Effect of the Initial Time of Providing Oat Hay on Performance, Health, Behavior and Rumen Fermentation in Holstein Female Calves
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Feeding and Housing
2.3. Sample Collection and Analysis
2.3.1. Feed Analysis and Body Measurements
2.3.2. Collection and Analysis of Rumen Fluid Samples
2.3.3. Evaluation of Calf Health
2.3.4. Calf Behavior
2.3.5. Statistical Analysis
3. Results
3.1. BW, ADG and Starter Intake
3.2. Body Structural Measurements
3.3. Rumen pH and NH3-N
3.4. Rumen Volatile Fatty Acids
3.5. Calf Health
3.6. Calf Behavior
4. Discussion
4.1. BW, ADG and Starter Intake
4.2. Body Structural Measurements
4.3. Rumen Fermentation
4.4. Calf Health
4.5. Calf Behavior
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gabler, T.M.; Tozer, P.R.; Heinrichs, A.J. Development of a Cost Analysis Spreadsheet for Calculating the Costs to Raise a Replacement Dairy Heifer. J. Dairy Sci. 2000, 83, 1104–1109. [Google Scholar] [CrossRef]
- Warner, R.G.; Flatt, W.P.; Loosli, J.K. Dietary Factors Influencing the Development of the Ruminant Stomach. J. Agric. Food Chem. 1956, 4, 788–792. [Google Scholar] [CrossRef]
- Xiao, J.X.; Alugongo, G.M.; Li, J.H.; Wang, Y.J.; Li, S.L.; Cao, Z.J. Review: How Forage Feeding Early in Life Influences the Growth Rate, Ruminal Environment and the Establishment of Feeding Behavior in Pre-Weaned Calves. Animals 2020, 10, 188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drackley, J.K.; James, K. Calf Nutrition from Birth to Breeding. Vet. Clin. N. Am. Food Anim. 2008, 24, 55–86. [Google Scholar] [CrossRef] [PubMed]
- Stobo, I.J.F.; Roy, J.H.B.; Gaston, H.J. Rumen Development in Calf.2. Effect of Diets Containing Different Proportions of Concentrates to Hay on Digestive Efficiency. Br. J. Nutr. 1966, 20, 189–215. [Google Scholar] [CrossRef] [Green Version]
- Coverdale, J.A.; Tyler, H.D.; Quigley, J.D.; Brumm, J.A. Effect of Various Levels of Forage and Form of Diet on Rumen Development and Growth in Calves. J. Dairy Sci. 2004, 87, 2554–2562. [Google Scholar] [CrossRef] [Green Version]
- Hibbs, J.W.; Conrad, H.R.; Pounden, W.D.; Frank, N. A High Roughage System for Raising Calves Based on Early Development of Rumen Function. 6. Influence of Hay to Grain Ratio on Calf Performance, Rumen Development, and Certain Blood Changes. J. Dairy Sci. 1956, 39, 171–179. [Google Scholar] [CrossRef]
- Blottiere, H.M.; Buecher, B.; Galmiche, J.P.; Cherbut, C. Molecular Analysis of the Effect of Short-chain Fatty Acids on Intestinal Cell Proliferation. Proc. Nutr. Soc. 2003, 62, 101–106. [Google Scholar] [CrossRef] [Green Version]
- Castells, L.; Bach, A.; Aris, A.; Terre, M. Effects of Forage Provision to Young Calves on Rumen Fermentation and Development of the Gastrointestinal Tract. J. Dairy Sci. 2013, 96, 5226–5236. [Google Scholar] [CrossRef] [Green Version]
