The Ecuadorian Banana Farms Managers’ Perceptions: Innovation as a Driver of Environmental Sustainability Practices
Abstract
:1. Introduction
2. Literature Background and Hypotheses
2.1. Environmental Sustainability Practices and Adoption of Information Systems
2.2. Environmental Sustainability Practices and Innovation in Processes
2.3. Environmental Sustainability Practices and Training of Employees
3. Materials and Methods
3.1. Statistical Procedure
3.2. Data Collection and Representativeness
3.3. Measures
3.4. Statistical Remedies for Bias
4. Results
4.1. Model Evaluation
4.2. Hypotheses Testing
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gusmão Caiado, R.G.; Leal Filho, W.; Quelhas, O.L.G.; Luiz de Mattos Nascimento, D.; Ávila, L.V. A literature-based review on potentials and constraints in the implementation of the sustainable development goals. J. Clean. Prod. 2018, 198, 1276–1288. [Google Scholar] [CrossRef]
- DeClerck, F.A.J.; Jones, S.K.; Attwood, S.; Bossio, D.; Girvetz, E.; Chaplin-Kramer, B.; Enfors, E.; Fremier, A.K.; Gordon, L.J.; Kizito, F.; et al. Agricultural ecosystems and their services: The vanguard of sustainability? Curr. Opin. Environ. Sustain. 2016, 23, 92–99. [Google Scholar] [CrossRef] [Green Version]
- Gatto, A. A pluralistic approach to economic and business sustainability: A critical meta-synthesis of foundations, metrics, and evidence of human and local development. Corp. Soc. Responsib. Environ. Manag. 2020, 27, 1525–1539. [Google Scholar] [CrossRef]
- Canavan, C.R.; Graybill, L.; Fawzi, W.; Kinabo, J. The SDGs Will Require Integrated Agriculture, Nutrition, and Health at the Community Level. Food Nutr. Bull. 2016, 37, 112–115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agovino, M.; Cerciello, M.; Gatto, A. Policy efficiency in the field of food sustainability. The adjusted food agriculture and nutrition index. J. Environ. Manag. 2018, 218, 220–233. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Yu, C.; Li, C.; Xin, Q.; Huang, X.; Zhang, J.; Yue, Y.; Huang, G.; Li, X.; Wang, W. Modeling the impacts of water and fertilizer management on the ecosystem service of rice rotated cropping systems in China. Agric. Ecosyst. Environ. 2016, 219, 49–57. [Google Scholar] [CrossRef]
- Hamidov, A.; Helming, K. Sustainability considerations in water-energy-food nexus research in irrigated agriculture. Sustainability 2020, 12, 6274. [Google Scholar] [CrossRef]
- Hou, D.; Bolan, N.S.; Tsang, D.C.W.; Kirkham, M.B.; O’Connor, D. Sustainable soil use and management: An interdisciplinary and systematic approach. Sci. Total Environ. 2020, 729. [Google Scholar] [CrossRef]
- Issanchou, A.; Daniel, K.; Dupraz, P.; Ropars-Collet, C. Intertemporal soil management: Revisiting the shape of the crop production function. J. Environ. Plan. Manag. 2019, 62, 1845–1863. [Google Scholar] [CrossRef]
- Maia, A.G.; Miyamoto, B.C.B.; Garcia, J.R. Climate Change and Agriculture: Do Environmental Preservation and Ecosystem Services Matter? Ecol. Econ. 2018, 152, 27–39. [Google Scholar] [CrossRef]
- Repar, N.; Jan, P.; Dux, D.; Nemecek, T.; Doluschitz, R. Implementing farm-level environmental sustainability in environmental performance indicators: A combined global-local approach. J. Clean. Prod. 2017, 140, 692–704. [Google Scholar] [CrossRef] [Green Version]
- Juríčková, Z.; Lušňáková, Z.; Hallová, M.; Horská, E.; Hudáková, M. Environmental impacts and attitudes of agricultural enterprises for environmental protection and sustainable development. Agriculture 2020, 10, 440. [Google Scholar] [CrossRef]
