Spatial Variation in Particulate Emission Resulting from Animal Farming in Poland
Abstract
:1. Introduction
1.1. Particle Pollution
1.2. Estimatimating the PM10 and PM2.5 Pollution
- Direct measurements using preliminary separators. Sampling breaks the air stream from the source of pollution into different components based on the aerodynamic properties of the particulate material. Measurements show immediate results with the possibility of measuring and comparing.
- The estimate of the PM10 and PM2.5 share of total PM emissions.
- In the literature, you can find several methods for determining the PM emission index for agricultural crops. Among them, the following can be distinguished [21]:
- Direct estimate of PM emissions using measuring equipment.
- Indirect estimation of the significance of the EFpollutant emission factor using concentration measurements carried out with the measuring equipment located in the driver’s cab.
- The estimate of PM concentration at the field boundary.
1.3. Additional and Linear PM10 and PM2.5 Pollution
2. Materials and Methods
3. Results and Discussion
3.1. Particulate Emission
3.2. Methods of Reducing the Particulate Matter Emission
- Windscreens in a form of a row of densely planted trees. The advantage of that solution is a simultaneous catching of the airborne particulates and a positive effect on soil erosion, additionally ensuring a natural and aesthetic look.
- Increasing the density, in some cases, it can reduce particulate emission. To much extent, the method depends on the moisture of the waste stored and it can have a negative effect on cattle performance [55].
- A change in the time of day when the cattle is fed and in the content of fat in feeds. The procedure decreases the activity of animals, whereas a higher amount of fat in the feed increases the fertilizer compactness.
- Limiting the speed on dirt roads and watering them before heavy farming works. According to the literature review [35], applying resins or petroleum derivatives used on the roads, despite high costs, effectively limits the particulates for road traffic.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Förstner, U. Integrated Pollution Control; Weissbach, A., Boeddicker, H., Eds.; Springer: Berlin, Germany; New York, NY, USA, 1998. [Google Scholar]
- Salvato, J.A.; Nemerow, N.L.; Agardy, F.J. Environmental Engineering, 5th ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2003. [Google Scholar]
- Harrison, R.M.; Jones, A.M.; Lawrence, R.G. Major component composition of PM10 and PM.5 from roadside and urban background sites. Atmos. Environ. 2004, 38, 4531–4538. [Google Scholar] [CrossRef]
- Querol, X.; Alastuey, A.; Ruiz, C.R.; Artinano, B.; Hansson, H.C.; Harrison, R.M.; Buringh, E.; Brink, H.M.; Lutz, M.; Bruckmann, P.; et al. Speciation and origin of PM10 and PM2.5 in selected European cities. Atmos. Environ. 2004, 38, 6547–6555. [Google Scholar] [CrossRef]
- Roman, M.; Roman, M.; Roman, K.K. Spatial differentiation of particulates emission resulting from agricultural production in Poland. Agric. Econ. Czech. 2019, 65, 375–384. [Google Scholar] [CrossRef]
- Webb, J.; Misselbrook, T.H. A mass-flow model of ammonia emissions from UK livestock production. Atmos. Environ. 2004, 38, 2163–2176. [Google Scholar] [CrossRef]
- D’Amato, G.; Cecchi, L. Effects of climate change on environmental factors in respiratory allergic diseases. Clin. Exp. Allergy 2008, 38, 1264–1274. [Google Scholar] [CrossRef]
- Agriculture and Agri-Food Canada. Available online: http://www.agr.gc.ca/eng/science-and-innovation/agricultural-practices/agriculture-and-climate/particulate-matter-indicator/?id=1462392213883#calc (accessed on 29 October 2020).