- Nocek, J.E.; Herbein, J.H.; Polan, C.E. Influence of ration physical form, ruminal degradable nitrogen and age on rumen epithelial propionate and acetate transport and some enzymatic activities. J. Nutr. 1980, 110, 2355–2364. [Google Scholar] [CrossRef]
- Beharka, A.A.; Nagaraja, T.G.; Morrill, J.L.; Kennedy, G.A.; Klemm, R.D. Effects of Form of the Diet on Anatomical, Microbial, and Fermentative Development of the Rumen of Neonatal Calves. J. Dairy Sci. 1998, 81, 1946–1955. [Google Scholar] [CrossRef]
- Van Ackeren, C.; Steingass, H.; Hartung, K.; Funk, R.; Drochner, W. Effect of roughage level in a total mixed ration on feed intake, ruminal fermentation patterns and chewing activity of early-weaned calves with ad libitum access to grass hay. Anim. Feed Sci. Technol. 2009, 153, 48–59. [Google Scholar] [CrossRef]
- Tamate, H.; Mcgilliard, A.D.; Jacobson, N.L.; Getty, R. Effect of Various Dietaries on the Anatomical Development of the Stomach in the Calf1. J. Dairy Sci. 1962, 45, 408–420. [Google Scholar] [CrossRef]
- Zitnan, R.; Voigt, J.; Schönhusen, U.; Wegner, J.; Kokardová, M.; Hagemeister, H.; Levkut, M.; Kuhla, S.; Sommer, A. Influence of dietary concentrate to forage ratio on the development of rumen mucosa in calves. Arch. Tierernahr. 1998, 51, 279–291. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.A.; Weary, D.M.; Von, M.A. Hay Intake Improves Performance and Rumen Development of Calves Fed Higher Quantities of Milk. J. Dairy Sci. 2011, 94, 3547–3553. [Google Scholar] [CrossRef] [Green Version]
- Hosseini, S.M.; Ghorbani, G.R.; Rezamand, P.; Khorvash, M. Determining Optimum Age of Holstein Dairy Calves when Adding Chopped Alfalfa Hay to Meal Starter Diets Based on Measures of Growth and Performance. J. Anim. Biosci. 2015, 10, 607–615. [Google Scholar] [CrossRef] [Green Version]
- Lin, X.Y.; Wang, Y.; Wang, J.; Hou, Q.L.; Hu, Z.Y.; Shi, K.R.; Yan, Z.G.; Wang, Z.H. Effect of initial time of forage supply on growth and rumen development in preweaning calves. Anim. Prod. Sci. 2018, 58, 2224–2232. [Google Scholar] [CrossRef]
- Wu, Z.H.; Azarfar, A.; Simayi, A.; Li, S.L.; Jonker, A.; Cao, Z.J. Effects of forage type and age at which forage provision is started on growth performance, rumen fermentation, blood metabolites and intestinal enzymes in Holstein calves. Anim. Prod. Sci. 2018, 58, 2288–2299. [Google Scholar] [CrossRef]
- Broom, D.M.; Fraser, A.F. Domestic Animal Behaviour and Welfare; CABI: Boston, MA, USA, 2015. [Google Scholar]
- Phillips, C.J. The effects of forage provision and group size on the behavior of calves. J. Dairy Sci. 2004, 87, 1380–1388. [Google Scholar] [CrossRef] [Green Version]
- Hill, T.M.; Bateman, H.G.; Aldrich, J.M.; Schlotterbeck, R.L. Effects of the amount of chopped hay or cottonseed hulls in a textured calf starter on young calf performance. J. Dairy Sci. 2008, 91, 2684–2693. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nemati, M.; Amanlou, H.; Khorvash, M.; Moshiri, B.; Mirzaei, M.; Khan, M.A.; Ghaffari, M.H. Rumen fermentation, blood metabolites, and growth performance of calves during transition from liquid to solid feed: Effects of dietary level and particle size of alfalfa hay. J. Dairy Sci. 2015, 98, 7131–7141. [Google Scholar] [CrossRef]
