Change of Plant Nutrients in Soil and Spring Barley Depending on the Field Pea Management as a Catch Crop
Abstract
:1. Introduction
2. Material and Methods
2.1. Site Description and Experimental Design
2.2. Laboratory Analysis of the Soil and Spring Barley
2.3. Statistical Analysis
3. Results
3.1. Soil Chemical Properties
3.2. Nutrients in the Grain and Straw of Spring Barley
4. Discussion
4.1. Soil Properties
4.2. Grain and Straw of Spring Barley
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Andreasen, C.; Stryhn, H.; Streibig, J.C. Decline of the flora in Danish arable fields. Appl. Ecol. 1996, 33, 619–626. [Google Scholar] [CrossRef]
- Brush, S.B. Rethinking crop genetic resource conservation. Conserv Biol. 1989, 3, 19–29. [Google Scholar] [CrossRef]
- Wanic, M.; Żuk-Gołaszewska, K.; Orzech, K. Catch crops and the soil environment—A review of the literature. J. Elem. 2019, 24, 31–45. [Google Scholar] [CrossRef]
- Wilczewski, E.; Piotrowska-Długosz, A.; Lemańczyk, G. Influence of catch crop on soil properties and yield of spring barley. Int. J. Plant. Prod. 2014, 8, 391–408. [Google Scholar]
- Wilczewski, E.; Piotrowska-Długosz, A.; Lemańczyk, G. Properties of alfisol and yield of spring barley as affected by catch crop. Zemdirbyste Agric. 2015, 102, 23–30. [Google Scholar] [CrossRef] [Green Version]
- Zimny, L.; Wacławowicz, R.; Malak, D. Zmiany wybranych właściwości fizycznych gleby jako skutki zróżnicowanego nawożenia organicznego i mineralnego azotowego. Fragm. Agron. 2005, 22, 664–677. [Google Scholar]
- Eichler, B.; Zachow, B.; Bartsch, S.; Köppen, D.; Schnug, E. Influence of catch cropping on nitrate contents in soil and soil solution. Landbauforschung Völkenrode 2004, 54, 7–12. [Google Scholar]
- Hansen, E.M.; Djurhuus, J. Nitrate leaching as influenced by soil tillage and catch crop. Soil Till. Res. 1997, 41, 203–219. [Google Scholar] [CrossRef]
- Janušauskaitė, D.; Arlauskienė, A.; Maikštėnienė, S. Soilmineral nitrogen and microbial parameters as influenced by catch crops and straw management. Zemdirbyste Agric. 2013, 100, 9–18. [Google Scholar] [CrossRef] [Green Version]
- Piotrowska-Długosz, A.; Wilczewski, E. Influences of catch crop and its incorporation time on soil carbon and carbon-related enzymes. Pedosphere 2015, 25, 569–579. [Google Scholar] [CrossRef]
- Thorup-Kristensen, K.; Dresbøll, D.B. Incorporation time of nitrogen catch crops influences the N effect for the succeeding crop. Soil Use Manag. 2010, 26, 27–35. [Google Scholar] [CrossRef]
- Riddle, M.U.; Bergstrőm, L. Phosphorus leaching from two soils with catch crops exposed to freeze-thaw cycles. Agron. J. 2013, 105, 803–811. [Google Scholar] [CrossRef] [Green Version]
- Kaspar, T.C.; Singer, J.W. The use of cover crops to manage soil. In Soil Management: Building a Stable Base for Agriculture; Hatfield, J.L., Sauer, T.J., Eds.; American Society of Agronomy and Soil Science Society of America: Madison, WI, USA, 2011; pp. 321–337. [Google Scholar]
- Askegaard, M.; Eriksen, J. Residual effect and leaching of N and K in cropping systems with clover and ryegrass catch crops on coarse sand. Agric. Ecosyst. Environ. 2008, 123, 99–108. [Google Scholar] [CrossRef]