- Oenema, O.; Velthof, G.; Klimont, Z.; Winiwarter, W. Emissions from Agriculture and Their Control Potentials; TSAP Report #3, Version 2.1, Service Contract on Monitoring and Assessment of Sectorial Implementation Actions, (ENV.C.3/SER/2011/0009): 27; International Institute for Applied Systems Analysis: Laxenburg, Austria, 2012. [Google Scholar]
- Sankey, J.B.; Eitel, J.U.H.; Glenn, N.F.; Germino, M.J.; Vierling, L.A. Quantifying relationships of burning, roughness, and potential dust emission with laser altimetry of soil surfaces at submeter scales. Geomorphology 2011, 135, 181–190. [Google Scholar] [CrossRef]
- Bernstein, J.A.; Alexis, N.; Barnes, C.; Bernstein, I.L.; Nel, A.; Peden, D.; Diaz-Sanchez, D.; Tarlo, S.M.; Williams, P.B. Health effects of air pollution. J. Allergy Clin. Immunol. 2004, 114, 1116–1123. [Google Scholar] [CrossRef]
- Shapiro, M.; Galperin, V. Air classification of solid particles: A review. Chem. Eng. Process. Process. Intensif. 2005, 44, 279–285. [Google Scholar] [CrossRef]
- Wunschel, J.; Poole, J.A. Occupational agriculture organic dust exposure and its relationship to asthma and airway inflammation in adults. J. Asthma 2016, 53, 471–477. [Google Scholar] [CrossRef] [Green Version]
- Sharratt, B.S.; Auvermann, B. Dust pollution from agriculture. In Encyclopedia of Agriculture and Food Systems; Van Alfen, N.K., Ed.; Elsevier Academic Press: Cambridge, MA, USA, 2014; Volume 2, pp. 487–504. [Google Scholar]
- Greskevitch, M.; Kullman, G.; Moon Bang, K.; Mazurek, J.M. Respiratory Disease in Agricultural Workers: Mortality and Morbidity Statistics. J. Agromed. 2008, 12, 5–10. [Google Scholar] [CrossRef] [PubMed]
- Schenker, M.B.; Farrar, J.A.; Mitchell, D.C.; Green, R.S.; Samuels, S.J.; Lawson, R.J.; McCurdy, S.A. Agricultural dust exposure and respiratory symptoms among California farm operators. J. Occup. Environ. Med. 2005, 47, 1157–1166. [Google Scholar] [CrossRef]
- Schenker, M. Exposures and health effects from inorganic agricultural dusts. Environ. Health Perspect. 2000, 108, 661–664. Available online: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1637665/ (accessed on 8 December 2020).
- Dutkiewicz, J. Exposure to Dust-Borne Bacteria in Agriculture. I. Environmental Studies. Arch. Environ. Health Int. J. 1978, 33, 250–259. [Google Scholar] [CrossRef] [PubMed]
- Harnly, M.; Bradman, A.; Nishioka, M.; McKone, T.; Smith, D.; McLaughlin, R.; Baird-Kavannah, G.; Castorina, R.; Eskenazi, B. Pesticides in Dust from Homes in an Agricultural Area. Environ. Sci. Technol. 2009, 43, 8767–8774. [Google Scholar] [CrossRef] [PubMed]
- Winiwarter, W.; Kuhlbusch, T.A.J.; Viana, M.; Hitzenberger, R. Quality considerations of European PM emission inventories. Atmos. Environ. 2009, 43, 3819–3828. [Google Scholar] [CrossRef]
- Chen, W.; Tong, D.Q.; Zhang, S.; Zhang, X.; Zhao, H. Local PM10 and PM2.5 emission inventories from agricultural tillage and harvest in northeastern China. J. Environ. Sci. 2017, 57, 15–23. [Google Scholar] [CrossRef]
- European Parliament. Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on Ambient Air Quality and Cleaner Air for Europe, OJ L 152, 11.06.2008; European Parliament: Brussels, Belgium, 2008; p. 1. [Google Scholar]
- Regulation of Minister of the Environment of 13 September 2012 on Assessing the Contents of Substances in the Air. J. Laws 2012, item 1032. Available online: http://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20120001032 (accessed on 8 December 2020).
- How Airborne Dust Is Measured. Available online: http://www.gios.gov.pl/pl/aktualnosci/315-jak-sie-mierzy-pyl-zawieszony-w-powietrzu (accessed on 29 November 2020).