- Castells, L.I.; Bach, A.; Terre, M. Effect of Different Forage Sources on Performance and Feeding Behaviour of Holstein Calves. J. Dairy Sci. 2011, 95, 286–293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- AOAC International. Official Methods of Analysis of AOAC International, 16th ed.; Trends in Food Science & Technology; AOAC International: Gaithersburg, MD, USA, 1999; Volume 2, p. 382. [Google Scholar]
- Erwin, E.S.; Marco, G.J.; Emery, E.M. Volatile Fatty Acid Analyses of Blood and Rumem Fluid by Gas Chromatography. J. Dairy Sci. 1961, 44, 1768–1771. [Google Scholar] [CrossRef]
- Broderick, G.A.; Kang, J.H. Automated Simultaneous Determination of Ammonia and Total Amino Acids in Ruminal Fluid and In Vitro Media 1. J. Dairy Sci. 1980, 63, 64–75. [Google Scholar] [CrossRef]
- Zhang, N.F.; Diao, Q.Y.; Hui, L.I. Effect of Different Contents of Plant Protein on the Incidence of Diarrhea and Blood Parameters in Calves Aged 6–11 Days. Sci. Agric. Sin. 2010, 43, 4094–4100. [Google Scholar]
- Love, W.J.; Lehenbauer, T.W.; Kass, P.H.; Van Eenennaam, A.L.; Aly, S.S. Development of a novel clinical scoring system for on-farm diagnosis of bovine respiratory disease in pre-weaned dairy calves. PeerJ 2014, 2, e238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arnoldmeeks, C.; McGlone, J.J. Validating Techniques to Sample Behavior of Confined, Young-pigs. Appl. Anim. Behav. Sci. 1986, 16, 149–155. [Google Scholar] [CrossRef]
- Mitlohner, F.M.; Morrow-Tesch, J.L.; Wilson, S.C.; Dailey, J.W.; McGlone, J.J. Behavioral sampling techniques for feedlot cattle. J. Anim. Sci. 2001, 79, 1189–1193. [Google Scholar] [CrossRef]
- Kargar, S.; Kanani, M. Reconstituted Versus Dry Alfalfa Hay in Starter Feed Diets of Holstein Dairy Calves: Effects on Feed Intake, Feeding and Chewing Behavior, Feed Preference, and Health Criteria. J. Dairy Sci. 2019, 102, 4061–4071. [Google Scholar] [CrossRef]
- Miller-Cushon, E.K.; Devries, T.J. Effect of Early Feed Type Exposure on Diet Selection Behavior of Dairy Calves. J. Dairy Sci. 2011, 94, 342–350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suarez-Mena, F.X.; Hill, T.M.; Jones, C.M.; Heinrichs, A.J. Review: Effect of forage provision on feed intake in dairy calves. Prof. Anim. Sci. 2016, 32, 383–388. [Google Scholar] [CrossRef]
- Stobo, I.J.F.; Lucci, C.S.; Roy, J.H.B.; Perfitt, M.W. Comparison of High-energy Pellets Containing Processed Fiber with a Coarse Concentrate Mixture in Relation to the Development of Solid Food-intake in the Calf. Anim. Prod. 1985, 40, 570–571. [Google Scholar]
- Nocek, J.E.; Heald, C.W.; Polan, C.E. Influence of ration physical form and nitrogen availability on ruminal morphology of growing bull calves. J. Dairy Sci. 1984, 67, 334–343. [Google Scholar] [CrossRef]