- Angelakoglou, K.; Gaidajis, G. A review of methods contributing to the assessment of the environmental sustainability of industrial systems. J. Clean. Prod. 2015, 108, 725–747. [Google Scholar] [CrossRef]
- Pulido-Fernández, J.I.; Cárdenas-García, P.J.; Espinosa-Pulido, J.A. Does environmental sustainability contribute to tourism growth? An analysis at the country level. J. Clean. Prod. 2019, 213, 309–319. [Google Scholar] [CrossRef]
- Moyano-Fuentes, J.; Maqueira-Marín, J.M.; Bruque-Cámara, S. Process innovation and environmental sustainability engagement: An application on technological firms. J. Clean. Prod. 2018, 171, 844–856. [Google Scholar] [CrossRef]
- Lioutas, E.D.; Charatsari, C. Green Innovativeness in Farm Enterprises: What Makes Farmers Think Green? Sustain. Dev. 2018, 26, 337–349. [Google Scholar] [CrossRef]
- Bentley, J.W.; Van Mele, P.; Barres, N.F.; Okry, F.; Wanvoeke, J. Smallholders download and share videos from the Internet to learn about sustainable agriculture. Int. J. Agric. Sustain. 2019, 17, 92–107. [Google Scholar] [CrossRef]
- Consoli, D.; Marin, G.; Marzucchi, A.; Vona, F. Do green jobs differ from non-green jobs in terms of skills and human capital? Res. Policy 2016, 45, 1046–1060. [Google Scholar] [CrossRef] [Green Version]
- Ajzen, I. The theory of planned behavior. Organ. Behav. Hum. Decis. Process. 1991, 50, 179–211. [Google Scholar] [CrossRef]
- De Oliveira Neto, G.C.; Pinto, L.F.R.; Amorim, M.P.C.; Giannetti, B.F.; de Almeida, C.M.V.B. A framework of actions for strong sustainability. J. Clean. Prod. 2018, 196, 1629–1643. [Google Scholar] [CrossRef]
- Oo, S.P.; Usami, K. Farmers’ perception of good agricultural practices in rice production in Myanmar: A case study of Myaungmya District, Ayeyarwady Region. Agriculture 2020, 10, 249. [Google Scholar] [CrossRef]
- Tatlidil, F.; Boz, I.; Tatlidil, H. Farmers’ Perception of Sustainable Agriculture and Its Determinants: A Case Study in Kahramanmaras Province of Turkey. Environ. Dev. Sustain. 2009, 11, 1091–1106. [Google Scholar] [CrossRef]
- Wollni, M.; Lee, D.R.; Thies, J.E. Conservation agriculture, organic marketing, and collective action in the Honduran hillsides. Agric. Econ. 2010, 41, 373–384. [Google Scholar] [CrossRef]
- Arnes, E.; Antonio, J.; del Val, E.; Astier, M. Sustainability and climate variability in low-input peasant maize systems in the central Mexican highlands. Agric. Ecosyst. Environ. 2013, 181, 195–205. [Google Scholar] [CrossRef]
- Gerten, D.; Heck, V.; Jägermeyr, J.; Bodirsky, B.L.; Fetzer, I.; Jalava, M.; Kummu, M.; Lucht, W.; Rockström, J.; Schaphoff, S.; et al. Feeding ten billion people is possible within four terrestrial planetary boundaries. Nat. Sustain. 2020, 3, 200–208. [Google Scholar] [CrossRef]
- Bonisoli, L.; Galdeano-Gómez, E.; Piedra-Muñoz, L.; Pérez-Mesa, J.C. Benchmarking agri-food sustainability certifications: Evidences from applying SAFA in the Ecuadorian banana agri-system. J. Clean. Prod. 2019, 236. [Google Scholar] [CrossRef]
- Cohn, A.S.; O’Rourke, D. Agricultural certification as a conservation tool in Latin America. J. Sustain. For. 2011, 30, 158–186. [Google Scholar] [CrossRef]
- Kline, S.J.; Rosenberg, N. An Overview of Innovation. In Studies on Science and the Innovation Process; Nanyang Technological University: Singapore, 1986; Volume 38, pp. 173–204. [Google Scholar]
- Kapoor, K.K.; Tamilmani, K.; Rana, N.P.; Patil, P.; Dwivedi, Y.K.; Nerur, S. Advances in social media research: Past, present and future. Inf. Syst. Front. 2018, 20, 531–558. [Google Scholar] [CrossRef] [Green Version]
- Jürgen, P.; Lederman, N.G.; Grob, J. Learning experimentation through science fairs. Int. J. Sci. Educ. 2016, 38, 2367–2387. [Google Scholar] [CrossRef]
