Mycorrhizal Fungi Enhance Yield and Berry Chemical Composition of in Field Grown “Cabernet Sauvignon” Grapevines (V. vinifera L.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Vineyard Site and Plant Material
2.2. Mycorrhiza Inoculation and Experimental Design
2.3. Root Sampling and Mycorrhizal Assessment
2.4. Yield Components and Grape Juice Analysis
2.5. HPLC Analysis
2.6. Leaf Gas-Exchange Parameters
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Smith, S.E.; Read, D.J. Mycorrhizal Symbiosis, 3rd ed.; Academic Press: London, UK, 2008. [Google Scholar]
- Barea, J.M.; Jeffries, P. Arbuscular mycorrhizas in sustainable soil plant systems. In Mycorrhiza Structure, Function, Molecular Biology and Biotechnology; Varma, A., Hock, B., Eds.; Springer-Verlag: Heidelberg, Germany, 1995; pp. 521–560. [Google Scholar]
- Gehring, C.A.; Whitman, T.G. Mycorrhizae–herbivore interactions: Population and community consequences. In Mycorrhizal Ecology; Van der Heijden, M.G.A., Sanders, I.R., Eds.; Springer-Verlag: Berlin, Germany, 2002; pp. 295–320. [Google Scholar]
- Whipps, J.M. Prospects and limitations for mycorrhizas in biocontrol of root pathogens. Can. J. Bot. Rev. Can. Bot. 2004, 82, 1198–1227. [Google Scholar] [CrossRef]
- Harley, J.L.; Smith, E. Mycorrhizal Symbiosis; Academic Press: London, UK, 1983. [Google Scholar]
- Torres, N.; Antolin, M.C.; Goicoechea, N. Arbuscular Mycorrhizal Symbiosis as a Promising Resource for Improving Berry quality in Grapevines Under Changing Environments. Front. Plant Sci. 2018, 9, 897. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biricolti, S.; Ferrini, F.; Rinaldelli, E.; Tamantini, I.; Vignozzi, N. VAM fungi and soil lime content influence rootstock growth and nutrient content. Am. J. Enol. Vitic. 1997, 48, 93–99. [Google Scholar]
- Karagiannidis, N.; Nikolaou, N. Influence of arbuscular mycorrhizae on heavy metal (Pb and Cd) uptake, growth, and chemical composition of Vitis vinifera L. (cv. Razaki). Am. J. Enol. Vitic. 2000, 51, 269–275. [Google Scholar]
- Nikolaou, N.; Angelopoulos, K.; Karagiannidis, N. Effects of drought stress on mycorrhizal and non-mycorrhizal Cabernet sauvignon grapevine, grafted onto various rootstocks. Exp. Agric. 2003, 39, 241–252. [Google Scholar] [CrossRef] [Green Version]
- Ozdemir, G.; Akpinar, C.; Sabir, A.; Bilir, H.; Tangolar, S.; Ortas, I. Effect of Inoculation with Mycorrhizal Fungi on Growth and Nutrient Uptake of Grapevine Genotypes (Vitis spp.). Eur. J. Hortic. Sci. 2010, 75, 103–110. [Google Scholar]
- Bavaresco, L.; Fogher, C. Lime-induced chlorosis of grapevine as affected by rootstock and root infection with arbuscular mycorrhiza and Pseudomonas fluorescens. Vitis 1996, 35, 119–123. [Google Scholar]
