The Effect of Mineral and Organic Fertilization on Common Osier (Salix viminalis L.) Productivity and Qualitative Parameters of Naturally Acidic Retisol
Abstract
:1. Introduction
2. Materials and Methods
2.1. Location of the Experimental Site
2.2. Soil Characteristics
2.3. Mineral Fertilizers and Granulated Sewage Sludge
2.4. Experimental Design
2.5. Sampling and Analytical Methods
2.6. Statistical Analysis
3. Results
3.1. Common Osier Yield and Structure
3.2. Soil Chemical Properties
3.3. Soil Aggregate Composition and Aggregate Stability
3.4. Soil Bulk Density and Moisture
3.5. Microbial Activity
4. Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kocik, A.; Truchan, M.; Rozen, A. Application of willows (Salix viminalis) and earthworms (Eisenia fetida) in sewage sludge treatment. Eur. J. Soil Biol. 2007, 43, 327–331. [Google Scholar] [CrossRef]
- Charlton, A.; Sakrabani, R.; Tyrrel, S.; Casado, M.R.; McGrath, S.P.; Crooks, B.; Campbell, C.D. Long-term impact of sewage sludge application on soil microbial biomass: An evaluation using meta-analysis. Environ. Pollut. 2016, 219, 1021–1035. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kirchmann, H.; Börjesson, G.; Kätterer, T.; Cohen, Y. From agricultural use of sewage sludge to nutrient extraction: A soil science outlook. Ambio 2017, 46, 143–154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leila, S.; Mhamed, M.; Hermann, H.; Mykola, K.; Oliver, W.; Christin, M.; Onyshchenko, E.; Bouchenaha, N. Fertilization value of municipal sewage sludge for Eucalyptus camaldulensis plants. Biotechnol. Rep. 2017, 13, 8–12. [Google Scholar]
- Singh, R.P.; Agrawal, M. Potential benefits and risks of land application of sewage sludge. Waste Manag. 2008, 28, 347–358. [Google Scholar] [CrossRef]
- Lederer, J.; Rechberger, H. Comparative goal-oriented assessment of conventional and alternative sewage sludge treatment options. Waste Manag. 2010, 30, 1043–1056. [Google Scholar]
- Šiaudinis, G.; Karčauskienė, D.; Aleinikovienė, J. Assessment of a single application of sewage sludge on the biomass yield of Silphium perfoliatum and changes in naturally acid soil properties. Zemdirb. Agric. Akad. 2019, 106, 213–218. [Google Scholar]
- Börjesson, G.; Kätterer, T. Soil fertility effects of repeated application of sewage sludge in two 30-year-old field experiments. Nutr. Cycl. Agroecosyst. 2018, 112, 369–385. [Google Scholar] [CrossRef] [Green Version]
- Haydu-Haudeshell, C.A.; Graham, R.C.; Hendrix, P.F.; Peterson, A.C. Soil aggregate stability under chaparral species in Southen California. Geoderma 2018, 310, 201–208. [Google Scholar] [CrossRef]
- Zoghlami, R.I.; Hamdi, H.; Mokni-Tlili, S.; Hechmi, S.; Khelil, M.N.; Aissa, N.B.; Moussa, M.; Bousnina, H.; Benzarti, S.; Jedidi, N. Monitoring the variation of soil quality with sewage sludge application rates in absence of rhizosphere effect. Int. Soil Water Conserv. Res. 2020, 8, 245–252. [Google Scholar] [CrossRef]
- Buonocore, E.; Mellino, S.; De Angelis, G.; Liu, G.; Cooper, P.; Ulgiati, S. Life cycle assessment indicators of urban wastewater and sewage sludge treatment. Ecol. Indic. 2018, 94, 13–23. [Google Scholar] [CrossRef]
