The Application of a Bio-Stabilized Municipal Solid Waste-Based Fertilizer for Buckwheat Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
- -
- NFW_NF: unfertilized wheat (NFW) as precedent crop and without BW fertilization (NF).
- -
- NFF_NF: unfertilized faba bean (NFF) as precedent crop and without BW fertilization (NF).
- -
- MinF_RMin: residual mineral fertilized faba bean (MinF) as precedent crop and without BW fertilization, only residual fertilizer effect (RMin).
- -
- MSWF_RMSW: MSW fertilized faba bean (MSWF) as precedent crop and without BW fertilization, only residual fertilizer effect (RMSW).
- -
- MinW_Min: mineral fertilized wheat (MinW) as precedent crop and with present mineral BW fertilization (Min).
- -
- MSWW_MSW: MSW fertilized wheat as precedent crop (MSWW) and with present MSW BW fertilization (MSW).
2.2. Soil and Crop Physical and Chemical Analyses
2.3. Statistical Analysis
3. Results
3.1. Previous Crop Residual Effect on BW Crop
3.2. Previous Fertilization Residual Effect on BW Crop
3.3. Fertilization System Effect on BW Crop
3.4. The Impact of the Cropping System on Soil Characteristics and Fertility
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sakač, M.; Torbica, A.; Sedej, I.; Hadnađev, M. Influence of Breadmaking on Antioxidant Capacity of Gluten Free Breads Based on Rice and Buckwheat Flours. Food Res. Int. 2011, 44, 2806–2813. [Google Scholar] [CrossRef]
- Kara, N. Yield and Mineral Nutrition Content of Buckwheat (Fagopyrum Esculentum Moench): The Effect of Harvest Times. SDU J. Fac. Agric./SDÜ Ziraat Fakültesi Derg. 2014, 9, 85–94. [Google Scholar]
- Wijngaard, H.H.; Arendt, E.K. Buckwheat. Cereal Chem. 2006, 83, 391–401. [Google Scholar] [CrossRef]
- FAO Europe Crops. Buckwheat Production. Available online: https://knoema.es/FAOPRDSC2020/production-statistics-crops-crops-processed?tsId=1447450 (accessed on 5 March 2020).
- Myers, R.L. BUCKWHEAT A Versatile Short-Season Crop. Altern. Crop Guid. 2013. Available online: https://www.extension.iastate.edu/alternativeag/cropproduction/pdf/buckwheat_crop_guide.pdf (accessed on 12 April 2020).
- Gonçalves, F.M.F.; Debiage, R.R.; da Silva, R.M.G.; Porto, P.P.; Yoshihara, E. Fagopyrum Esculentum Moench: A Crop with Many Purposes in Agriculture and Human Nutrition. Afr. J. Agric. Res. 2016, 11, 983–989. [Google Scholar] [CrossRef]
- Jaroszewska, A.; Sobolewska, M.; Podsiadło, C.; Stankowski, S. The Effect of Fertilization and Effective Microorganisms on Buckwheat and Millet. Acta Agrophys. 2019, 26, 15–28. [Google Scholar] [CrossRef]
- Sutton, M.A.; Oenema, O.; Erisman, J.W.; Leip, A.; van Grinsven, H.; Winiwarter, W. Too Much of a Good Thing. Nature 2011, 472, 159–161. [Google Scholar] [CrossRef] [Green Version]
