 0.86 | 7.1 A | 1.52 | 14.1 C | 1.21 | 10.3 B | 1.26 | 10.0 B | 0.97 |
2017 | 18.4 CD | 2.1 | 20.7 D | 0.99 | 9.1 A | 0.8 | 15.5 C | 1.39 | 11.6 B | 1.36 | 9.3 A | 1.89 |
2018 | 14.5 CD | 1.89 | 17.6 DE | 1.60 | 7.5 A | 1.59 | 18 E | 3.25 | 12.4 BC | 2.56 | 9.7 AB | 1.12 |
2019 | 14.9 B | 1.94 | 16.7 B | 1.54 | 7.5 A | 1.61 | 14.4 B | 2.60 | 9.7 A | 2.06 | 8.5 A | 0.64 |
2020 | 15.3 B | 2.06 | 14.9 B | 3.46 | 9.8 A | 0.73 | 14.3 B | 1.36 | 10.0 A | 2.24 | 9.3 A | 1.34 |
Average ** | 13.5 | 14.7 | 7.0 | 12.7 | 8.7 | 8.3 |
Biomass yields in the Autumn Harvest (t (DM)ha−1 year−1) | ||||||||
Lukavec | Průhonice-Michovky | |||||||
Year † | M1 | s | M6 | s | M1 | s | M6 | s |
2008 | 3.0 A | 1.18 | 3.7 A | 0.73 | 3.1 A | 1.53 | 4.5 A | 1.74 |
2009 | 10.1 A | 0.87 | 12.3 B | 2.69 | 13.0 A | 2.74 | 13.2 A | 0.19 |
2010 | 19.1 A | 4.81 | 15.9 A | 1.19 | 19.6 B | 2.57 | 13.2 A | 2.76 |
2011 | 23.6 B | 1.34 | 14.8 A | 0.84 | 21.3 B | 3.68 | 13.7 A | 1.68 |
2012 | 21.6 B | 1.07 | 16.2 A | 1.18 | 19.2 A | 5.62 | 12.2 A | 2.21 |
2013 | 29.1 B | 1.26 | 17.8 A | 1.52 | 21.4 B | 4.29 | 12.4 A | 2.51 |
2014 | 21.5 B | 1.85 | 13.5 A | 1.86 | 18.2 A | 4.30 | 13.8 A | 1.28 |
2015 | 14.0 A | 1.20 | 12.6 A | 1.00 | 16.8 A | 3.45 | 12.7 A | 3.05 |
2016 | 13.0 A | 1.47 | 13.2 A | 2.37 | 22.4 B | 3.30 | 16.0 A | 2,52 |
2017 | 16.4 B | 1.23 | 12.4 A | 0.84 | 19.9 B | 3.93 | 11.9 A | 1,51 |
2018 | 12.8 A | 2.25 | 14.1 A | 1.30 | 17.0 B | 2.09 | 11.6 A | 2,52 |
2019 | 12.2 A | 2.07 | 10.1 A | 1.57 | 20.3 B | 1.23 | 11.1 A | 1.79 |
Average | 15.1 | 12.0 | 16.4 | 11.1 | ||||
Moisture content in harvested biomass (%) | ||||||||
Lukavec | Průhonice-Michovky | |||||||
M1 | M6 | M1 | M6 | |||||
Year | Autumn | Spring | Autumn | Spring | Autumn | Spring | Autumn | Spring |
2008 | 38 | 35 | 53 | 59 | ||||
2009 | 51 | 11 | 54 | 10 | 50 | 28 | 44 | 13 |
2010 | 41 | 9 | 34 | 10 | 56 | 20 | 62 | 17 |
2011 | 49 | 33 | 47 | 22 | 41 | 25 | 34 | 24 |
2012 | 43 | 8 | 42 | 5 | 37 | 17 | 51 | 20 |
2013 | 25 | 7 | 20 | 7 | 26 | 14 | 39 | 19 |
2014 | 45 | 11 | 41 | 10 | 44 | 21 | 35 | 31 |
2015 | 42 | 9 | 35 | 9 | 50 | 18 | 42 | 36 |
2016 | 57 | 8 | 42 | 6 | 35 | 21 | 31 | 12 |
2017 | 71 | 8 | 68 | 6 | 47 | 16 | 32 | 29 |
2018 | 32 | 8 | 37 | 6 | 50 | 22 | 51 | 15 |
2019 | 32 | 9 | 37 | 8 | 41 | 20 | 28 | 29 |
2020 | 9 | 9 | 10 | 11 | ||||
Average * | 44 | 11 | 41 | 9 | 44 | 19 | 42 | 21 |
Yield Curve | Average Yield * | Minimum Price with SAPS ** | Minimum Price without SAPS ** |
---|---|---|---|
t DM ha−1 y−1 | EUR/GJ | EUR/GJ | |
Yc 6 | 12 | 3.0 | 4.3 |
Yc 5 | 10 | 3.4 | 5.0 |
Yc 4 | 8 | 4.2 | 6.2 |
Yc 3 | 6 | 5.4 | 8.0 |
Yc 2 | 4 | 7.8 | 11.8 |
Yc 1 | 2 | 15.2 | 23.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Weger, J.; Knápek, J.; Bubeník, J.; Vávrová, K.; Strašil, Z. Can Miscanthus Fulfill Its Expectations as an Energy Biomass Source in the Current Conditions of the Czech Republic?—Potentials and Barriers. Agriculture 2021, 11, 40. https://doi.org/10.3390/agriculture11010040
Weger J, Knápek J, Bubeník J, Vávrová K, Strašil Z. Can Miscanthus Fulfill Its Expectations as an Energy Biomass Source in the Current Conditions of the Czech Republic?—Potentials and Barriers. Agriculture. 2021; 11(1):40. https://doi.org/10.3390/agriculture11010040
Chicago/Turabian StyleWeger, Jan, Jaroslav Knápek, Jaroslav Bubeník, Kamila Vávrová, and Zdeněk Strašil. 2021. "Can Miscanthus Fulfill Its Expectations as an Energy Biomass Source in the Current Conditions of the Czech Republic?—Potentials and Barriers" Agriculture 11, no. 1: 40. https://doi.org/10.3390/agriculture11010040
APA StyleWeger, J., Knápek, J., Bubeník, J., Vávrová, K., & Strašil, Z. (2021). Can Miscanthus Fulfill Its Expectations as an Energy Biomass Source in the Current Conditions of the Czech Republic?—Potentials and Barriers. Agriculture, 11(1), 40. https://doi.org/10.3390/agriculture11010040