- Bavaresco, L.; Pezzutto, S.; Fornaroli, A.; Ferrari, F. Grapevine Iron-Chlorosis Occurence and Stilbene Root Concentration as Affected by the Rootstock and Arbuscular Mycorrhizal Infection. Acta Hortic. 2003, 603, 401–410. [Google Scholar] [CrossRef]
- Bavaresco, L.; Fogher, C. Effect of root infection with Pseudomonas fluorescens and Glomus mossae in improving Fe-efficiency of grapevine ungrafted rootstocks. Vitis 1992, 31, 163–168. [Google Scholar]
- Eftekhari, M.; Alizadeh, M.; Ebrahimi, P. Evaluation of the total phenolics and quercetin content of foliage in mycorrhizal grape (Vitis vinifera L.) varieties and effect of postharvest drying on quercetin yield. Ind. Crop. Prod. 2012, 38, 160–165. [Google Scholar] [CrossRef]
- Nicolas, E.; Maestre-Valero, J.F.; Alarcon, J.J.; Pedrero, F.; Vicente-Sanchez, J.; Bernabe, A.; Gomez-Montiel, J.; Hernandez, J.A.; Fernandez, F. Effectiveness and persistence of arbuscular mycorrhizal fungi on the physiology, nutrient uptake and yield of Crimson seedless grapevine. J. Agric. Sci. 2015, 153, 1084–1096. [Google Scholar] [CrossRef] [Green Version]
- Martín, F.F.; Molina, J.J.; Nicolás Nicolás, E.; Alarcón, J.J.; Kirchmair, M.; García, F.J.; Bernabe Garcia, A.J.; Bernal, C. Application of Arbuscular Mycorrhizae Glomus iranicum var. tenuihypharum var. nova in Intensive Agriculture: A Study Case. J. Agric. Sci. Technol. B 2017, 7, 221–247. [Google Scholar] [CrossRef]
- Bota, J.; Flexas, J.; Medrano, H. Genetic variability of photosynthesis and water use in Balearic grapevine cultivars. Ann. Appl. Biol. 2001, 138, 353–361. [Google Scholar] [CrossRef]
- Hufnagel, J.C.; Hofmann, T. Orosensory-directed identification of astringent mouthfeel and bitter-tasting compounds in red wine. J. Agric. Food Chem. 2008, 56, 1376–1386. [Google Scholar] [CrossRef]
- Keller, M. The Science of Grapevines: Anatomy and Physiology; Academic Press: San Diego, CA, USA, 2010. [Google Scholar]
- Cimino, F.; Sulfaro, V.; Trombetta, D.; Saija, A.; Tomaino, A. Radical-scavenging capacity of several Italian red wines. Food Chem. 2007, 103, 75–81. [Google Scholar] [CrossRef]
- Fernandez-Pachon, M.S.; Villano, D.; Garcia-Parrilla, M.C.; Troncoso, A.M. Antioxidant activity of wines and relation with their polyphenolic composition. Anal. Chim. Acta 2004, 513, 113–118. [Google Scholar] [CrossRef]
- Minussi, R.C.; Rossi, M.; Bologna, L.; Cordi, L.; Rotilio, D.; Pastore, G.M.; Duran, N. Phenolic compounds and total antioxidant potential of commercial wines. Food Chem. 2003, 82, 409–416. [Google Scholar] [CrossRef]
- Camprubi, A.; Estaun, V.; Nogales, A.; Garcia-Figueres, F.; Pitet, M.; Calvet, C. Response of the grapevine rootstock Richter 110 to inoculation with native and selected arbuscular mycorrhizal fungi and growth performance in a replant vineyard. Mycorrhiza 2008, 18, 211–216. [Google Scholar] [CrossRef]
- Nogales, A.; Luque, J.; Estaun, V.; Camprubi, A.; Garcia-Figueres, F.; Calvet, C. Differential Growth of Mycorrhizal Field-Inoculated Grapevine Rootstocks in Two Replant Soils. Am. J. Enol. Vitic. 2009, 60, 484–489. [Google Scholar]