- Fang, G.C.; Chang, C.N.; Chu, C.C.; Wu, Y.S.; Fu, P.P.C.; Yang, I.L.; Chen, M.H. Characterization of particulate, metallic elements of TSP, PM2.5 and PM2.5-10 aerosols at a farm sampling site in Taiwan, Taichung. Sci. The Total Environ. 2003, 308, 157–166. [Google Scholar] [CrossRef]
- Zobeck, T.M.; Stout, J.E.; Van Pelt, R.S.; Funk, R.; Rajot, J.L.; Sterk, G. Measurement and data analysis methods for field-scale wind erosion studies. Earth Surf. Process. Landf. 2003, 28, 1163–1188. [Google Scholar] [CrossRef]
- Fryrear, D.W. A Field Dust Sampler. J. Soil Water Conserv. 1986, 41, 117–120. Available online: http://www.jswconline.org/content/41/2/117 (accessed on 8 December 2020).
- Goossens, D.; Offer, Z.Y. Wind tunnel and field calibration of six aeolian dust samples. Atmos. Environ. 2000, 34, 1043–1057. [Google Scholar] [CrossRef]
- Sharratt, B.; Feng, G. Windblown dust influenced by conventional and undercutter tillage within the Columbia Plateau, USA. Earth Surf. Process. Landf. 2009, 34, 1323–1332. [Google Scholar] [CrossRef]
- WIOS. 2018. Available online: http://www.wios.lodz.pl/files/docs/r15xiiixpowietrze.pdf (accessed on 29 October 2020).
- Glotter, M.; Elliott, J. Simulating US agriculture in a modern Dust Bowl drought. Nat. Plants 2016, 3, 16193. [Google Scholar] [CrossRef] [PubMed]
- Veranth, J.M.; Pardyjak, E.R.; Seshardi, G. Vehicle-generated fugitive dust transport: Analytic models and field study. Atmos. Environ. 2003, 37, 2295–2303. [Google Scholar] [CrossRef]
- Chow, J.C.; Watson, J.G.; Green, M.C.; Douglas, H.L.; DuBois, D.W.; Khol, S.D.; Egami, R.T.; Gillies, J.; Rogers, C.F.; Fraizer, C.A.; et al. Middle- and neighborhood-scale variations of PM10 source contributions in Las Vegas, Nevada. J. Air Waste Manag. Assoc. 1999, 49, 641–654. [Google Scholar] [CrossRef] [Green Version]
- Goossens, D. The granulometrical characteristics of a slowly moving dust cloud. Earth Surf. Process. Landf. 1985, 10, 353–362. [Google Scholar] [CrossRef]
- Gillies, J.A.; Watson, J.G.; Rogers, C.F.; DuBois, D.; Chow, L.C.; Langston, R.; Sweet, J. Long-term efficiencies of dust suppressants to reduce PM10 emissions from unpaved roads. J. Air Waste Manag. Assoc. 1999, 49, 3–16. Available online: http://www.diva-portal.org/smash/get/diva2:309927/FULLTEXT01.pdf (accessed on 8 December 2020). [CrossRef]
- Amon, B.; Hutchings, N.; Dämmgen, U.; Sommer, S.; Webb, J. EEA Guidebook 2019: 3B Manure Management; European Environment Agency: København, Denmark, 2019; pp. 1–70. Available online: http://www.eea.europa.eu/ds_resolveuid/ENDMC6O5FR (accessed on 8 December 2020).
- Intergovernmental Panel on Climate Change. IPCC Guidelines for National Greenhouse Gas Inventories; Agriculture, Forestry and Other Land Use; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2006; Volume 4, Chapter 10.8.
- De Smet, S.M.; Pauwels, H.; De Bie, S.; Demeyer, D.I.; Callewier, J.; Eeckhout, W. Effect of halothane genotype, breed, feed withdrawal, and lairage on pork quality of Belgian slaughter pigs. J. Anim. Sci. 1996, 74, 1854–1863. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Local Data Bank. Available online: http://bdl.stat.gov.pl/BDLS/dane/podgrup/temat (accessed on 30 September 2020).