- Choi, Y.J.; Lee, C.; Jacobs, R.L. The hierarchical linear relationship among structured on-the-job training activities, trainee characteristics, trainer characteristics, training environment characteristics, and organizational characteristics of workers in small and medium-sized enterpris. Hum. Resour. Dev. Int. 2015, 18, 499–520. [Google Scholar] [CrossRef]
- Souza, R.; Sousa, S.; Nunes, E. Developing organisational learning through QC story. Total Qual. Manag. Bus. Excell. 2018, 31, 1565–1587. [Google Scholar] [CrossRef]
- Wagner, M.; Schaltegger, S. How does sustainability performance relate to business competitiveness? Greener Manag. Int. 2003, 5–16. [Google Scholar] [CrossRef]
- Muangprathub, J.; Boonnam, N.; Kajornkasirat, S.; Lekbangpong, N.; Wanichsombat, A.; Nillaor, P. IoT and agriculture data analysis for smart farm. Comput. Electron. Agric. 2019, 156, 467–474. [Google Scholar] [CrossRef]
- Wolfert, S.; Ge, L.; Verdouw, C.; Bogaardt, M.J. Big Data in Smart Farming—A review. Agric. Syst. 2017, 153, 69–80. [Google Scholar] [CrossRef]
- Goap, A.; Sharma, D.; Shukla, A.K.; Rama Krishna, C. An IoT based smart irrigation management system using Machine learning and open source technologies. Comput. Electron. Agric. 2018. [Google Scholar] [CrossRef]
- Chibanda, C.; Agethen, K.; Deblitz, C.; Zimmer, Y.; Almadani, M.I.; Garming, H.; Rohlmann, C.; Schütte, J.; Thobe, P.; Verhaagh, M.; et al. The typical farm approach and its application by the Agri benchmark network. Agriculture 2020, 10, 646. [Google Scholar] [CrossRef]
- Strassemeyer, J.; Daehmlow, D.; Dominic, A.R.; Lorenz, S.; Golla, B. SYNOPS-WEB, an online tool for environmental risk assessment to evaluate pesticide strategies on field level. Crop Prot. 2017, 97, 28–44. [Google Scholar] [CrossRef]
- Trinh, T.; Kavvas, M.L.; Ishida, K.; Ercan, A.; Chen, Z.Q.; Anderson, M.L.; Ho, C.; Nguyen, T. Integrating global land-cover and soil datasets to update saturated hydraulic conductivity parameterization in hydrologic modeling. Sci. Total Environ. 2018, 631–632, 279–288. [Google Scholar] [CrossRef] [PubMed]
- Deichmann, U.; Goyal, A.; Mishra, D. Will Digital Technologies Transform Agriculture in Developing Countries? World Bank Group: Washington, DC, USA, 2016; Volume 47. [Google Scholar]
- Mostafaeipour, A.; Fakhrzad, M.B.; Gharaat, S.; Jahangiri, M.; Dhanraj, J.A.; Band, S.S.; Issakhov, A.; Mosavi, A. Machine learning for prediction of energy in wheat production. Agriculture 2020, 10, 517. [Google Scholar] [CrossRef]
- Clarkson, G.; Garforth, C.; Dorward, P.; Mose, G.; Barahona, C.; Areal, F.; Dove, M. Can the TV makeover format of edutainment lead to widespread changes in farmer behaviour and influence innovation systems? Shamba Shape Up in Kenya. Land Use Policy 2018, 76, 338–351. [Google Scholar] [CrossRef] [Green Version]
- Schaltegger, S.; Etxeberria, I.Á.; Ortas, E. Innovating Corporate Accounting and Reporting for Sustainability—Attributes and Challenges. Sustain. Dev. 2017, 25, 113–122. [Google Scholar] [CrossRef] [Green Version]
- OECD. Oslo Manual: Guidelines for Collecting and Interpreting Innovation Data, 3th ed.; Tragsa: Madrid, Spain, 2005; ISBN 978-92-64-01308-3. [Google Scholar]
- Konrad, M.T.; Nielsen, H.O.; Pedersen, A.B.; Elofsson, K. Drivers of Farmers’ Investments in Nutrient Abatement Technologies in Five Baltic Sea Countries. Ecol. Econ. 2019, 159, 91–100. [Google Scholar] [CrossRef]
- Silvestre, B.S.; Ţîrcă, D.M. Innovations for sustainable development: Moving toward a sustainable future. J. Clean. Prod. 2019, 208, 325–332. [Google Scholar] [CrossRef]