- Schreiner, R.P. Mycorrhizal colonization of grapevine rootstocks under field conditions. Am. J. Enol. Vitic. 2003, 54, 143–149. [Google Scholar]
- Karagiannidis, N.; Nikolaou, N.; Ipsilantis, I.; Zioziou, E. Effects of different N fertilizers on the activity of Glomus mosseae and on grapevine nutrition and berry composition. Mycorrhiza 2007, 18, 43–50. [Google Scholar] [CrossRef]
- Gabriele, M.; Gerardi, C.; Longo, V.; Lucejko, J.; Degano, I.; Pucci, L.; Domenici, V. The impact of mycorrhizal fungi on Sangiovese red wine production: Phenolic compounds and antioxidant properties. LWT-Food Sci. Technol. 2016, 72, 310–316. [Google Scholar] [CrossRef]
- Torres, N.; Goicoechea, N.; Morales, F.; Antolin, M.C. Berry quality and antioxidant properties in Vitis vinifera cv. Tempranillo as affected by clonal variability, mycorrhizal inoculation and temperature. Crop Pasture Sci. 2016, 67, 961–977. [Google Scholar] [CrossRef] [Green Version]
- Torres, N.; Goicoechea, N.; Antolin, M.C. Influence of irrigation strategy and mycorrhizal inoculation on fruit quality in different clones of Tempranillo grown under elevated temperatures. Agric. Water Manag. 2018, 202, 285–298. [Google Scholar] [CrossRef]
- Phillips, J.M.; Hayman, D.S. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans. Br. Mycol. Soc. 1970, 55, 158–161. [Google Scholar] [CrossRef]
- McGonigle, T.P.; Miller, M.H.; Evans, D.G.; Fairchild, G.L.; Swan, J.A. A new method which gives an objective-measure of colonization of roots by vesicular arbuscular mycorrhizal fungi. New Phytol. 1990, 115, 495–501. [Google Scholar] [CrossRef]
- Tomaz, I.; Maslov, L.; Stupic, D.; Preiner, D.; Asperger, D.; Kontic, J.K. Solid-liquid Extraction of Phenolics from Red Grape Skins. Acta Chim. Slov. 2016, 63, 287–297. [Google Scholar] [CrossRef] [Green Version]
- Tomaz, I.; Maslov, L. Simultaneous Determination of Phenolic Compounds in Different Matrices using Phenyl-Hexyl Stationary Phase. Food Anal. Methods 2016, 9, 401–410. [Google Scholar] [CrossRef]
- Coombe, B.G. Adoption of a system for identifying grapevine growth stages. Aust. J. Grapevine Wine Res. 1995, 1, 104–110. [Google Scholar] [CrossRef]
- Likar, M.; Hancevic, K.; Radic, T.; Regvar, M. Distribution and diversity of arbuscular mycorrhizal fungi in grapevines from production vineyards along the eastern Adriatic coast. Mycorrhiza 2013, 23, 209–219. [Google Scholar] [CrossRef]
- Ambrosini, V.G.; Voges, J.G.; Canton, L.; Couto, R.D.; Ferreira, P.A.A.; Comin, J.J.; de Melo, G.W.B.; Brunetto, G.; Soares, C. Effect of arbuscular mycorrhizal fungi on young vines in copper-contaminated soil. Braz. J. Microbiol. 2015, 46, 1045–1052. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mikiciuk, G.; Sas-Paszt, L.; Mikiciuk, M.; Derkowska, E.; Trzcinski, P.; Ptak, P.; Chylewska, U.; Statkiewicz, M.; Lisek, A. Physiological Response of Three Grapevine Cultivars Grown in North-Western Poland to Mycorrhizal Fungi. S. Afr. J. Enol. Vitic. 2019, 40. [Google Scholar] [CrossRef] [Green Version]