- Takai, H.; Pedersen, S.; Johnsen, J.O.; Metz, J.H.M.; Groot Koerkamp, P.W.G.; Uenk, G.H.; Phillips, V.R.; Holden, M.R.; Sneath, R.W.; Short, J.L.; et al. Concentrations and Emissions of Airborne Dust in Livestock Buildings in Northern Europe. J. Agric. Eng. Res. 1998, 70, 59–77. [Google Scholar] [CrossRef] [Green Version]
- Mosquera, J.; Ogink, N.W.M. Reducing the sampling periods required in protocols for establishing ammonia emissions from pig fattening buildings using measurements and modeling. Biosyst. Eng. 2011, 110, 90–96. [Google Scholar] [CrossRef]
- Winkel, L.C.; Hoogendoorn, A.; Xing, R.; Wentzel, J.J.; der Heiden, K.V. Animal models of surgically manipulated flow velocities to study shear stress-induced atherosclerosis. Atherosclerosis 2015, 241, 100–110. [Google Scholar] [CrossRef] [PubMed]
- Chardon, W.J.; van der Hoek, K.W. Berekeninggsmethode Voor de Emissie Van Fijn Stof Vanuit de Landbouw; Altera Research Instituut voor de Groene Ruimte: Wageningen, The Netherlands, 2002. [Google Scholar]
- Costa, R.G.; de Medeiros, A.N.; Alves, A.R.; de Medeiros, G.R. Prospects for use of rooster tree (Calotropis procera) in animal production. Rev. Caatinga 2009, 22, 1–9. Available online: http://www.feedipedia.org/node/7935 (accessed on 8 December 2020).
- Van Ransbeeck, N.; Langenhove, H.V.; Demeyer, P. Indoor concentrations and emissions factors of particulate matter, ammonia and greenhouse gases for pig fattening facilities. Biosyst. Eng. 2013, 116, 518–528. [Google Scholar] [CrossRef]
- Seedorf, J.; Hartung, J. A proposal for calculating the dustlike particle emissions from livestock buildings. Dtsch. Tierarztl. Wochenschr. 2001, 108, 307–310. Available online: http://europepmc.org/article/med/11505849 (accessed on 8 December 2020).
- Lim, T.T.; Heber, A.J.; Ni, J.-Q.; Gallien, J.Z.; Xin, H. Air quality measurements at a laying hen house: Particulate matter concentrations and emissions. In Air Pollution from Agricultural Operations III; Keener, H., Ed.; ASAE: St. Joseph, MI, USA, 2003; pp. 249–256. [Google Scholar]
- Redwine, J.S.; Lacey, R.E.; Mukhtar, S.; Carey, J.B. Concentration and emissions of ammonia and particulate matter in tunnel-ventilated broiler houses under summer conditions in Texas. Trans. ASAE 2002, 45, 1101–1109. [Google Scholar] [CrossRef] [Green Version]
- Roumeliotis, T.S.; Van Heyst, B.J. Size fractionated particulate matter emissions from a broiler house in Southern Ontario, Canada. Sci. Total Environ. 2007, 383, 174–182. [Google Scholar] [CrossRef] [PubMed]
- Modini, R.L.; Agranovski, V.; Meyer, N.K.; Gallagher, E.; Dunlop, M.; Ristovski, Z.D. Dust emissions from a tunnel-ventilated broiler poultry shed with fresh and partially reused litter. Anim. Prod. Sci. 2010, 50, 552–556. [Google Scholar] [CrossRef] [Green Version]
- Mielke, L.N.; Swanson, N.P.; McCalla, T.M. Soil profile conditions of cattle feedlots. J. Environ. Qual. 1974, 3, 14–17. [Google Scholar] [CrossRef]
- Sakirkin, S.L.P.; Maghirang, R.; Amosson, S.; Auvermann, B.W. AIR QUALITY, Dust Emissions from Cattle Feeding Operations—Part 1 of 2: Sources, Factors, and Characteristics; Issues: Dust Emissions, Education in Animal Agriculture, January 2012; Iowa State University Extension and Outreach: Ames, IA, USA, 2012; pp. 1–12. [Google Scholar]