- Nesme, T.; Brunault, S.; Mollier, A.; Pellerin, S. An analysis of farmers’ use of phosphorus fertiliser in industrial agriculture: A case study in the Bordeaux region (south-western France). Nutr. Cycl. Agroecosystems 2011, 91, 99–108. [Google Scholar] [CrossRef]
- Conforti, P.; Giampietro, M. Fossil energy use in agriculture: An international comparison. Agric. Ecosyst. Environ. 1997, 65, 231–243. [Google Scholar] [CrossRef]
- Rueda, X.; Paz, A.; Gibbs-Plessl, T.; Leon, R.; Moyano, B.; Lambin, E.F. Smallholders at a Crossroad: Intensify or Fall behind? Exploring Alternative Livelihood Strategies in a Globalized World. Bus. Strategy Environ. 2018, 27, 215–229. [Google Scholar] [CrossRef]
- Barth, H.; Melin, M. A Green Lean approach to global competition and climate change in the agricultural sector—A Swedish case study. J. Clean. Prod. 2018, 204, 183–192. [Google Scholar] [CrossRef]
- Beltrán-Esteve, M.; Picazo-Tadeo, A.J.; Reig-Martínez, E. What makes a citrus farmer go organic? Empirical evidence from Spanish citrus farming. Spanish J. Agric. Res. 2012, 10, 901. [Google Scholar] [CrossRef] [Green Version]
- Zeweld, W.; Van Huylenbroeck, G.; Tesfay, G.; Speelman, S. Smallholder farmers’ behavioural intentions towards sustainable agricultural practices. J. Environ. Manag. 2017, 187, 71–81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cotching, W.E.; Sherriff, L.; Kilpatrick, S. Integrating Farm Production and Natural Resource Management in Tasmania, Australia. J. Agric. Educ. Ext. 2009, 15, 287–300. [Google Scholar] [CrossRef]
- Moschitz, H.; Home, R. The challenges of innovation for sustainable agriculture and rural development: Integrating local actions into European policies with the Reflective Learning Methodology. Action Res. 2014, 12, 392–409. [Google Scholar] [CrossRef]
- Jack, C.; Anderson, D.; Connolly, N. Innovation and skills: Implications for the agri-food sector. Educ. Train. 2014, 56, 271–286. [Google Scholar] [CrossRef]
- Liu, Y.; Ruiz-Menjivar, J.; Zhang, L.; Zhang, J.; Swisher, M.E. Technical training and rice farmers’ adoption of low-carbon management practices: The case of soil testing and formulated fertilization technologies in Hubei, China. J. Clean. Prod. 2019, 226, 454–462. [Google Scholar] [CrossRef]
- Marra, M.; Pannell, D.J.; Abadi Ghadim, A. The economics of risk, uncertainty and learning in the adoption of new agricultural technologies: Where are we on the learning curve? Agric. Syst. 2003, 75, 215–234. [Google Scholar] [CrossRef]
- Meijer, S.S.; Catacutan, D.; Ajayi, O.C.; Sileshi, G.W.; Nieuwenhuis, M. The role of knowledge, attitudes and perceptions in the uptake of agricultural and agroforestry innovations among smallholder farmers in sub-Saharan Africa. Int. J. Agric. Sustain. 2015. [Google Scholar] [CrossRef]
- Cassel, C.; Hackl, P.; Westlund, A.H. Robustness of partial least-squares method for estimating latent variable quality structures. J. Appl. Stat. 1999, 26, 435–446. [Google Scholar] [CrossRef]
- Chin, W.W. The Partial Least Squares aproach to Structural Equation Modeling. Mod. Methods Bus. Res. 1998, 295, 295–336. [Google Scholar]
- Hair, J.F.; Risher, J.J.; Sarstedt, M.; Ringle, C.M. When to use and how to report the results of PLS-SEM. Eur. Bus. Rev. 2019, 31, 2–24. [Google Scholar] [CrossRef]
- Hair, J.F.; Ringle, C.M.; Sarstedt, M. PLS-SEM: Indeed a Silver Bullet. J. Mark. Theory Pract. 2011, 19, 139–152. [Google Scholar] [CrossRef]
- Ringle, C.; Wende, S.; Becker, J.-M. SmartPLS 3. Bönningstedt: SmartPLS. Available online: http//www.smartpls.com (accessed on 16 November 2020).