- Doltra, J.; Olesen, J.E. The role of catch crops in the ecological intensification of spring cereals in organic farming under Nordic climate. Eur. J. Agron. 2013, 44, 98–108. [Google Scholar] [CrossRef] [Green Version]
- Abdallahi, M.M.; N’Dayegamiye, A. Effets de deux incorporations d’engrais verts sur le rendement et la nutrition en azote du blé (Triticum aestivum L.), ainsi que sur les propriétés physiques et biologiques du sol. Can. J. Soil Sci. 2000, 80, 81–89. [Google Scholar] [CrossRef] [Green Version]
- Abdalla, M.; Hastings, A.; Cheng, K.; Yue, Q.; Chadwick, D.; Espenberg, M.; Truu, J.; Rees, R.M.; Smith, P. A critical review of the impacts of cover crops on nitrogen leaching, net greenhouse gas balance and crop productivity. Glob. Chang. Biol. 2019, 25, 2530–2543. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Handlířová, M.; Lukas, V.; Smutný, V. Yield and soil coverage of catch crops and their impact on the yield of spring barley. Plant Soil Environ. 2017, 63, 195–200. [Google Scholar]
- Kwiatkowski, C.A.; Misztal-Majewska, B. Wpływ międzyplonów ścierniskowych oraz sposobu uprawy roli na jakość ziarna pszenicy jarej w krótkotrwałej monokulturze. Ann. UMCS 2014, 69, 1–10. [Google Scholar]
- Wojciechowski, W. Znaczenie Międzyplonów Ścierniskowych w Optymalizacji Nawożenia Azotem Jakościowej Pszenicy jarej; Wrocław University of Environmental and Life Sciences Press: Wrocław, Poland, 2009; Volume 76, p. 122. [Google Scholar]
- Bieganowski, A.; Witkowska-Walczak, B.; Gliński, J.; Sokołowska, Z.; Sławiński, C.; Brzeziñska, M.; Włodarczyk, T. Database of Polish arable mineral soils: A review. Int. Agrophys. 2013, 27, 335–350. [Google Scholar] [CrossRef] [Green Version]
- Skłodowski, P.; Bielska, A. Właściwości i urodzajność gleb Polski—Podstawą kształtowania relacji rolno-środowiskowych. Woda-Środowisko-Obszary Wiejskie 2009, 9, 203–214. [Google Scholar]
- Rdzany, Z. Geographical location and regional diversity of Poland. In Natural Environment of Poland and its Protection in Łódź University Geographical Research; Kobojek, E., Marszał, T., Eds.; Łódź University Press: Łódź, Poland, 2014; pp. 9–41. [Google Scholar] [CrossRef]
- Rimkus, E.; Kazys, J.; Bukantis, A.; Krotovas, A. Temporal variation of extreme precipitation events in Lithuania. Oceanologia 2011, 53, 259–277. [Google Scholar] [CrossRef] [Green Version]
- Skowera, B.; Puła, J. Skrajne warunki pluwiotermiczne w okresie wiosennym na obszarze Polski w latach 1971–2000. Acta Agrophysica 2004, 3, 171–177. [Google Scholar]
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014; Update 2015; International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; FAO: Rome, Italy, 2015; Volume 106. [Google Scholar]
- Wikimedia.org. Available online: https://upload.wikimedia.org/wikipedia/commons/b/bd/Poland_in_Europe.svg (accessed on 10 April 2021).
- Voivodeship. Available online: https://en.wikipedia.org/wiki/Voivodeship (accessed on 10 April 2021).
- Siwiak, J.; Najewski, A. Jęczmień Jary. Wyniki Porejestrowych Doświadczeń Odmianowych; Zboża jare 2008; Domański, P., Zych, J., Eds.; COBORU: Słupia Wielka, Poland, 2008; Volume 66, pp. 6–17. Available online: https://coboru.gov.pl/Publikacje_COBORU/Wyniki_PDO/WPDO_Zboza_jare_2008.pdf (accessed on 6 April 2021).