- Auvermann, B.A. Texas/New Mexico open-lot research. In Proceedings of the Western Dairy Air Quality Symposium, Sacramento, CA, USA, 20 April 2011. [Google Scholar]
- Razote, E.B.; Maghirang, R.G.; Predicala, B.Z.; Murphy, J.P.; Auvermann, B.W.; Harner, J.P., III; Hargrove, W.L. Laboratory evaluation of the dust-emission potential of cattle feedlot surfaces. Trans. ASABE 2006, 49, 1117–1124. [Google Scholar] [CrossRef]
- Auvermann, B.A.; Romanillos, A. Effect of increased stocking density on fugitive dust emissions of PM10 from cattle feedyards. In Proceedings of the International Meeting of the Air and Waste Management Association, Salt Lake City, UT, USA, 18–22 June 2000. [Google Scholar]
- Bretz, F.E.; Amosson, S.H.; Warminski, P.L.; Marek, T.H. Economic Analysis of Manure Harvesting Equipment in Feedyards for Dust Control. In Proceedings of the Southern Agricultural Economics Association Annual Meeting, Orlando, FL, USA, 6–9 February 2010. [Google Scholar]
- Auvermann, B.A. Lesson 42: Controlling dust and odor from open lot livestock facilities. In Livestock and Poultry Environmental Stewardship Curriculum (LPES); Mid-West Plan Service (MWPS): Ames, IA, USA, 2009. [Google Scholar]
- Sweeten, J.M.; Lott, S. Dust management. In Designing Better Feedlots; Conference and Workshop Series QC94002; Watts, P., Tucker, R., Eds.; Queensland Department of Primary Industries: Toowoomba/Brisbane, QSL, Australia, 1994. [Google Scholar]
- Bonifacio, H.F.; Maghirang, R.G.; Razote, E.B.; Auvermann, B.W.; Harner, J.P.; Murphy, J.P.; Guo, L.; Sweeten, J.M.; Hargrove, W.L. Particulate control efficiency of a water sprinkler system at a beef cattle feedlot in Kansas. Trans. ASABE 2011, 54, 295–304. [Google Scholar] [CrossRef]
- Livestock and Poultry Environmental Learning Center Webcast Series Sponsored by the: Air Quality Education in Animal Agriculture Project 27 March 2009. Available online: https://lpelc.org/wp-content/uploads/2019/03/09marPPcasey.pdf (accessed on 8 December 2020).
- Klimont, Z.; Cofala, J.; Bertok, I.; Amann, M.; Heyes, C.; Gyarfas, F. Modelling Particulate Emissions in Europe a Framework to Estimate Reduction Potential and Control Costs; International Institute for Applied Systems Analysis: Laxenburg, Austria, 2002; pp. 20–79. [Google Scholar]
- Tegen, I.; Werner, M.; Harrison, S.P.; Kohfeld, K.E. Relative importance of climate and land use in determining present and future global soil dust emission. Geophys. Res. Lett. 2004, 31, L05105. [Google Scholar] [CrossRef] [Green Version]
- Yu, J.; Wu, J. The Sustainability of Agricultural Development in China: The Agriculture–Environment Nexus. Sustainability 2018, 10, 1776. [Google Scholar] [CrossRef] [Green Version]
- Hofman, J.; Wuyts, K.; Van Wittenberghe, S.; Brackx, M.; Samson, M. On the link between biomagnetic monitoring and leaf-deposited dust load of urban trees: Relationships and spatial variability of different particle size fractions. Environ. Pollut. 2014, 189, 63–72. [Google Scholar] [CrossRef]