- Rigdon, E.E. Choosing PLS path modeling as analytical method in European management research: A realist perspective. Eur. Manag. J. 2016, 34, 598–605. [Google Scholar] [CrossRef]
- Hayes, A.F. Beyond Baron and Kenny: Statistical mediation analysis in the new millennium. Commun. Monogr. 2009, 76, 408–420. [Google Scholar] [CrossRef]
- FAO. Ecuador’s Banana Sector under Climate Change: An Economic and Biophysical Assessment to Promote a Sustainable and Climate-Compatible Strategy; Elbehri, A., Ed.; FAO: Rome, Italy, 2016; ISBN 9789251092491. [Google Scholar]
- Reguant-Álvarez, M.; Torrado-Fonseca, M. El método Delphi. Rev. d’ Innovació i Recer. em Educ. 2016, 9, 87–102. [Google Scholar] [CrossRef] [Green Version]
- Stefanitsis, M.; Fafaliou, I.; Hassid, J. Does financial knowledge in small- and medium-sized enterprises matter? An empirical survey for Greece. Int. J. Econ. Bus. Res. 2013, 5, 96. [Google Scholar] [CrossRef]
- Pullman, M.E.; Maloni, M.J.; Carter, C.R. Food for thought: Social versus environmental sustainability practices and performance outcomes. J. Supply Chain Manag. 2009, 45, 38–54. [Google Scholar] [CrossRef]
- Heanue, K.; Walsh, Á.M. The Rural Development Programme (2007–2013) and Farmer Innovation: A Review to Date and Look to the Future; RERC Working Paper Series; Rural Economy & Development Programme: Athenry, Ireland, 2010. [Google Scholar]
- Bessant, J.; Tidd, J. Innovation and Entrepreneurship; John Wiley & Sons: Brighton, UK, 2011; Volume 31. [Google Scholar]
- Briones Peñalver, A.J.; Bernal Conesa, J.A.; de Nieves Nieto, C. Analysis of corporate social responsibility in spanish agribusiness and its influence on innovation and performance. Corp. Soc. Responsib. Environ. Manag. 2017, 193, 182–193. [Google Scholar] [CrossRef]
- Freeman, C. The Economics of Industrial Innovation, 2nd ed.Routledge: London, UK; New York, NY, USA, 1989; ISBN 0596007124. [Google Scholar]
- Pérez-Méndez, J.A.; Machado-Cabezas, Á. Relationship between management information systems and corporate performance. Rev. Contab. 2015, 18, 32–43. [Google Scholar] [CrossRef] [Green Version]
- Rao, Y.; Ken, H.G.; Chen, Y. Information systems maturity, knowledge sharing, and firm performance. Int. J. Account. Inf. Manag. 2015, 23, 106–127. [Google Scholar] [CrossRef]
- Tanner, J.F.J.; Chonko, L.B.; Ponzurick, T.V. A Learning Model of Trade Show Attendance. J. Conv. Exhib. Manag. 2001, 3, 3–26. [Google Scholar] [CrossRef]
- Van Tuijl, E.; Carvalho, L.; Dittrich, K. Beyond the joint-venture: Knowledge sourcing in Chinese automotive events. Ind. Innov. ISSN 2005, 32, 103–105. [Google Scholar] [CrossRef]
- McGuire, D.; Garavan, T.N.; O’Donnell, D.; Saha, S.K.; Cseh, M. Managers’ personal values as predictors of importance attached to training and development: A cross-country exploratory study. Hum. Resour. Dev. Int. 2008, 11, 335–350. [Google Scholar] [CrossRef]
- Rojo-Ramirez, A.A.; Ramírez-Orellana, A.; Burgos-Burgos, J.; Ruíz-Palomo, D. The moderating effects of family farms between innovation, information systems and training-learning over performance. In Entrepreneurship and Family Business Vitality—Surviving and Flourishing in the Long Term; Saiz-Alvarez, J.M., Leitão, J., Palma-Ruiz, J.M., Eds.; Springer International Publishing: Berlin/Heidelberg, Germany, 2019; pp. 205–231. [Google Scholar]
- Nwachukwu, S.L.S.; Vitell, S.J. The influence of corporate culture on managerial ethical judgments. J. Bus. Ethics 1997, 16, 757–776. [Google Scholar] [CrossRef]
- Nwachukwu, S.L.S.; Vitell, S.J.; Gilbert, F.W.; Barnes, J.H. Ethics and Social Responsibility in Marketing: An Examination of the Ethical Evaluation of Advertising Strategies. J. Bus. Res. 1997, 39, 107–118. [Google Scholar] [CrossRef]