- PKN. Soil Quality—pH Determination; PN-ISO 10390; Polish Committee for Standardization: Warsaw, Poland, 1997. [Google Scholar]
- Beltrame, K.K.; Souza, A.M.; Coelho, M.R.; Winkler, T.C.B.; Souza, W.E.; Valderrama, P. Soil organic carbon determination using NIRS: Evaluation of dichromate oxidation and dry combustion analysis as reference methods in multivariate calibration. J. Braz. Chem. Soc. 2016, 27, 1527–1532. [Google Scholar] [CrossRef]
- PKN. Chemical and Agricultural Analysis (in Polish). Determination of Soil Available Phosphorus in Mineral Soils; PN-R-04023; PWN Press: Warsaw, Poland, 1996. [Google Scholar]
- PKN. Chemical and Agricultural Analysis (in Polish). Determination of Soil Available Potassium in Mineral Soils; PN-R-04022:1996/Az1; PWN Press: Warsaw, Poland, 2002. [Google Scholar]
- Nelson, D.W.; Sommers, L.E. Determination of total nitrogen in plant material. Agron. J. 1973, 65, 109–112. [Google Scholar] [CrossRef]
- Cavell, A.J. The colorimetric determination of phosphorous in plant materials. J. Sci. Food Agric. 1955, 6, 479–481. [Google Scholar] [CrossRef]
- Williams, V.; Twine, S. Flame photometric method for sodium potassium and calcium. In Modern Methods of Plant Analysis; Peach, K., Tracey, M.V., Eds.; Springer: Berlin/Heidelberg, Germany, 1960; pp. 3–5. [Google Scholar]
- Rittich, B.; Nemeskal, S.; Zaludova, R.; Ocelka, P. A modified method of the Henneberg-Stohmann method of fibre determination. Zivocisna Vyroba 1982, 27, 473–478. [Google Scholar]
- Sharma, V.; Irmak, S.; Padhi, J. Effects of cover crops on soil quality: Part II. Soil exchangeable bases (potassium, magnesium, sodium, and calcium), cation exchange capacity, and soil micronutrients (zinc, manganese, iron, copper, and boron). J. Soil Water Conserv. 2018, 73, 652–668. [Google Scholar] [CrossRef]
- Pałys, E.; Kuraszkiewicz, R.; Kraska, P. The residual effect of undersown crops and nurse crops on chemical properties of light soil. Ann. UMCS 2009, 64, 81–92. [Google Scholar] [CrossRef]
- Majchrzak, L. Influence of White Mustard Cover Crop and Method of Tillage on Soil Properties, Growth and Yielding of Spring Wheat; Poznan University of Life Sciences: Poznan, Poland, 2015; Volume 480, pp. 2–113. [Google Scholar]
- Arlauskiené, A.; Maikšténiené, S. The effect of cover crop and straw applied for manuring on spring barley yield and agrochemical soil properties. Zemdirbyste Agric. 2010, 97, 61–72. [Google Scholar]
- Navas, M.; Benito, M.; Rodríguez, I.; Masaguer, A. Effect of five forage legume covers on soil quality at the Eastern plains of Venezuela. Appl. Soil Ecol. 2011, 49, 242–249. [Google Scholar] [CrossRef]
- Berntsen, J.; Olsen, J.E.; Petersen, B.M.; Hansen, E.M. Long-term fate of nitrogen uptake in catch crops. Eur. J. Agron. 2006, 25, 383–390. [Google Scholar] [CrossRef]