- Chakrabortty, S.; Paratkar, G. Biomonitoring of trace element air pollution using mosses. Aerosol Air Qual. Res. 2006, 6, 247–258. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.A.; Adhikari, A.; Grinshpun, S.A.; McKay, R.; Shukla, R.; Reponen, T. Personal Exposure to Airborne Dust and Microorganisms in Agricultural Environments. J. Occupat. Environ. Hyg. 2007, 3, 118–130. [Google Scholar] [CrossRef] [PubMed]
- Bauer, S.E.; Im, U.; Mezuman, K.; Gao, C.Y. Desert dust, industrialization, and agricultural fires: Health impacts of outdoor air pollution in Africa. J. Geophys. Res. Atmos. 2019, 124, 4104–4120. [Google Scholar] [CrossRef]
- Li, J.; Rodriguez, D.; Tang, X. Effects of land lease policy on changes in land use, mechanization and agricultural pollution. Land Use Policy 2017, 64, 405–413. [Google Scholar] [CrossRef]
- Dutkiewicz, J. Pył Występujący w Rolnictwie Jest Niebezpieczny; Kasa Rolniczego Ubezpieczenia Społecznego KRUS: Warsaw, Poland, 2006; pp. 1–16. [Google Scholar]
- Guo, H.; Kota, S.H.; Sahu, S.K.; Hu, J.; Ying, J.; Gao, A.; Zhang, H. Source apportionment of PM2.5 in North India using source-oriented air quality models. Environ. Pollut. 2017, 231, 426–436. [Google Scholar] [CrossRef] [PubMed]
NFR | Livestock Classification | EF dla TSP (kg AAP−1 Year−1) | EF dla PM10 (kg AAP−1 Year−1) | EF dla PM2,5 (kg AAP−1 Year−1) |
---|---|---|---|---|
3Ba | Dairy cattle | 1.38 [40] | 0.63 [40] | 0.41 [40] |
3B1b | Cattle (young cattle, beef, and suckling cows) | 0.59 [40] | 0.27 [40] | 0.18 [40] |
3B1b | Cattle (calves) | 0.34 [40] | 0.16 [40] | 0.10 [40] |
3B2 | Sheep | 0.14 [41] | 0.06 [41] | 0.02 [41] |
3B3 | Pigs (fattening pigs) | 1.05 [42] | 0.14 [43,44] | 0.006 [42,45] |
3B3 | Pigs | 0.27 [42] | 0.05 [42,44] | 0.002 [42] |
3B3 | Pigs (sow) | 0.62 [42] | 0.17 [42,44] | 0.01 [40] |
3B4a | Buffaloes | 1.45 [40] | 0.67 [40] | 0.44 [40] |
3B4d | Goats | 0.14 [41] | 0.06 [41] | 0.02 [41] |
3B4e | Horses | 0.48 [46] | 0.22 [46] | 0.14 [46] |
3B4f | Mules and donkeys | 0.34 [40] | 0.16 [40] | 0.10 [40] |
3B4gi | Chickens (laying hens) | 0.19 [42] | 0.04 [42,44,47] | 0.003 [42] |
3B4gii | Broilers | 0.04 [42] | 0.02 [48] | 0.002 [49,50] |
3B4giii | Turkeys | 0.11 [41] | 0.11 [42] | 0.02 [42] |
3B4giv | Poultry (ducks) | 0.14 [40] | 0.14 [40] | 0.02 [40] |
3B4giv | Poultry (geese) | 0.24 [40] | 0.24 [40] | 0.03 [40] |
3B4h | Other animals (fur animals) | 0.018 [41] | 0.008 [41] | 0.004 [41] |
Animal | Average | Median | Standard Variation | Variance | Min. | Max. | T-Test | p-Value |
---|---|---|---|---|---|---|---|---|
Dairy cattle | 0.028313 | 0.019887 | 0.022702 | 0.000515 | 0.007889 | 0.093190 | 4.989 | 0.000 |
Cattle (young cattle, beef, and suckling cows) | 0.023366 | 0.016929 | 0.017504 | 0.000306 | 0.005481 | 0.067926 | 5.340 | 0.000 |
Cattle (calves) | 0.005088 | 0.004011 | 0.003564 | 0.000013 | 0.000877 | 0.012673 | 5.710 | 0.000 |
Sheep | 0.000187 | 0.000134 | 0.000235 | 0.000000 | 0.000044 | 0.001041 | 3.181 | 0.006 |
Pigs (fattening pigs) | 0.000808 | 0.000439 | 0.000887 | 0.000001 | 0.000120 | 0.003546 | 3.644 | 0.002 |
Pigs | 0.000320 | 0.000186 | 0.000325 | 0.000000 | 0.000075 | 0.001356 | 3.938 | 0.001 |
Pigs (sows) | 0.000228 | 0.000143 | 0.000195 | 0.000000 | 0.000065 | 0.000789 | 4.678 | 0.000 |
Goats | 0.000029 | 0.000023 | 0.000019 | 0.000000 | 0.000010 | 0.000078 | 6.232 | 0.000 |