- Eftekhari, M.; Alizadeh, M.; Mashayekhi, K.; Asghari, H.R. In vitro propagation of four Iranian grape varieties: Influence of genotype and pretreatment with arbuscular mycorrhiza. Vitis 2012, 51, 175–182. [Google Scholar]
- Zufferey, V.; Spring, J.L.; Verdenal, T.; Dienes, A.; Belcher, S.; Lorenzini, F.; Koestel, C.; Rosti, J.; Gindro, K.; Spangenberg, J.; et al. Influence of water stress on plant hydraulics, gas exchange, berry composition and quality of Pinot noir wines in Switzerland. Oeno One 2017, 51, 37–57. [Google Scholar] [CrossRef]
- Taiz, L.; Zeiger, E. Plant Physiology, 4th ed.; Sinauer Associates: Sunderland, MA, USA, 2006. [Google Scholar]
- Jakobsen, I.; Rosendahl, L. Carbon flow into soil and external hyphae from roots of mycorrhizal cucumber plants. New Phytol. 1990, 115, 77–83. [Google Scholar] [CrossRef]
- Aguin, O.; Mansilla, J.P.; Vilarino, A.; Sainz, M.J. Effects of mycorrhizal inoculation on root morphology and nursery production of three grapevine rootstocks. Am. J. Enol. Vitic. 2004, 55, 108–111. [Google Scholar]
- Rosa, D.; Pogiatzis, A.; Bowen, P.; Kokkoris, V.; Richards, A.; Holland, T.; Hart, M. Performance and Establishment of a Commercial Mycorrhizal Inoculant in Viticulture. Agriculture 2020, 10, 539. [Google Scholar] [CrossRef]
- Smith, S.E.; Jakobsen, I.; Gronlund, M.; Smith, F.A. Roles of Arbuscular Mycorrhizas in Plant Phosphorus Nutrition: Interactions between Pathways of Phosphorus Uptake in Arbuscular Mycorrhizal Roots Have Important Implications for Understanding and Manipulating Plant Phosphorus Acquisition. Plant Physiol. 2011, 156, 1050–1057. [Google Scholar] [CrossRef] [Green Version]
- Skinner, P.W.; Cook, J.A.; Matthews, M.A. Responses of grapevine cvs chenin blanc and chardonnay to phosphorus-fertilizer applications under phosphorus-limited soil-conditions. Vitis 1988, 27, 95–109. [Google Scholar]
- Spayd, S.E.; Tarara, J.M.; Mee, D.L.; Ferguson, J.C. Separation of sunlight and temperature effects on the composition of Vitis vinifera cv. Merlot berries. Am. J. Enol. Vitic. 2002, 53, 171–182. [Google Scholar]
Year | Average Temperature (°C) | Precipitation Sum (mm) |
---|---|---|
2016 | 18.0 | 518.9 |
2017 | 18.2 | 596.0 |
Parameters 1 | CCI | Ci (μmol mol−1) | E (mmol H2O m−2 s−1) | gs (mol H2O m−2 s−1) | A (µmol CO2 m−2 s−1) | WUE | |
---|---|---|---|---|---|---|---|
Treatments 2/Year | 2016 | ||||||
21 June | C | 32.54 | 83.11 | 3.64 | 0.14 | 19.03 | 5.23 |
Myc | 33.63 | 157.22 | 4.18 | 0.14 | 20.81 | 4.98 | |
Signif. 3 | ns | ns | ns | ns | ns | ns | |
19 July | C | 26.97 | 105.67 | 3.69 | 0.14 | 18.09 | 5.23 |