- Diacomo, M.; Montemuro, F. Long-term effects of organic amendments on soil fertility. A review. Agron. Sustain. Dev. 2009, 30, 401–422. [Google Scholar] [CrossRef] [Green Version]
- Jaskulska, I.; Romaneckas, K.; Jaskulski, D.; Gałęzewski, L.; Breza-Boruta, B.; Dębska, B.; Lemanowicz, J. Soil properties after eight years of the use of strip-till one-pass technology. Agronomy 2020, 10, 1596. [Google Scholar] [CrossRef]
- Eichler-Löbermann, B.; Köhne, S.; Kowalski, B.; Schnug, E. Effect of catch cropping on phosphorus bioavailability in comparison to organic and inorganic fertilization. J. Plant. Nutr. 2008, 31, 659–676. [Google Scholar] [CrossRef]
- Debosz, K.; Rasmussen, P.H.; Pedersen, A.R. Temporal variations in microbial biomass C and cellulolytic enzyme activity in arable soils: Effects of organic matter input. Appl. Soil Ecol. 1999, 13, 209–218. [Google Scholar] [CrossRef]
- Janzen, H.H.; Schaalje, G.B. Barley response to nitrogen and non-nutritional benefits of legume green manure. Plant Soil 1992, 142, 19–30. [Google Scholar] [CrossRef]
Location | Year | Sowing Time | Harvesting Time | Number of the Growth Days |
---|---|---|---|---|
Mochełek (Luvisol) | 2008 | 08.08. | 21.10. | 74 |
2009 | 05.08. | 28.10. | 84 | |
2010 | 09.08. | 15.10. | 67 | |
Szadłowice (Phaeosem) | 2008 | 12.08. | 03.11. | 83 |
2009 | 07.08. | 20.10. | 74 | |
2010 | 13.08. | 19.10. | 67 |
Macroelement | 2008 | 2009 | 2010 |
---|---|---|---|
Mochełek (Luvisol) | |||
N | 112.6 | 66.4 | 90.8 |
P | 12.9 | 10.2 | 12.0 |
K | 130.9 | 88.2 | 83.7 |
Ca | 33.5 | 25.2 | 21.7 |
Szadłowice (Phaeosem) | |||
N | 98.5 | 52.8 | 79.9 |
P | 10.4 | 4.8 | 5.7 |
K | 97.2 | 74.2 | 53.3 |
Ca | 37.0 | 18.8 | 35.0 |
Research Material | Feature | Catch Crops | Interactions: | Catch Crops | Interactions: |
---|---|---|---|---|---|
Management | Catch Crops Management | Management | Catch Crops Management | ||
(d.f. = 2) | x Years (d.f. = 4) | (d.f. = 2) | x Years (d.f. = 4) | ||
Mochełek (Luvisol) | Szadłowice (Phaeosem) | ||||
Soil | pHKcl | 2.789 NS | 50.034 *** | 1.977 NS | 3.263 * |
NTot | 0.881 NS | 1.959 NS | 1.00 NS | 10.833 *** | |
PAVAIL. | 3.149 NS | 1.815 NS | 53.728 *** | 31.846 *** | |
KAVAIL. | 9.794 ** | 18.256 *** | 6.539 ** | 9.662 *** | |
CORG. | 0.059 NS | 5.439 ** | 0.985 NS | 3.833 * | |
Spring barley grain | N | 127.37 *** | 3.418 * | 10.106 ** | 9.028 *** |
P | 16.205 *** | 5.138 ** | 0.681 NS | 3.41 * | |
K | 6.831 ** | 20.945 *** | 7.043 ** | 2.632 NS | |
Ca | 0.061 NS | 0.495NS | 2.875 NS | 13.969 *** | |
Crude fiber | 0.680 NS | 12.221 *** | 2.06 NS | 5.95 NS | |
Spring barley straw | N | 11.704 *** | 5.181 ** | 9.006 ** | 14.573 *** |
P | 109.00 *** | 68.333 *** | 4.111 * | 4.444 * | |