- Yang, W.Z.; Beauchemin, K.A.; Rode, L.M. Effects of grain processing, forage to concentrate ratio, and forage particle size on rumen pH and digestion by dairy cows. J. Dairy Sci. 2001, 84, 2203–2216. [Google Scholar] [CrossRef]
- Suarez, B.J.; Van Reenen, C.G.; Beldman, G.; van Delen, J.; Dijkstra, J.; Gerrits, W.J.J. Effects of supplementing concentrates differing in carbohydrate composition in veal calf diets: I. Animal performance and rumen fermentation characteristics. J. Dairy Sci. 2006, 89, 4365–4375. [Google Scholar] [CrossRef] [Green Version]
- Mirzaei, M.; Khorvash, M.; Ghorbani, G.R.; Kazemi-Bonchenari, M.; Riasi, A.; Nabipour, A.; van den Borne, J. Effects of supplementation level and particle size of alfalfa hay on growth characteristics and rumen development in dairy calves. J. Anim. Physiol. Anim. Nutr. 2015, 99, 553–564. [Google Scholar] [CrossRef] [PubMed]
- Nemati, M.; Amanlou, H.; Khorvash, M.; Mirzaei, M.; Moshiri, B.; Ghaffari, M.H. Effect of different alfalfa hay levels on growth performance, rumen fermentation, and structural growth of Holstein dairy calves. J. Anim. Sci. 2016, 94, 1141–1148. [Google Scholar] [CrossRef] [Green Version]
- Kramer, T.; Gürtler, M.; Gürtler, H. Absorption of Short-chain Fatty Acids across Ruminal Epithelium of Sheep. J. Comp. Physiol. B Biochem. Syst. Environ. Physiol. 1996, 166, 262–269. [Google Scholar] [CrossRef]
- Flatt, W.P.; Warner, R.G.; Loosli, J.K. The Influence of Purified Materials on the Development of the Ruminant Stomach. J. Animal Sci. 1957, 16, 1021. [Google Scholar] [CrossRef]
- Xie, B.; Zhang, N.; Zhang, C. Effects of Forage on Rumen Development in Young Ruminants and Its Mechanisms. Chin. J. Anim. Nutr. 2018, 30, 1245–1252. [Google Scholar]
- Beiranvand, H.; Ghorbani, G.R.; Khorvash, M.; Nabipour, A.; Dehghan-Banadaky, M.; Homayouni, A.; Kargar, S. Interactions of Alfalfa Hay and Sodium Propionate on Dairy Calf Performance and Rumen Development. J. Dairy Sci. 2014, 97, 2270–2280. [Google Scholar] [CrossRef] [PubMed]
- Lopes, F.; Cook, D.E.; Combs, D.K. Effects of varying dietary ratios of corn silage to alfalfa silage on digestion of neutral detergent fiber in lactating dairy cows. J. Dairy Sci. 2015, 98, 6291–6303. [Google Scholar] [CrossRef] [PubMed]
- Wei, C.; Liu, G.F.; You, W. Comparison on degradation rule of six kinds of common roughages for ruminants in rumen of beef cattle. Chin. J. Anim. Nutr. 2019, 31, 1666–1675. (In Chinese) [Google Scholar]
- Lin, X.Y.; Wang, J.; Hou, Q.L.; Wang, Y.; Hu, Z.Y.; Shi, K.R.; Yan, Z.G.; Wang, Z.H. Effect of hay supplementation timing on rumen microbiota in suckling calves. Microbiol. Open 2018, 7, 8. [Google Scholar] [CrossRef]
- National Research Council. Nutrient Requirements of Dairy Cattle; National Academies Press: Washington, DC, USA, 2001. [Google Scholar]