- Haque, M.M.; Datta, J.; Ahmed, T.; Ehsanullah, M.; Karim, M.N.; Akter, M.S.; Iqbal, M.A.; Baazeem, A.; Hadifa, A.; Ahmed, S.; et al. Organic Amendments Boost Soil Fertility and Rice Productivity and Reduce Methane Emissions from Paddy Fields under Sub-Tropical Conditions. Sustainability 2021, 13, 3103. [Google Scholar] [CrossRef]
- Iqbal, M.A.; Hussain, I.; Hamid, A.; Ahmad, B.; Ishaq, S.; El Sabagh, A.; Barutçular, C.; Khan, R.; Imran, M. Soybean Herbage Yield, Nutritional Value and Profitability under Integrated Manures Management. An. Acad. Bras. Cienc. 2021, 93, e20181384. [Google Scholar] [CrossRef]
- Morra, L.; Bilotto, M.; Baldantoni, D.; Alfani, A.; Baiano, S. A Seven-Year Experiment in a Vegetable Crops Sequence: Effects of Replacing Mineral Fertilizers with Biowaste Compost on Crop Productivity, Soil Organic Carbon and Nitrates Concentrations. Sci. Hortic. (Amst.) 2021, 290, 110534. [Google Scholar] [CrossRef]
- Chirinda, N.; Olesen, J.E.; Porter, J.R.; Schjønning, P. Soil Properties, Crop Production and Greenhouse Gas Emissions from Organic and Inorganic Fertilizer-Based Arable Cropping Systems. Agric. Ecosyst. Environ. 2010, 139, 584–594. [Google Scholar] [CrossRef]
- Zhuang, M.; Lam, S.K.; Zhang, J.; Li, H.; Shan, N.; Yuan, Y.; Wang, L. Effect of Full Substituting Compound Fertilizer with Different Organic Manure on Reactive Nitrogen Losses and Crop Productivity in Intensive Vegetable Production System of China. J. Environ. Manag. 2019, 243, 381–384. [Google Scholar] [CrossRef] [PubMed]
- Tejada, M.; Gonzalez, J.L. Effects of the Application of a Compost Originating from Crushed Cotton Gin Residues on Wheat Yield under Dryland Conditions. Eur. J. Agron. 2003, 19, 357–368. [Google Scholar] [CrossRef]
- Courtney, R.G.; Mullen, G.J. Soil Quality and Barley Growth as Influenced by the Land Application of Two Compost Types. Bioresour. Technol. 2008, 99, 2913–2918. [Google Scholar] [CrossRef]
- Agegnehu, G.; Bass, A.M.; Nelson, P.N.; Bird, M.I. Benefits of Biochar, Compost and Biochar–Compost for Soil Quality, Maize Yield and Greenhouse Gas Emissions in a Tropical Agricultural Soil. Sci. Total Environ. 2016, 543, 295–306. [Google Scholar] [CrossRef]
- Sardarmehni, M.; Levis, J.W.; Barlaz, M.A. What Is the Best End Use for Compost Derived from the Organic Fraction of Municipal Solid Waste? Environ. Sci. Technol. 2021, 55, 73–81. [Google Scholar] [CrossRef]
- BOE-A-2011-13046 Ley 22/2011, de 28 de Julio, de Residuos y Suelos Contaminados 2011. Available online: https://www.boe.es/eli/es/l/2011/07/28/22 (accessed on 14 March 2020).