- Urbaniak, M.; Toloczko, W.; Serwecinska, L.; Wyrwicka, A. The effect of sewage sludge application on soil properties and wilow (Salix sp.) cultivation. Sci. Total Environ. 2017, 586, 66–75. [Google Scholar] [CrossRef] [PubMed]
- Usman, K.; Khan, S.; Ghulam, S.; Khan, M.U.; Khan, N.; Khan, M.A.; Khalil, S.K. Sewage sludge: An important biological resource for sustainable agriculture and its environmental implications. Am. J. Plant Sci. 2012, 3, 1708–1721. [Google Scholar] [CrossRef] [Green Version]
- Iglesias, M.; Marguí, E.; Camps, F.; Hidalgo, M. Extractability and crop transfer of potentially toxic elements from Mediterranean agricultural soils following long-term sewage sludge applications as a fertilizer replacement to barley and maize crops. Waste Manag. 2018, 75, 312–318. [Google Scholar] [CrossRef] [PubMed]
- Jarausch-Wehrheim, B.; Mocquot, B.; Mench, M. Absorption and translocation of sludge-borne zinc in field-grown maize (Zea mays L.). Eur. J. Agron. 1999, 11, 23–33. [Google Scholar] [CrossRef]
- McGrath, S.P.; Zhao, F.J.; Dunham, S.J.; Crosland, A.R.; Coleman, K. Long-term changes in extractability and bioavailability of zinc and cadmium after sludge application. J. Environ. Qual. 2000, 29, 875–883. [Google Scholar] [CrossRef]
- Žaltauskaitė, J.; Judeikytė, S.; Sujetovienė, G.; Dagiliūtė, R. Sewage sludge application effects to first year willows (Salix viminalis L.) growth and heavy metal bioaccumulation. Waste Biomass Valoriz. 2017, 8, 1813–1818. [Google Scholar] [CrossRef]
- Dickinson, N.M.; Pulford, I.D. Cadmium phytoextraction using short-rotation coppice Salix: The evidence trail. Environ. Int. 2005, 31, 609–613. [Google Scholar] [CrossRef]
- Brandao, M.; i Canals, L.M.; Clift, R. Soil organic carbon changes in the cultivation of energy crops: Implications for GHG balances and soil quality for use in LCA. Biomass Bioenergy 2010, 35, 2323–2336. [Google Scholar]
- Richards, B.K.; Stoof, C.R.; Cary, I.J.; Woodbury, P.B. Reporting on marginal lands for bioenergy feedstock production: A modest proposal. Bioenergy Res. 2014, 7, 1060–1062. [Google Scholar] [CrossRef] [Green Version]
- Nilsson, D.; Rosenqvist, H.; Bernesson, S. Profitability of the production of energy grasses on marginal agricultural land in Sweden. Biomass Bioenergy 2015, 83, 159–168. [Google Scholar] [CrossRef] [Green Version]
- Kuzovkina, Y.A.; Schulthess, C.P.; Zheng, D. Influence of soil chemical and physical characteristics on willow yield in Connecticut. Biomass Bioenergy 2018, 108, 297–306. [Google Scholar]
- Mažvila, J.; Adomaitis, T.; Eitmanavičius, L. Changes in the acidity of Lithuania’s soils as affected of not liming. Agriculture 2004, 4, 3–20. (In Lithuanian) [Google Scholar]
- Herr, J.R. Bioenergy from trees. New Phytol. 2011, 192, 313–315. [Google Scholar] [CrossRef] [PubMed]
- Karp, A.; Hanley, S.J.; Trybush, S.O.; Macalpine, W.; Pei, M.; Shield, I. Genetic improvement of willow for bioenergy and biofuels free access. J. Integr. Plant Biol. 2011, 53, 151–165. [Google Scholar] [PubMed] [Green Version]
- Vadiunina, A.P.; Korchagina, Z.A. Methods for Determining the Physical Properties of the Soil, 3rd ed.; Mosc. Agropromizdat: Moscow, Russian, 1986; pp. 53–79. (In Russian) [Google Scholar]