Myc | 30.29 | 145.67 | 4.21 | 0.16 | 16.87 | 4.98 | |
Signif. | ns | * | * | * | ns | ns | |
23 August | C | 19.90 | 161.78 | 2.81 | 0.09 | 9.78 | 3.48 |
Myc | 22.28 | 146.93 | 2.79 | 0.09 | 9.82 | 3.52 | |
Signif. | ns | * | ns | ns | ns | ns | |
Treatments/Year | 2017 | ||||||
16 June | C | 25.80 | 163.89 | 4.28 | 0.20 | 21.49 | 5.02 |
Myc | 29.94 | 191.44 | 4.80 | 0.22 | 20.00 | 4.17 | |
Signif. | ns | * | * | * | * | * | |
17 July | C | 27.00 | 128.56 | 2.92 | 0.08 | 10.77 | 3.68 |
Myc | 28.94 | 108.89 | 2.41 | 0.06 | 9.21 | 3.82 | |
Signif. | ns | * | * | * | ns | ns | |
5 September | C | 29.50 | 34.78 | 1.13 | 0.04 | 9.54 | 8.44b |
Myc | 29.74 | 42.11 | 1.10 | 0.06 | 11.80 | 10.71 | |
Signif. | ns | ns | ns | ns | * | * | |
Year | |||||||
2016 | 27.60 | 133.40 | 3.55 | 0.13 | 15.73 | 4.44 | |
2017 | 28.71 | 111.61 | 2.80 | 0.11 | 13.80 | 5.98 | |
Signif. | ns | ns | * | ns | ns | * | |
Treatment * Year | ns | ns | ns | ns | ns | ns |
Yield (g/Vine) | Clusters/Vine | Cluster Weight (g) | Berry Weight (g) | ||
---|---|---|---|---|---|
Treatments 1 | |||||
2016 | C | 3744.4 | 31.1 | 122.6 | 1.13 |
Myc | 3762.2 | 43.2 | 91.0 | 1.09 | |
Signif. 2 | ns | * | * | ns | |
2017 | C | 2676.7 | 29.4 | 91.0 | 1.22 |
Myc | 3443.3 | 36.5 | 94.3 | 1.09 | |
Signif. | * | * | * | * | |
Year | |||||
2016 | 3753.3 | 37.2 | 106.8 | 1.11 | |
2017 | 3060.0 | 33.0 | 92.7 | 1.15 | |
Signif. | * | * | * | * | |
Treatment * Year | ns | ns | * | * |
Soluble Solids (°Brix) | Titratable Acidity (g L−1) | pH | Tartaric Acid (g L−1) | Malic Acid (g L−1) | Citric Acid (g L−1) | ||
---|---|---|---|---|---|---|---|
Treatments 1 | |||||||
2016 | C | 21.2 | 9.2 | 2.92 | 5.8 | 3.9 | 0.1 |
Myc | 21.6 | 8.9 | 2.96 | 6.3 | 2.5 | 0.2 | |
Signif. 2 | * | * | * | * | * | * | |
2017 | C | 24.8 | 6.6 | 3.21 | 4.3 | 0.7 | 0.1 |
Myc | 23.0 | 6.4 | 3.19 | 5.1 | 0.8 | 0.1 | |
Signif. | * | * | * | * | * | ns | |
Year | |||||||
2016 | 21.4 | 9.0 | 2.94 | 6.1 | 3.2 | 0.2 | |
2017 | 23.9 | 6.5 | 3.20 | 4.7 | 0.8 | 0.1 | |
Signif. | * | * | * | * | * | * | |
Treatment * Year | * | ns | * | * | * | * |
Myricetin | Quercetin-Glucuronide | Quercetin-Glucoside | Kaempferol | Isorhamnetin | Total Flavonols | ||
---|---|---|---|---|---|---|---|
Treatments 1 | |||||||
2016 | C | 369.1 | 77.9 | 656.5 | 115.6 | 75.5 | 1294.6 |
Myc | 426.6 | 96.8 | 785.1 | 150.0 | 80.1 | 1538.5 | |
Signif.2 | ns | * | * | ns | ns | * | |
2017 | C | 420.6 | 100.3 | 783.6 | 128.8 | 44.0 | 1477.5 |
Myc | 519.8 | 119.2 | 1005.3 | 132.8 | 57.1 | 1834.2 | |
Signif. | ns | ns | ns | ns | ns | ns | |
Year | |||||||
2016 | 397.8 | 87.4 | 720.8 | 132.8 | 77.8 | 1416.6 | |
2017 | 470.2 | 109.8 | 894.5 | 130.8 | 50.68 | 1655.8 | |
Signif. | ns | ns | ns | ns | * | ns | |
Treatment * Year | ns | ns | ns | ns | ns | ns |
Procyanidin b1 | Epigallocatechin | Catechin | Procyanidin b2 | Epicatechin | Total Flavan-3-ols | ||