K | 9.394 ** | 5.655 ** | 10.177 ** | 51.478 *** | |
Ca | 35.733 *** | 46.347 *** | 1.90 NS | 3.058 * | |
Crude fiber | 0.175 NS | 3.337 * | 1.704 NS | 0.976 NS |
Study Site | pH in KCl | Content (g kg−1 of Soil) | |||
---|---|---|---|---|---|
N tot. | PAVAIL. | KAVAIL. | CORG. | ||
Mochełek (Luvisol) | 6.07 | 0.78 | 0.104 | 0.234 | 8.77 |
Szadłowice (Phaeosem) | 7.29 | 1.42 | 0.158 | 0.246 | 14.03 |
Catch Crop Management | pH in KCl | Content (g kg−1 of Soil) | |||
---|---|---|---|---|---|
NTOT. | PAVAIL. | KAVAIL. | CORG. | ||
Mochełek (Luvisol) | |||||
A | 5.61 a | 0.720 a | 0.087 a | 0.212 a | 8.48 a |
B | 5.61 a | 0.723 a | 0.089 a | 0.206 b | 8.51 a |
C | 5.66 a | 0.707 a | 0.085 a | 0.205 b | 8.52 a |
Mean | 5.63 | 0.717 | 0.087 | 0.208 | 8.50 |
HSD0.05 | ns | ns | ns | 0.0048 | ns |
Szadłowice (Phaeosem) | |||||
A | 7.57 a | 1.40 a | 0.122 b | 0.241 a | 16.1 a |
B | 7.58 a | 1.41 a | 0.155 a | 0.238 ab | 16.0 a |
C | 7.59 a | 1.41 a | 0.093 c | 0.231 b | 16.2 a |
Mean | 7.58 | 1.41 | 0.123 | 0.237 | 16.1 |
HSD0.05 | ns | ns | 0.0017 | 0.0082 | ns |
Catch Crop Management | pH in KCl | Content (g kg−1 of Soil) | |||
---|---|---|---|---|---|
NTOT. | PAVAIL. | KAVAIL. | CORG. | ||
Mochełek (Luvisol) | |||||
A | 5.67 a | 0.789 a | 0.096 a | 0.258 ab | 9.35 a |
B | 5.69 a | 0.776 a | 0.102 a | 0.248 b | 9.15 a |
C | 5.62 a | 0.757 a | 0.098 a | 0.265 a | 9.10 a |
Mean | 5.66 | 0.774 | 0.099 | 0.257 | 9.20 |
HSD0.05 | ns | ns | ns | 0.0088 | ns |
Szadłowice (Phaeosem) | |||||
A | 7.56 a | 1.47 a | 0.151 b | 0.266 a | 16.6 a |
B | 7.56 a | 1.47 a | 0.174 a | 0.265 a | 16.5 a |
C | 7.58 a | 1.45 b | 0.107 c | 0.267 a | 16.4 a |
Mean | 7.57 | 1.46 | 0.144 | 0.266 | 16.5 |
HSD0.05 | ns | 0.020 | 0.0021 | ns | ns |
Catch Crop Management | 2009 | 2010 | 2011 | 2009–2011 |
---|---|---|---|---|
Mochełek (Luvisol) | ||||
A | 17.28 a | 20.13 ab | 16.41 a | 17.94 a |
B | 17.29 a | 20.56 a | 16.19 a | 18.01 a |
C | 15.98 a | 18.38 b | 14.22 b | 16.19 b |
Mean | 16.85 | 19.69 | 15.61 | 17.38 |
HSD0.05 | ns | 1.79 | 1.14 | 0.37 |
Szadłowice (Phaeosem) | ||||
A | 18.6 a | 14.9 a | 16.6 a | 16.7 a |
B | 17.7 a | 14.2 a | 17.0 a | 16.3 b |
C | 18.4 a | 15.1 a | 16.8 a | 16.8 a |
Mean | 18.2 | 14.7 | 16.8 | 16.6 |
HSD0.05 | ns | ns | ns | 0.30 |
Catch Crop Management | 2009 | 2010 | 2011 | 2009–2011 |
---|---|---|---|---|
Mochełek (Luvisol) | ||||
A | 3.67 a | 3.44 a | 3.62 a | 3.58 a |
B | 3.76 a | 3.53 a | 3.56 a | 3.62 a |
C | 3.66 a | 3.22 a | 3.50 a | 3.46 b |
Mean | 3.70 | 3.40 | 3.56 | 3.55 |
HSD0.05 | ns | ns | ns | 0.79 |
Szadłowice (Phaeosem) | ||||
A | 3.94 a | 2.98 a | 1.98 a | 2.96 a |
B | 4.02 a | 2.85 a | 1.97 a | 2.95 a |
C | 3.98 a | 2.93 a | 2.00 a | 2.97 a |
Mean | 3.98 | 2.92 | 1.98 | 2.96 |
HSD0.05 | ns | ns | ns | ns |
Catch Crop Management | K | Ca | Crude Fibre |