- Laarman, A.H.; Oba, M. Short communication: Effect of calf starter on rumen pH of Holstein dairy calves at weaning. J. Dairy Sci. 2011, 94, 5661–5664. [Google Scholar] [CrossRef]
- Suárez, B.J.; Van Reenen, C.G.; Stockhofe, N.; Dijkstra, J.; Gerrits, W.J.J. Effect of Roughage Source and Roughage to Concentrate Ratio on Animal Performance and Rumen Development in Veal Calves. J. Dairy Sci. 2007, 90, 2390–2403. [Google Scholar] [CrossRef] [Green Version]
- Thomas, D.B.; Hinks, C.E. The effect of changing the physical form of roughage on the performance of the early-weaned calf. J. Anim. Prod. 1982, 35, 375–384. [Google Scholar] [CrossRef]
- Hays, V.W.; Swenson, M.J. Duke’s Physioloy of Domestic Animals, 10th ed.; Cornell University Press: Ithaca, NY, USA, 1984. [Google Scholar]
- Ghorbani, G.R.; Morgavi, D.P.; Beauchemin, K.A.; Leedle, J.A.Z. Effects of Bacterial Direct-fed Microbials on Ruminal Fermentation, Blood Variables, and the Microbial Populations of Feedlot Cattle. J. Anim. Sci. 2002, 80, 1977–1985. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anderson, M.J.; Khoyloo, M.; Walters, J.L. Effect of Feeding Whole Cottonseed on Intake, Bodyweight, and Reticulorumen Development of Young Holstein Calves. J. Dairy Sci. 1982, 65, 764–772. [Google Scholar] [CrossRef]
- Gorden, P.J.; Plummer, P. Control, management, and prevention of bovine respiratory disease in dairy calves and cows. Vet. Clin. N. Am. Food Anim. Pract. 2010, 26, 243–259. [Google Scholar] [CrossRef]
- Maier, G.U.; Love, W.J.; Karle, B.M.; Dubrovsky, S.A.; Williams, D.R.; Champagne, J.D.; Anderson, R.J.; Rowe, J.D.; Lehenbauer, T.W.; Van Eenennaam, A.L.; et al. Management factors associated with bovine respiratory disease in preweaned calves on California dairies: The BRD 100 study. J. Dairy Sci. 2019, 102, 7288–7305. [Google Scholar] [CrossRef]
- Callan, R.J.; Garry, F.B. Biosecurity and bovine respiratory disease. Vet. Clin. N. Am. Food Anim. Pract. 2002, 18, 57–77. [Google Scholar] [CrossRef]
- Brown, A.; Bivort, B. Ethology as a Physical Science. Nat. Phys. 2018, 14, 653–657. [Google Scholar] [CrossRef]
- Herd, R.M.; Arthur, P.F. Physiological basis for residual feed intake. J. Anim. Sci. 2009, 87 (Suppl. 14), E64–E71. [Google Scholar] [CrossRef]
- Richardson, E.C.; Kilgour, R.J.; Archer, J.A.; Herd, R.M. Pedometers measure differences in activity in bulls selected for high or low net feed efficiency. Proc. Aust. Soc. Study Anim. Behav. 1999, 26, 16. [Google Scholar]
- Terre, M.; Pedrals, E.; Dalmau, A.; Bach, A. What do preweaned and weaned calves need in the diet: A high fiber content or a forage source? J. Dairy Sci. 2013, 96, 5217–5225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sato, S.; Kuroda, K. Behavioural Characteristics of Artificially Reared Calves. Anim. Sci. Technol. 1993, 64, 593–598. [Google Scholar]