---|---|---|---|---|---|---|---|
Treatments 1 | |||||||
2016 | C | 18.5 | 85.0 | 68.3 | 38.1 | 35.0 | 243.9 |
Myc | 27.2 | 129.0 | 144.9 | 78.4 | 46.1 | 425.7 | |
Signif. 2 | * | * | * | * | * | * | |
2017 | C | 8.5 | 52.9 | 36.5 | 31.1 | 18.3 | 147.4 |
Myc | 15.6 | 77.5 | 63.3 | 33.8 | 25.9 | 216.1 | |
Signif. | * | ns | * | * | ns | * | |
Year | |||||||
2016 | 22.4 | 107.0 | 106.6 | 58.2 | 40.6 | 334.8 | |
2017 | 12.1 | 65.2 | 49.9 | 32.4 | 22.1 | 181.7 | |
Signif. | * | * | * | * | * | * | |
Treatment * Year | ns | ns | * | * | ns | * |
Dp-3-g 3 | Cy-3-g | Pt-3-g | Pn-3-g | Mv-3-g | Total Anthocyanins | Total Polyphenols | ||
---|---|---|---|---|---|---|---|---|
Treatments 1 | ||||||||
2016 | C | 4383.2 | 201.2 | 998.5 | 376.0 | 12,586.0 | 18,545.0 | 20,083.0 |
Myc | 1,0651.1 | 438.6 | 2226.7 | 618.4 | 21,649.0 | 35,584.0 | 37,548.0 | |
Signif. 2 | * | * | * | * | * | * | * | |
2017 | C | 3144.0 | 284.2 | 1089.6 | 408.1 | 10,053.0 | 14,979.0 | 16,604.0 |
Myc | 7323.0 | 258.9 | 1605.3 | 399.5 | 15,635.0 | 25,222.0 | 27,272.0 | |
Signif. | * | ns | ns | ns | ns | * | * | |
Year | ||||||||
2016 | 7517.1 | 319.9 | 1612.6 | 497.2 | 17,117.0 | 27,064.0 | 28,815.0 | |
2017 | 5233.4 | 271.6 | 1347.5 | 703.8 | 12,844.0 | 20,100.0 | 21,938.0 | |
Signif. | * | ns | ns | ns | * | * | * | |
Treatment * Year | ns | * | * | * | ns | ns | ns |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karoglan, M.; Radić, T.; Anić, M.; Andabaka, Ž.; Stupić, D.; Tomaz, I.; Mesić, J.; Karažija, T.; Petek, M.; Lazarević, B.; et al. Mycorrhizal Fungi Enhance Yield and Berry Chemical Composition of in Field Grown “Cabernet Sauvignon” Grapevines (V. vinifera L.). Agriculture 2021, 11, 615. https://doi.org/10.3390/agriculture11070615
Karoglan M, Radić T, Anić M, Andabaka Ž, Stupić D, Tomaz I, Mesić J, Karažija T, Petek M, Lazarević B, et al. Mycorrhizal Fungi Enhance Yield and Berry Chemical Composition of in Field Grown “Cabernet Sauvignon” Grapevines (V. vinifera L.). Agriculture. 2021; 11(7):615. https://doi.org/10.3390/agriculture11070615
Chicago/Turabian StyleKaroglan, Marko, Tomislav Radić, Marina Anić, Željko Andabaka, Domagoj Stupić, Ivana Tomaz, Josip Mesić, Tomislav Karažija, Marko Petek, Boris Lazarević, and et al. 2021. "Mycorrhizal Fungi Enhance Yield and Berry Chemical Composition of in Field Grown “Cabernet Sauvignon” Grapevines (V. vinifera L.)" Agriculture 11, no. 7: 615. https://doi.org/10.3390/agriculture11070615
APA StyleKaroglan, M., Radić, T., Anić, M., Andabaka, Ž., Stupić, D., Tomaz, I., Mesić, J., Karažija, T., Petek, M., Lazarević, B., Poljak, M., & Osrečak, M. (2021). Mycorrhizal Fungi Enhance Yield and Berry Chemical Composition of in Field Grown “Cabernet Sauvignon” Grapevines (V. vinifera L.). Agriculture, 11(7), 615. https://doi.org/10.3390/agriculture11070615