- Vance, E.D.; Brookes, P.C.; Jenkinson, D.S. An extraction method for measuring soil microbial biomass C. Soil Biol. Biochem. 1987, 19, 703–707. [Google Scholar] [CrossRef]
- Alriksson, B.; Ledin, S.; Seeger, P. Effect of nitrogen fertilization on growth in a Salix viminalis stand using a response surface experimental design. Scand. J. For. Res. 1997, 12, 321–327. [Google Scholar] [CrossRef]
- Kasel, S.; Bennett, L.T. Land-use history, forest conversion, and soil organic carbon in pine plantations and native forests of south eastern Australia. Geoderma 2007, 137, 401–413. [Google Scholar] [CrossRef]
- Zhang, J.; Bei, S.; Li, B.; Zhang, J.; Christie, P.; Li, X. Organic fertilizer, but not heavy liming, enhances banana biomass, increases soil organic carbon and modifies soil microbiota. Appl. Soil Ecol. 2019, 136, 67–79. [Google Scholar] [CrossRef]
- Nissim, W.G.; Pitre, F.E.; Teodorescu, T.I.; Labrecque, M. Long-term biomass productivity of willow bioenergy plantations maintained in southern Quebec, Canada. Biomass Bioenergy 2013, 56, 361–369. [Google Scholar] [CrossRef]
- Sevel, L.; Nord-Larsen, T.; Ingerslev, M.; Jørgensen, U.; Raulund-Rasmussen, K. Fertilization of SRC willow, I: Biomass production response. BioEnergy Res. 2014, 7, 319–328. [Google Scholar] [CrossRef]
- Šiaudinis, G.; Jasinskas, A.; Karčauskienė, D.; Repšienė, R. The effect of liming and nitrogen application on common osier and black poplar biomass productivity and determination of biofuel quality indicators. Renew. Energy 2020, 152, 1035–1040. [Google Scholar]
- Stolarski, M.J.; Krzyżaniak, M.; Załuski, D.; Tworkowski, J.; Szczukowski, S. Effects of Site, Genotype and Subsequent Harvest Rotation on Willow Productivity. Agriculture 2020, 10, 412. [Google Scholar] [CrossRef]
- Neilsen, G.H.; Hogue, E.J.; Neilsen, D.; Zebarth, B.J. Evaluation of organic wastes as soil amendments for cultivation of carrot and chard on irrigated sandy soils. Can. J. Soil Sci. 1998, 78, 217–225. [Google Scholar] [CrossRef]
- Eitminavičiūtė, I.; Matusevičiūtė, A.; Gasiūnas, V.; Radžiūtė, M.; Grendienė, N. Ecotoxicological assessment of arable field soils fertilized with sewage sludge. Ekologija 2009, 55, 142–152. [Google Scholar] [CrossRef]
- Sommers, L.E. Chemical composition of sewage sludges and analysis of their potential use as fertilizers. J. Environ. Qual. 1977, 62, 225–232. [Google Scholar]
- Hemmat, A.; Aghilinategh, N.; Rezainejad, Y.; Sadeghi, M. Long-term impacts of municipal solid waste compost, sewage sludge and farmyard manure application on organic carbon, bulk density and consistency limits of a calcareous soil in central Iran. Soil Tillage Res. 2010, 108, 43–50. [Google Scholar] [CrossRef]
- Huang, C.C.; Chen, Z.S. Carbon and nitrogen mineralization of sewage sludge compost in soils with a different initial pH. Soil Sci. Plant Nutr. 2009, 55, 715–724. [Google Scholar]
- Roig, N.; Sierra, J.; Martí, E.; Nadal, M.; Schuhmacher, M.; Domingo, J.L. Long-term amendment of Spanish soils with sewage sludge: Effects on soil functioning. Agric. Ecosyst. Environ. 2012, 158, 41–48. [Google Scholar] [CrossRef]