- Podsakoff, P.M.; MacKenzie, S.B.; Podsakoff, N.P. Recommendations for Creating Better Concept Definitions in the Organizational, Behavioral, and Social Sciences. Organ. Res. Methods 2016, 19, 159–203. [Google Scholar] [CrossRef]
- Lindell, M.K.; Whitney, D.J. Accounting for common method variance in cross-sectional research designs. J. Appl. Psychol. 2001, 86, 114–121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chin, W.W.; Marcolin, B.L.; Newsted, P.R. A partial least squares latent variable modeling approach for measuring interaction Effects: Results from a Monte Carlo simulation study and an electronic-mail emotion/ adoption study. Inf. Syst. Res. 2003, 14, 189–217. [Google Scholar] [CrossRef] [Green Version]
- Henseler, J. Bridging design and behavioral research with variance-based Structural Equation Modeling. J. Advert. 2017, 46, 178–192. [Google Scholar] [CrossRef]
- Hair, J.F.; Hult, G.T.M.; Ringle, C.M.; Sarstedt, M. A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM). Sage Publications: Los Angeles, CA, USA, 2017; ISBN 9781452217444. [Google Scholar]
- Henseler, J.; Hubona, G.; Ray, P.A. Using PLS path modeling in new technology research: Updated guidelines. Ind. Manag. Data Syst. 2016, 116, 2–20. [Google Scholar] [CrossRef]
- Hair, J.; Hult, G.; Ringle, C.; Sarstedt, M. A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM), 2nd ed.; Thousand Oaks, C.S., Ed.; Sage publications: Thousand Oaks, CA, USA, 2017. [Google Scholar]
- Ketchen, D.J. A Primer on Partial Least Squares Structural Equation Modeling. Long Range Plan. 2013, 46, 184–185. [Google Scholar] [CrossRef]
- Cepeda Carrión, G.; Henseler, J.; Ringle, C.M.; Roldán, J.L. Prediction-oriented modeling in business research by means of PLS path modeling: Introduction to a JBR special section. J. Bus. Res. 2016, 69, 4545–4551. [Google Scholar] [CrossRef]
- Chin, W.W. How to write up and report PLS analyses. In Handbook of Partial Least Squares; Esposito Vinzi, V., Chin, W., Henseler, J., Wang, H., Eds.; Springer Handbooks of Computational Statistics: Berlin, Germany, 2010; pp. 655–690. [Google Scholar]
- Sleuwaegen, L. Advances in international marketing. Int. J. Res. Mark. 1992, 9, 319–323. [Google Scholar] [CrossRef]
- Shmueli, G.; Ray, S.; Velasquez Estrada, J.M.; Chatla, S.B. The elephant in the room: Predictive performance of PLS models. J. Bus. Res. 2016, 69. [Google Scholar] [CrossRef]
- Henseler, J.; Ringle, C.M.; Sarstedt, M. A new criterion for assessing discriminant validity in variance-based structural equation modeling. J. Acad. Mark. Sci. 2014, 43, 115–135. [Google Scholar] [CrossRef] [Green Version]
- Fornell, C.; Larcker, D. Evaluating Structural Equation Models with Unobservable Variables and Measurement Error. J. Mark. Res. 1981, 18, 39–50. [Google Scholar] [CrossRef]
- Franke, G.; Sarstedt, M. Heuristics versus statistics in discriminant validity testing: A comparison of four procedures. Internet Res. 2019, 29, 1066–2243. [Google Scholar] [CrossRef]
- Hu, L.; Bentler, P. Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Struct. Equ. Model. A Multidiscip. J. 1999, 6, 1–55. [Google Scholar] [CrossRef]
- Hu, L.; Bentler, P. Fit Indices in Covariance Structure Modeling: Sensitivity to Underparameterized Model Misspecification. Psychol. Methods 1998, 3, 424–453. [Google Scholar] [CrossRef]
- Preacher, K.J.; Hayes, A.F. Asymptotic and resampling strategies for assessing and comparing indirect effects in multiple mediator models. Behav. Res. Methods 2008, 40, 879–891. [Google Scholar] [CrossRef]
- Edmondson, D.L.; Kern, F.; Rogge, K.S. The co-evolution of policy mixes and socio-technical systems: Towards a conceptual framework of policy mix feedback in sustainability transitions. Res. Policy 2019, 48, 103555. [Google Scholar] [CrossRef]