- Loberg, J.M.; Hernandez, C.E.; Thierfelder, T.; Jensen, M.B.; Berg, C.; Lidfors, L. Reaction of foster cows to prevention of suckling from and separation from four calves simultaneously or in two steps. J. Anim. Sci. 2007, 85, 1522–1529. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Component 1 (%) | Starter 2 | Oat Hay 3 |
---|---|---|
DM | 89.48 | 93.20 |
CP | 29.86 | 6.18 |
EE | 2.27 | 2.75 |
Ash | 7.49 | 4.48 |
NDF | 9.50 | 44.14 |
ADF | 8.47 | 33.70 |
Energy, MJ/kg | 3.23 | 3.00 |
Behavior 1 | Definition of the Behavior |
---|---|
Standing | Four hooves on the ground, whether moving or not |
Lying | Lying on the sternum with head held in a raised position or down |
Eating starter | Head in starter feed bucket accompanied by chewing movements |
Eating Hay | Head in hay feed bucket accompanied by chewing movements |
Drinking | Mouth around drinker |
Walking | Stepping and moving |
Chewing and Rumination | Chewing irregularly and repeatedly without food in the mouth |
Abnormal Behavior 2 | Calf licked any surface like fences, floors, windshields |
Self-Grooming | Calf licked itself with its tongue |
Head out of Pen 3 | Calf head out of the pen to look around and does not engage in any feeding activities |
Treatment 2 | SEM | p-Value | |||||||
---|---|---|---|---|---|---|---|---|---|
Items | CON | H2 | H4 | Treat | Time 4 | T * t | Period 5 | T * p | |
Initial BW (kg) | 35.4 | 35.9 | 35.9 | 0.33 | 0.60 | -- | -- | -- | -- |
BW (kg) | |||||||||
Pre-weaning | 52.8 b | 54.8 a | 54.6 a | 0.51 | <0.01 | <0.01 | <0.01 | -- | -- |
Post-weaning | 75.4 c | 83.1 a | 80.6 b | 0.83 | <0.01 | <0.01 | 0.42 | -- | -- |
Entire trial | 63.0 b | 68.4 a | 67.6 a | 0.59 | <0.01 | -- | -- | <0.01 | <0.01 |
ADG (kg/d) | |||||||||
Pre-weaning | 0.54 c | 0.63 a | 0.59 b | 0.03 | <0.01 | <0.01 | <0.01 | -- | -- |
Post-weaning | 0.92 b | 1.05 a | 0.99 a | 0.04 | <0.01 | <0.01 | 0.08 | -- | -- |
Entire trial | 0.73 c | 0.84 a | 0.79 b | 0.04 | <0.01 | -- | -- | <0.01 | 0.72 |
Starter intake 3 (g) | |||||||||
Pre-weaning | 173.9 b | 228.9 a | 192.7 b | 20.97 | <0.01 | <0.01 | <0.01 | -- | -- |
Post-weaning | 1676.0 b | 1943.3 a | 1693.2 b | 65.56 | <0.01 | <0.01 | 0.68 | -- | -- |
Entire trial | 925.6 b | 1086.1 a | 942.9 b | 19.28 | <0.01 | <0.01 | <0.01 |
Treatment 2 | SEM | p-Value | |||||||
---|---|---|---|---|---|---|---|---|---|
Items | CON | H2 | H4 | Treat | Time 3 | T * t | Period 4 | T * p | |
Body height (cm) | |||||||||
Pre-weaning | 80.4 | 80.2 | 80.5 | 0.29 | 0.61 | <0.01 | 0.11 | -- | -- |
Post-weaning | 88.1 | 88.5 | 88.4 | 0.31 | 0.66 | <0.01 | 0.57 | -- | -- |
Entire trial | 84.4 | 84.4 | 84.5 | 0.29 | 0.87 | -- | -- | <0.01 | 0.68 |
Body length (cm) | |||||||||
Pre-weaning | 75.0 | 75.3 | 75.4 | 0.30 | 0.57 | <0.01 | <0.05 | -- | -- |
Post-weaning | 84.2 b | 86.1 a | 85.9 a | 0.29 | <0.01 | <0.01 | 0.88 | -- | -- |
Entire trial | 79.3 b | 80.5 a | 80.6 a | 0.30 | <0.01 | <0.01 | 0.07 | ||
Heart girth (cm) | |||||||||
Pre-weaning | 86.5 | 86.9 | 87.1 | 0.32 | 0.32 | <0.01 | 0.06 | -- | -- |
Post-weaning | 100.4 b | 102.0 a | 101.3 a | 0.38 | <0.05 | <0.01 | 0.99 | -- | -- |