- Andriamananjara, A.; Rabeharisoa, L.; Prud’homme, L.; Morel, C. Drivers of plant-availability of phosphorus from thermally conditioned sewage sludge as assessed by isotopic labeling. Front. Nutr. 2016, 3, 19. [Google Scholar] [CrossRef] [Green Version]
- Semerci, N.; Kunt, B.; Calli, B. Phosphorus recovery from sewage sludge ash with bioleaching and electrodialysis. Int. Biodeterior. Biodegrad. 2019, 144, 104739. [Google Scholar] [CrossRef]
- Toosi, E.R.; Kravchenko, A.N.; Mao, J.; Quigley, M.Y.; Rivers, M.L. Effects of management and pore characteristics on organic matter composition of macroaggregates: Evidence from characterization of organic matter and imaging. Eur. J. Soil Sci. 2017, 68, 200–211. [Google Scholar] [CrossRef]
- Martins, T.; Saab, S.D.C.; Milori, D.M.B.P.; Brinatti, A.M.; Rosa, J.A.; Cassaro, F.A.M.; Pires, L.F. Soil organic matter humification under different tillage managements evaluated by Laser Induced Fluorescence (LIF) and C/N ratio. Soil Tillage Res. 2011, 111, 231–235. [Google Scholar] [CrossRef] [Green Version]
- Shahzad, T.; Rashid, M.I.; Maire, V.; Barot, S.; Perveen, N.; Alvarez, G.; Mougin, C.; Fontaine, S. Root penetration in deep soil layers stimulates mineralization of millennia-old organic carbon. Soil Biol. Biochem. 2018, 124, 150–160. [Google Scholar] [CrossRef]
- Brust, G.E. Management strategies for organic vegetable fertility. In Safety and Practice for Organic Food; Academic Press: Cambridge, MA, USA, 2019; pp. 193–212. [Google Scholar]
- Šiaudinis, G.; Karčauskienė, D. The effect of sewage sludge on and cup plant’s (Silphium perfoliatum L.) biomass productivity under Western Lithuania’s Retisol. In Proceedings of the International Scientific Conference “Rural Development”, Kaunas, Lithuania, 23–24 November 2017; pp. 148–152. [Google Scholar]
Treatments | Number of Stems/Plants | Stems Height, cm | Stems Diameter, mm | DM Yield, t ha−1 |
---|---|---|---|---|
Control | 2.34 | 567 | 29.98 | 49.60 |
N60P60K60 | 2.80 | 552 | 29.12 | 52.00 |
45 t ha−1 sewage sludge | 2.87 | 554 | 30.80 | 65.68 ** |
90 t ha−1 sewage sludge | 3.47 * | 528 | 31.60 | 77.92 ** |
LSD05/01 | 1.12/ns | ns/ns | ns/ns | 6.90/10.45 |
Treatments | pHKCl | Organic C (%) | Total N (%) | Corg:Ntot | Mobile | |
---|---|---|---|---|---|---|
P2O5 (mg kg−1) | K2O (mg kg−1) | |||||
2013 (before the experiment) | ||||||
4.40 ± 0.16 | 1.18 ± 0.06 | 0.07 ± 0.01 | 16.51 ± 0.98 | 59.3 ± 13.6 | 277 ± 0.02 | |
2016 | ||||||
Control | 4.44 | 1.16 | 0.07 | 15.69 | 69.4 | 296 |
45 t ha−1 sewage sludge | 4.41 | 1.34 * | 0.09 * | 14.92 | 332 | 226 |
90 t ha−1 sewage sludge | 4.49 | 1.52 ** | 0.11 ** | 13.74 * | 816 | 251 |
LSD05/01 | ns/ns | 0.15/0.23 | 0.02/0.03 | 2.71/ns | 146/222 | ns/ns |
2015 (One Year after Sewage Sludge Application) | 2017 (Three Years after Sewage Sludge Application) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Treatment | macro-aggre-gates > 5 mm | meso-aggrega-tes 5–0.25 mm | mikro-aggrega-tes < 0.25 mm | water-stable aggrega-tes > 1.0 mm | water-stable aggrega-tes > 0.25 mm | macro-aggrega-tes > 5 mm | meso-aggrega-tes 5–0.25 mm | mikro-aggrega-tes <0.25 mm | water-stable aggre-gates > 1.0 mm | water-stable aggre-gates > 0.25mm |