---|---|---|---|
Mochełek (Luvisol) | |||
A | 3.72 ab | 0.419 a | 52.17 a |
B | 3.65 b | 0.424 a | 52.29 a |
C | 3.75 a | 0.415 a | 52.92 a |
Mean | 3.71 | 0.420 | 52.46 |
HSD0.05 | 0.079 | ns | ns |
Szadłowice (Phaeosem) | |||
A | 3.59 a | 0.339 a | 50.83 a |
B | 3.52 ab | 0.308 a | 50.57 a |
C | 3.49 b | 0.320 a | 21.70 a |
Mean | 3.53 | 0.322 | 51.04 |
HSD0.05 | 0.079 | ns | ns |
Property | Yield of Grain | Yield of Straw | Content of Nutrient in Grain | |||
---|---|---|---|---|---|---|
N | P | K | Ca | |||
N | ns | Ns | x | |||
P | ns | 0.48 * | ns | x | ||
K | ns | Ns | ns | ns | x | |
Ca | ns | ns | ns | ns | 0.69 ** | x |
Crude fibre | ns | ns | 0.63 ** | ns | ns | −0.73 *** |
Catch Crop Management | N | P | K | Ca | Crude Fibre |
---|---|---|---|---|---|
Mochełek (Luvisol) | |||||
A | 6.49 a | 1.12 b | 13.56 a | 2.75 b | 439.6 a |
B | 6.42 a | 1.17 a | 11.91 b | 2.89 b | 442.5 a |
C | 5.84 b | 1.05 c | 12.07 b | 3.35 a | 441.1 a |
Mean | 6.25 | 1.11 | 12.51 | 3.00 | 441.1 |
HSD0.05 | 0.42 | 0.02 | 1.19 | 0.21 | 13.74 |
Szadłowice (Phaeosem) | |||||
A | 6.05 ab | 0.72 b | 13.3 b | 3.35 a | 453.3 a |
B | 6.20 a | 0.75 a | 14.3 a | 3.34 a | 456.0 a |
C | 5.76 b | 0.74 a | 12.9 b | 3.42 a | 450.2 a |
Mean | 6.00 | 0.74 | 13.5 | 3.37 | 454.5 |
HSD0.05 | 0.30 | 0.02 | 0.89 | ns | ns |
Property | Yield of Grain | Yield of Straw | Content of Nutrient in Straw | |||
---|---|---|---|---|---|---|
N | P | K | Ca | |||
N | ns | ns | x | |||
P | −0.47 * | ns | 0.51 * | x | ||
K | 0.75 *** | 0.83 *** | 0.68 ** | ns | x | |
Ca | −0.58 | −0.80 *** | ns | ns | −0.81 *** | x |
Crude fibre | ns | −0.57 * | −0.55 * | −0.71 ** | −053 * | 0.62 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wilczewski, E.; Sadkiewicz, J.; Piotrowska-Długosz, A.; Gałęzewski, L. Change of Plant Nutrients in Soil and Spring Barley Depending on the Field Pea Management as a Catch Crop. Agriculture 2021, 11, 394. https://doi.org/10.3390/agriculture11050394
Wilczewski E, Sadkiewicz J, Piotrowska-Długosz A, Gałęzewski L. Change of Plant Nutrients in Soil and Spring Barley Depending on the Field Pea Management as a Catch Crop. Agriculture. 2021; 11(5):394. https://doi.org/10.3390/agriculture11050394
Chicago/Turabian StyleWilczewski, Edward, Józef Sadkiewicz, Anna Piotrowska-Długosz, and Lech Gałęzewski. 2021. "Change of Plant Nutrients in Soil and Spring Barley Depending on the Field Pea Management as a Catch Crop" Agriculture 11, no. 5: 394. https://doi.org/10.3390/agriculture11050394
APA StyleWilczewski, E., Sadkiewicz, J., Piotrowska-Długosz, A., & Gałęzewski, L. (2021). Change of Plant Nutrients in Soil and Spring Barley Depending on the Field Pea Management as a Catch Crop. Agriculture, 11(5), 394. https://doi.org/10.3390/agriculture11050394