- Borsato, E.; Martello, M.; Marinello, F.; Bortolini, L. Environmental and economic sustainability assessment for two different sprinkler and a drip irrigation systems: A case study on maize cropping. Agriculture 2019, 9, 187. [Google Scholar] [CrossRef] [Green Version]
- Zhang, F.; Zhu, L. Enhancing corporate sustainable development: Stakeholder pressures, organizational learning, and green innovation. Bus. Strategy Environ. 2019, 28, 1012–1026. [Google Scholar] [CrossRef]
Size of the Farm | Years of Exploitation | Ownership | Total | |||
---|---|---|---|---|---|---|
0 to 5 | 6 to 15 | 16 or More | Familiar | Non-Familiar | Sample | |
5 to 10 Has. | 53 | 72 | 61 | 154 | 32 | 186 |
11 to 30 Has. | 24 | 67 | 41 | 68 | 64 | 132 |
31 or more Has. | 5 | 48 | 45 | 65 | 33 | 98 |
Total sample | 82 | 187 | 147 | 287 | 129 | 416 |
Mean | sd | Environmental Sustainability Practices (ESP) [46,69] | |
es1 | 6.47 | 0.86 | The company carry out fertility tests and soil moisture |
es2 | 6.13 | 1.05 | The irrigation systems used in the company are of the latest technology |
es3 | 6.23 | 0.98 | The cultivation (conventional/ecological) is related to productivity and financial performance |
es4 | 6.54 | 0.73 | Natural resources are used rationally in the company |
es5 | 6.37 | 0.89 | The company have environmental certifications |
es6 * | - | - | In the company, they care about good management of toxic inputs |
Mean | sd | Agricultural Innovation (IN) [44,79] | |
in1 | 6.25 | 0.98 | The company usually restructure the production process |
in2 | 6.29 | 0.92 | The company usually consider the modernization of the infrastructure for production |
in3 | 6.17 | 1.03 | The company tend to use new inputs and materials for the production process |
in4 | 6.15 | 1.04 | The company consider differentiating its product from other producers |
in5 | 6.17 | 1.05 | The company commonly seek and find new market gaps |
in6 | 6.19 | 1.02 | The company apply any strategies to commercialize the product |
Mean | sd | Adoption of Information Systems (AIS) [33,74,75,79] | |
ais1 | 6.27 | 1.02 | The use of the internet is a good source to obtain information to innovate in the company |
ais2 | 6.17 | 1.02 | The advances of science presented at fairs and other events favor innovation in the company |
ais3 | 5.86 | 1.12 | The different levels of government share their skills and information with companies in the sector |
ais4 | 6.29 | 0.99 | To develop a web page is needed for the company to inform customers and suppliers |
ais5 | 6.16 | 1.06 | The information generated in technological R&D centers contribute to the innovative production processes of the firm |
ais6 | 6.32 | 1.01 | The information about the ecological situation, forests, soil resources, and available water is grounded to manage the company |
Mean | sd | Training of Employees (TE) [18,79] | |
te1 | 6.54 | 0.78 | Training is a key to the development of the company |
te2 | 6.55 | 0.76 | Learning is a key to improve production processes in the company |
te3 | 6.52 | 0.77 | Knowledge management is a key in the company |
te4 | 6.24 | 1.02 | Attending events fairs is a key to get more knowledge for the staff that works in the company |
te5 | 6.42 | 0.88 | The professionalization of workers and managers is a key in the activities carried out by the company |
te6 | 6.48 | 0.78 | Self-training is a key to personal and professional development of workers and managers in the firm |
te7 | 6.30 | 0.95 | The level of education is a key to the relationship between workers and employers in the company |
Exogenous | λ | t | W | Endogenous | λ | t | Q2b | Q2pls | W | ||
---|---|---|---|---|---|---|---|---|---|---|---|