Control | 11.66 | 67.48 | 20.86 | 13.10 | 47.53 | 9.15 | 70.54 | 20.31 | 18.8 | 55.3 |
NPK | 8.02 | 68.36 | 23.62 | 11.68 | 47.25 | - | - | - | - | - |
45 t ha−1 sewage sludge | 12.35 | 65.86 | 21.79 | 21.42 * | 64.55 * | 9.53 | 72.95 * | 17.52 | 16.4 | 54.6 |
90 t ha−1 sewage sludge | 11.58 | 65.60 | 22.82 | 14.45 | 54.77 | 14.10 * | 69.43 | 16.47 * | 18.8 | 57.2 |
LSD05 | ns | ns | ns | 8.64 | 11.63 | 1.37 | 2.36 | 2.81 | ns | ns |
Treatment | 2015 (One Year after Sewage Sludge Application) | 2017 (Three Years after Sewage Sludge Application) | Average Per 2015–2017 | |||
---|---|---|---|---|---|---|
Bulk Density Mg m−3 | Moisture % | Bulk Density Mg m−3 | Moisture % | Bulk Density Mg m−3 | Moisture % | |
Untreated | 1.32 | 22.13 | 1. 32 | 17.87 | 1.32 | 20.00 |
NPK | 1.33 | 21.65 | - | - | - | - |
45 t ha−1 sewage sludge | 1.19 * | 20.56 | 1.28 | 20.42 * | 1.24 * | 20.49 |
90 t ha−1 sewage sludge | 1.22 * | 23.29 | 1.23 | 21.33 * | 1.22 * | 22.31 |
LSD05 | 0.09 | ns | 0.09 | 1.90 | 0.60 | ns |
Treatments | Soil Microbial Biomass Carbon (μg g−1 C) | |
---|---|---|
Spring | Autumn | |
2014 | ||
Control | 423.1 ± 21.7 a | 420.9 ± 14.7 a |
45 t ha−1 sewage sludge | 434.7 ± 21.7 a | 432.1 ± 14.5 a |
90 t ha−1 sewage sludge | 457.0 ± 13.5 a | 480.0 ± 24.0 b |
On average per year | 445.8 ± 12.7/ | 456.1 ± 14.8 |
2015 | ||
Control | 432.4 ± 18.1 a | 434.4 ± 19.2 a |
45 t ha−1 sewage sludge | 451.2 ± 12.9 ab | 455.3 ± 20.7 a |
90 t ha−1 sewage sludge | 472.9 ± 16.1 b | 492.3 ± 11.0 b |
On average per year | 462.1 ± 10.3/ | 473.8 ± 12.2 |
2016 | ||
Control | 421.6 ± 8.0 a | 433.2 ± 19.9 a |
45 t ha−1 sewage sludge | 539.1 ± 31.4 b | 625.2 ± 22.1 c |
90 t ha−1 sewage sludge | 625.3 ± 20.6 c | 625.6 ± 21.3 c |
On average per year | 582.2 ± 21.0/ | 625.4 ± 14.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Šiaudinis, G.; Karčauskienė, D.; Aleinikovienė, J.; Repšienė, R.; Skuodienė, R. The Effect of Mineral and Organic Fertilization on Common Osier (Salix viminalis L.) Productivity and Qualitative Parameters of Naturally Acidic Retisol. Agriculture 2021, 11, 42. https://doi.org/10.3390/agriculture11010042
Šiaudinis G, Karčauskienė D, Aleinikovienė J, Repšienė R, Skuodienė R. The Effect of Mineral and Organic Fertilization on Common Osier (Salix viminalis L.) Productivity and Qualitative Parameters of Naturally Acidic Retisol. Agriculture. 2021; 11(1):42. https://doi.org/10.3390/agriculture11010042
Chicago/Turabian StyleŠiaudinis, Gintaras, Danutė Karčauskienė, Jūratė Aleinikovienė, Regina Repšienė, and Regina Skuodienė. 2021. "The Effect of Mineral and Organic Fertilization on Common Osier (Salix viminalis L.) Productivity and Qualitative Parameters of Naturally Acidic Retisol" Agriculture 11, no. 1: 42. https://doi.org/10.3390/agriculture11010042
APA StyleŠiaudinis, G., Karčauskienė, D., Aleinikovienė, J., Repšienė, R., & Skuodienė, R. (2021). The Effect of Mineral and Organic Fertilization on Common Osier (Salix viminalis L.) Productivity and Qualitative Parameters of Naturally Acidic Retisol. Agriculture, 11(1), 42. https://doi.org/10.3390/agriculture11010042