Entire trial | 92.7 b | 94.1 a | 94.2 a | 0.37 | <0.05 | -- | -- | <0.01 | 0.22 |
Abdominal girth (cm) | |||||||||
Pre-weaning | 92.5 b | 94.2 a | 94.1 a | 0.69 | <0.05 | <0.01 | 0.06 | -- | -- |
Post-weaning | 114.4 c | 119.0 a | 117.5 b | 0.64 | <0.01 | <0.01 | 0.60 | -- | -- |
Entire trial | 102.9 b | 106.3 a | 105.8 a | 0.54 | <0.01 | -- | -- | <0.01 | 0.13 |
Circumference of cannon bone (cm) | |||||||||
Pre-weaning | 10.7 | 10.8 | 10.7 | 0.04 | 0.12 | <0.01 | <0.01 | -- | -- |
Post-weaning | 11.5 b | 11.7 a | 11.5 b | 0.05 | <0.01 | <0.01 | 0.72 | -- | -- |
Entire trial | 11.1 b | 11.3 a | 11.1 b | 0.02 | <0.01 | -- | -- | <0.01 | 0.27 |
Treatment 2 | SEM | p-Value | |||||||
---|---|---|---|---|---|---|---|---|---|
Items | CON | H2 | H4 | Treat | Time 3 | T * t | Period 4 | T * p | |
pH | |||||||||
Pre-weaning | 6.26 b | 6.39 a | 6.49 a | 0.07 | <0.01 | <0.01 | <0.01 | -- | -- |
Post-weaning | 6.13 b | 6.37 a | 6.33 a | 0.07 | <0.01 | 0.57 | 0.98 | -- | -- |
Entire trial | 6.19 b | 6.38 a | 6.41 a | 0.04 | <0.01 | -- | -- | <0.01 | 0.25 |
NH3-N (mmol/L) | |||||||||
Pre-weaning | 17.54 a | 12.23 c | 14.43 b | 0.91 | <0.01 | <0.01 | <0.01 | -- | -- |
Post-weaning | 9.02 a | 5.85 b | 6.02 b | 0.52 | <0.01 | <0.01 | 0.41 | -- | -- |
Entire trial | 13.10 a | 8.42 c | 10.07 b | 0.55 | <0.01 | -- | -- | <0.01 | 0.49 |
Items | Treatment 2 | SEM | p-Value | ||||||
---|---|---|---|---|---|---|---|---|---|
CON | H2 | H4 | Treat | Time 4 | T * t | Period 5 | T * p | ||
Acetate (%) | |||||||||
Pre-weaning | 50.62 | 51.3 | 51.94 | 0.012 | 0.77 | <0.01 | 0.13 | -- | -- |
Post-weaning | 44.44 b | 49.07 a | 49.1 a | 0.014 | <0.05 | <0.05 | 0.57 | -- | -- |
Entire trial | 47.72 | 50.51 | 50.6 | 0.009 | 0.26 | -- | -- | 0.05 | 0.70 |
Propionate (%) | |||||||||
Pre-weaning | 26.39 | 27.19 | 28.04 | 0.013 | 0.69 | <0.01 | 0.09 | -- | -- |
Post-weaning | 41.29 a | 36.48 b | 35.84 b | 0.013 | <0.05 | <0.65 | 0.06 | -- | -- |
Entire trial | 34.00 | 31.88 | 31.97 | 0.009 | 0.23 | -- | -- | <0.01 | <0.05 |
Butyrate (%) | |||||||||
Pre-weaning | 13.6 | 12.69 | 11.55 | 0.006 | 0.06 | <0.01 | 0.54 | -- | -- |
Post-weaning | 10.42 | 11.74 | 12.13 | 0.008 | 0.32 | <0.05 | 0.27 | -- | -- |
Entire trial | 12.38 | 12.54 | 11.94 | 0.007 | 0.81 | -- | -- | 0.29 | 0.27 |
Valerate (%) | |||||||||
Pre-weaning | 9.38 | 8.79 | 8.38 | 0.007 | 0.61 | <0.01 | 0.26 | -- | -- |
Post-weaning | 3.85 | 2.7 | 2.92 | 0.004 | 0.15 | <0.01 | 0.9 | -- | -- |
Entire trial | 6.68 | 5.71 | 5.64 | 0.005 | 0.33 | -- | -- | <0.01 | 0.89 |
VFA (mmol/L) | |||||||||
Pre-weaning | 87.56 a | 81.81 a | 71.76 b | 3.72 | <0.05 | <0.01 | 0.64 | -- | -- |
Post-weaning | 189.03 | 174.62 | 167.22 | 17.54 | 0.24 | <0.01 | <0.05 | -- | -- |
Entire trial | 137.22 | 126.98 | 120.51 | 6.07 | 0.11 | -- | -- | <0.01 | 0.88 |
C2/C3 3 | |||||||||
Pre-weaning | 2.55 | 2.31 | 2.25 | 0.21 | 0.52 | <0.01 | 0.14 | -- | -- |