Adoption of Information Systems (AIS) | Innovation in production and marketing processes (IN) | ||||||||||
α: 0.87 | ais1 | 0.81 | 40.9 | 0.22 | α: 0.88 | in1 | 0.82 | 35.6 | 0.33 | 0.37 | 0.22 |
ρA: 0.88 | ais2 | 0.83 | 36.4 | 0.21 | ρA: 0.89 | in2 | 0.70 | 19.5 | 0.24 | 0.33 | 0.17 |
ρC: 0.90 | ais3 | 0.72 | 24.4 | 0.19 | ρC: 0.91 | in3 | 0.81 | 31.9 | 0.31 | 0.34 | 0.20 |
AVE: 0.61 | ais4 | 0.69 | 17.1 | 0.17 | AVE:0.63 | in4 | 0.81 | 36.4 | 0.37 | 0.26 | 0.23 |
ais5 | 0.86 | 51.0 | 0.25 | Q2b: 0.32 | in5 | 0.82 | 39.9 | 0.32 | 0.28 | 0.22 | |
ais6 | 0.76 | 29.3 | 0.23 | Q2pls 0.48 | in6 | 0.81 | 32.2 | 0.33 | 0.34 | 0.22 | |
Training of employees (TE) | Environmental sustainability practices (ES) | ||||||||||
α: 0.92 | te1 | 0.84 | 32.7 | 0.16 | α: 0.83 | es1 | 0.80 | 31.3 | 0.37 | 0.34 | 0.28 |
ρA: 0.93 | te2 | 0.88 | 60.0 | 0.17 | ρA: 0.83 | es2 | 0.75 | 26.0 | 0.32 | 0.40 | 0.26 |
ρC: 0.94 | te3 | 0.84 | 32.7 | 0.15 | ρC: 0.88 | es3 | 0.79 | 27.8 | 0.33 | 0.31 | 0.26 |
AVE: 0.68 | te4 | 0.79 | 30.1 | 0.19 | AVE: 0.60 | es4 | 0.71 | 19.1 | 0.29 | 0.34 | 0.25 |
te5 | 0.84 | 32.1 | 0.17 | Q2b: 0.32 | es5 | 0.80 | 19.10 | 0.29 | 0.34 | 0.25 | |
te6 | 0.79 | 22.7 | 0.16 | Q2pls 0.49 | |||||||
te7 | 0.80 | 34.4 | 0.21 |
HTMT Ratios | Fornell–Larcker Criterion | ||||||||
---|---|---|---|---|---|---|---|---|---|
AIS | TE | IN | ESP | AIS | TE | IN | ESP | ||
AIS | Adoption of IS | (0.68–0.80) | (0.73–0.85) | (0.71–0.85) | 0.78 | ||||
TE | Training of employees | 0.74 | (0.60–0.76) | (0.69–0.82) | 0.68 | 0.82 | |||
IN | Agricultural Innovation | 0.80 | 0.68 | (0.70–0.84) | 0.70 | 0.63 | 0.80 | ||
ESP | Environmental Sustainability | 0.79 | 0.76 | 0.77 | 0.68 | 0.68 | 0.67 | 0.77 |
Path | t | Lo95 | Hi95 | f2 | VIF | |
---|---|---|---|---|---|---|
Direct effects | ||||||
Training of employees → Environmental sustainability | 0.31 | 5.65 | 0.20 | 0.42 | 0.12 | 2.03 |
Training of employees → Agricultural Innovation | 0.28 | 4.98 | 0.17 | 0.39 | 0.09 | 1.86 |
Adoption of IS → Environmental sustainability | 0.27 | 4.36 | 0.15 | 0.39 | 0.07 | 2.43 |
Adoption of IS → Agricultural Innovation | 0.51 | 10.29 | 0.41 | 0.61 | 0.09 | 1.86 |
Innovation → Environmental sustainability | 0.28 | 5.17 | 0.18 | 0.39 | 0.30 | 2.15 |
Indirect effects | VAF | |||||
Training → A. Innovation → Environmental sustainability | 0.08 | 3.49 | 0.04 | 0.13 | 20.3% | |
Adoption of IS → A. Innovation → Env. sustainability | 0.14 | 4.50 | 0.09 | 0.21 | 35.0% | |
Validation criteria | R2 | R2adj | ||||
Environmental sustainability | 0.59 | 0.58 | ||||
Agricultural Innovation | 0.54 | 0.53 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramírez-Orellana, A.; Ruiz-Palomo, D.; Rojo-Ramírez, A.; Burgos-Burgos, J.E. The Ecuadorian Banana Farms Managers’ Perceptions: Innovation as a Driver of Environmental Sustainability Practices. Agriculture 2021, 11, 213. https://doi.org/10.3390/agriculture11030213
Ramírez-Orellana A, Ruiz-Palomo D, Rojo-Ramírez A, Burgos-Burgos JE. The Ecuadorian Banana Farms Managers’ Perceptions: Innovation as a Driver of Environmental Sustainability Practices. Agriculture. 2021; 11(3):213. https://doi.org/10.3390/agriculture11030213
Chicago/Turabian StyleRamírez-Orellana, Alicia, Daniel Ruiz-Palomo, Alfonso Rojo-Ramírez, and John E. Burgos-Burgos. 2021. "The Ecuadorian Banana Farms Managers’ Perceptions: Innovation as a Driver of Environmental Sustainability Practices" Agriculture 11, no. 3: 213. https://doi.org/10.3390/agriculture11030213
APA StyleRamírez-Orellana, A., Ruiz-Palomo, D., Rojo-Ramírez, A., & Burgos-Burgos, J. E. (2021). The Ecuadorian Banana Farms Managers’ Perceptions: Innovation as a Driver of Environmental Sustainability Practices. Agriculture, 11(3), 213. https://doi.org/10.3390/agriculture11030213