Horses | 0.000785 | 0.000731 | 0.000328 | 0.000000 | 0.000311 | 0.001472 | 9.560 | 0.000 |
Laying hens | 0.004560 | 0.003196 | 0.004308 | 0.000019 | 0.001052 | 0.019642 | 4.234 | 0.000 |
Turkeys | 0.008748 | 0.003754 | 0.011507 | 0.000132 | 0.000607 | 0.038496 | 3.041 | 0.008 |
Ducks | 0.003458 | 0.001819 | 0.004306 | 0.000019 | 0.000143 | 0.016628 | 3.212 | 0.006 |
Geese | 0.002831 | 0.002274 | 0.002570 | 0.000007 | 0.000284 | 0.007593 | 4.408 | 0.001 |
Animal | Average | Median | Standard Variation | Variance | Min. | Max. | T-Test | p-Value |
---|---|---|---|---|---|---|---|---|
Dairy cattle | 0.043505 | 0.030558 | 0.034883 | 0.001217 | 0.012123 | 0.143194 | 4.989 | 0.000 |
Cattle (young cattle, beef, and suckling cows) | 0.035049 | 0.025394 | 0.026256 | 0.000689 | 0.008222 | 0.101889 | 5.340 | 0.000 |
Cattle (calves) | 0.008140 | 0.006418 | 0.005702 | 0.000033 | 0.001404 | 0.020276 | 5.710 | 0.000 |
Sheep | 0.000561 | 0.000402 | 0.000705 | 0.000000 | 0.000133 | 0.003122 | 3.181 | 0.006 |
Pigs (fattening pigs) | 0.018860 | 0.010237 | 0.020705 | 0.000429 | 0.002797 | 0.082739 | 3.644 | 0.002 |
Pigs | 0.008012 | 0.004652 | 0.008137 | 0.000066 | 0.001875 | 0.033908 | 3.938 | 0.001 |
Pigs (sows) | 0.003870 | 0.002438 | 0.003309 | 0.000011 | 0.001106 | 0.013417 | 4.678 | 0.000 |
Goats | 0.000088 | 0.000070 | 0.000056 | 0.000000 | 0.000031 | 0.000234 | 6.232 | 0.000 |
Horses | 0.001233 | 0.001149 | 0.000516 | 0.000000 | 0.000489 | 0.002314 | 9.556 | 0.000 |
Laying hens | 0.060803 | 0.042615 | 0.057444 | 0.003300 | 0.014029 | 0.261897 | 4.234 | 0.000 |
Turkeys | 0.048113 | 0.020646 | 0.063288 | 0.004005 | 0.003337 | 0.211729 | 3.041 | 0.008 |
Ducks | 0.024205 | 0.012733 | 0.030141 | 0.000908 | 0.000999 | 0.116395 | 3.212 | 0.006 |
Geese | 0.022652 | 0.018193 | 0.020557 | 0.000423 | 0.002268 | 0.060748 | 4.408 | 0.001 |
Particulates | Average Value PM10 [%] * | Average Value PM2.5 [%] * |
---|---|---|
Agriculture: Plowing, cultivation, harvesting-low crop, alternative grain harvest | 12.78 | 5 |
Cattle: Feed modification | 29.44 | 10 |
Cattle: Silage with hay | 33.33 | 10 |
Dairy cows: Feed modification | 29.44 | 10 |
Dairy cows: Silage with hay | 33.33 | 10 |
Other animals: Good practices | 12.78 | 5 |
Pigs: Feed modification | 30.56 | 10 |
Poultry: Feed modification | 29.44 | 10 |
Free-range poultry | 12.78 | 5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roman, M.; Roman, K.; Roman, M. Spatial Variation in Particulate Emission Resulting from Animal Farming in Poland. Agriculture 2021, 11, 168. https://doi.org/10.3390/agriculture11020168
Roman M, Roman K, Roman M. Spatial Variation in Particulate Emission Resulting from Animal Farming in Poland. Agriculture. 2021; 11(2):168. https://doi.org/10.3390/agriculture11020168
Chicago/Turabian StyleRoman, Monika, Kamil Roman, and Michał Roman. 2021. "Spatial Variation in Particulate Emission Resulting from Animal Farming in Poland" Agriculture 11, no. 2: 168. https://doi.org/10.3390/agriculture11020168
APA StyleRoman, M., Roman, K., & Roman, M. (2021). Spatial Variation in Particulate Emission Resulting from Animal Farming in Poland. Agriculture, 11(2), 168. https://doi.org/10.3390/agriculture11020168