Post-weaning | 1.12 b | 1.43 a | 1.47 a | 0.15 | <0.05 | 0.29 | 0.2 | -- | -- |
Entire trial | 1.82 | 1.87 | 1.86 | 0.17 | 0.96 | -- | -- | <0.01 | 0.26 |
Items | Treatment 2 | SEM | p-Value | ||
---|---|---|---|---|---|
CON | H2 | H4 | Treat | ||
Diarrhea Frequency (%) 3 | |||||
Pre-weaning | 7.04 | 7.08 | 7.03 | 0.006 | 0.99 |
Post-weaning | 2.86 a,b | 1.48 b | 3.57 a | 0.006 | <0.05 |
Entire trial | 6.20 | 5.96 | 4.64 | 0.005 | 0.80 |
Diarrhea days (days) 4 | |||||
Pre-weaning | 3.94 | 3.97 | 3.93 | 0.33 | 0.99 |
Post-weaning | 0.40 a,b | 0.21 b | 0.50 a | 0.09 | <0.05 |
Entire trial | 4.34 | 4.17 | 4.47 | 0.34 | 0.80 |
Pneumonia Occurrence (%) 5 | 47.92 | 41.38 | 46.05 | -- | 0.72 |
Items | Treatment 1 | SEM | p-Value | ||||
---|---|---|---|---|---|---|---|
CON | H2 | H4 | Treat | Time | T * t | ||
Standing (min/d) | 461.0 a | 407.6 b | 452.3 a | 16.56 | 0.05 | <0.05 | <0.05 |
Lying (min/d) | 877.1 | 929.3 | 910.2 | 34.07 | 0.59 | <0.01 | <0.05 |
Eating starter (min/d) | 123.4 a | 91.6 b | 110.1 a | 6.15 | <0.01 | 0.1 | 0.79 |
Eating Hay (min/d) | —— | 94.8 b | 100.4 a | 8.76 | <0.05 | <0.01 | 0.62 |
Drinking (min/d) | 16.8 | 15.8 | 17.3 | 2.21 | 0.86 | <0.01 | 0.69 |
Walking (min/d) | 20.7 | 15.0 | 15.9 | 1.98 | 0.15 | <0.01 | 0.06 |
Chewing and Rumination (min/d) | 133.3 b | 275.2 a | 279.1 a | 14.88 | <0.01 | <0.01 | 0.08 |
Abnormal Behavior 2 (min/d) | 207.0 a | 80.5 b | 69.6 b | 8.99 | <0.01 | 0.37 | <0.01 |
Self-Grooming 3 (min/d) | 13.8 | 14.8 | 20.5 | 2.12 | 0.07 | 0.2 | 0.12 |
Head out of Pen (min/d) | 180.7 a | 121.4 b | 138.5 b | 7.47 | <0.01 | <0.05 | 0.85 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, T.; Xiao, J.; Li, T.; Ma, J.; Alugongo, G.M.; Khan, M.Z.; Liu, S.; Wang, W.; Wang, Y.; Li, S.; et al. Effect of the Initial Time of Providing Oat Hay on Performance, Health, Behavior and Rumen Fermentation in Holstein Female Calves. Agriculture 2021, 11, 862. https://doi.org/10.3390/agriculture11090862
Chen T, Xiao J, Li T, Ma J, Alugongo GM, Khan MZ, Liu S, Wang W, Wang Y, Li S, et al. Effect of the Initial Time of Providing Oat Hay on Performance, Health, Behavior and Rumen Fermentation in Holstein Female Calves. Agriculture. 2021; 11(9):862. https://doi.org/10.3390/agriculture11090862
Chicago/Turabian StyleChen, Tianyu, Jianxin Xiao, Tingting Li, Jing Ma, Gibson Maswayi Alugongo, Muhammad Zahoor Khan, Shuai Liu, Wei Wang, Yajing Wang, Shengli Li, and et al. 2021. "Effect of the Initial Time of Providing Oat Hay on Performance, Health, Behavior and Rumen Fermentation in Holstein Female Calves" Agriculture 11, no. 9: 862. https://doi.org/10.3390/agriculture11090862
APA StyleChen, T., Xiao, J., Li, T., Ma, J., Alugongo, G. M., Khan, M. Z., Liu, S., Wang, W., Wang, Y., Li, S., & Cao, Z. (2021). Effect of the Initial Time of Providing Oat Hay on Performance, Health, Behavior and Rumen Fermentation in Holstein Female Calves. Agriculture, 11(9), 862. https://doi.org/10.3390/agriculture11090862