- Ozyazici, G.; Turan, N. Effect of Vermicompost Application on Mineral Nutrient Composition of Grains of Buckwheat (Fagopyrum Esculentum M.). Sustainability 2021, 13, 6004. [Google Scholar] [CrossRef]
- Sazhina, S.; Plotnikov, A.; Sozinov, A.; Porsev, I. Effect of Organic Fertilizers on Buckwheat Yield. BIO Web Conf. 2020, 27, 93. [Google Scholar] [CrossRef]
- Scott, D.A.; Eberle, C.; Gesch, R.W.; Schneider, S.; Weyers, S.; Johnson, J.M.F. Yield, Nitrogen, and Water Use Benefits of Diversifying Crop Rotations with Specialty Oilseeds. Agric. Ecosyst. Environ. 2021, 317, 107472. [Google Scholar] [CrossRef]
- Cañasveras, J.C.; del Campillo, M.C.; Barrórn, V.; Torrent, J. Intercropping with Grasses Helps to Reduce Iron Chlorosis in Olive. J. Soil Sci. Plant Nutr. 2014, 14, 554–564. [Google Scholar] [CrossRef] [Green Version]
- Jensen, E.S.; Peoples, M.B.; Boddey, R.M.; Gresshoff, P.M.; Hauggaard-Nielsen, H., Jr.; Alves, B.; Morrison, M.J. Legumes for Mitigation of Climate Change and the Provision of Feedstock for Biofuels and Biorefineries. A Review. Agron. Sustain. Dev. 2012, 32, 329–364. [Google Scholar] [CrossRef] [Green Version]
- Bedoussac, L.; Journet, E.-P.; Hauggaard-Nielsen, H.; Naudin, C.; Corre-Hellou, G.; Jensen, E.S.; Prieur, L.; Justes, E. Ecological Principles Underlying the Increase of Productivity Achieved by Cereal-Grain Legume Intercrops in Organic Farming. A Review. Agron. Sustain. Dev. 2015, 35, 911–935. [Google Scholar] [CrossRef]
- Brooker, R.W.; Karley, A.J.; Newton, A.C.; Pakeman, R.J.; Schöb, C. Facilitation and Sustainable Agriculture: A Mechanistic Approach to Reconciling Crop Production and Conservation. Funct. Ecol. 2016, 30, 98–107. [Google Scholar] [CrossRef] [Green Version]
- Sharma, R.C.; Banik, P. Baby Corn-Legumes Intercropping Systems: I. Yields, Resource Utilization Efficiency, and Soil Health. Agroecol. Sustain. Food Syst. 2015, 39, 41–61. [Google Scholar] [CrossRef]
- Yan, X.; Ti, C.; Vitousek, P.; Chen, D.; Leip, A.; Cai, Z.; Zhu, Z. Fertilizer Nitrogen Recovery Efficiencies in Crop Production Systems of China with and without Consideration of the Residual Effect of Nitrogen. Environ. Res. Lett. 2014, 9, 95002. [Google Scholar] [CrossRef] [Green Version]
- Lanna, N.B.L.; Silva, P.N.L.; Colombari, L.F.; Corrêa, C.V.; Ismael, A. Residual Effect of Organic Fertilization on Radish Production. Available online: https://www.scielo.br/j/hb/a/mWDCpk6yNcmMkS5dM9c4hvQ/?format=html# (accessed on 7 March 2020).
- Shehzadi, S.; Shah, Z.; Mohammad, W. Residual Effect of Organic Wastes and Chemical Fertilizers on Wheat Yield under Wheat-Maize Cropping Sequence. Soil Environ. 2014, 33, 88–95. [Google Scholar]
- Ye, Q.; Zhang, H.; Wei, H.; Zhang, Y.; Wang, B.; Xia, K.; Huo, Z.; Dai, Q.; Xu, K. Effects of Nitrogen Fertilizer on Nitrogen Use Efficiency and Yield of Rice under Different Soil Conditions. Front. Agric. China 2007, 1, 30–36. [Google Scholar] [CrossRef]
- Grains Research and Development Corporation. Faba Bean. Grownotes; Grains Research and Development Corporation: 2017. Available online: https://grdc.com.au/resources-and-publications/grownotes/crop-agronomy/faba-bean-southern-region-grownotes (accessed on 10 March 2020).
- Rosolem, C.A.; Sgariboldi, T.; Garcia, R.A.; Calonego, J.C. Potassium Leaching as Affected by Soil Texture and Residual Fertilization in Tropical Soils. Commun. Soil Sci. Plant Anal. 2010, 41, 1934–1943. [Google Scholar] [CrossRef]
- Denton, M.D.; Phillips, L.A.; Peoples, M.B.; Pearce, D.J.; Swan, A.D.; Mele, P.M.; Brockwell, J. Legume Inoculant Application Methods: Effects on Nodulation Patterns, Nitrogen Fixation, Crop Growth and Yield in Narrow-Leaf Lupin and Faba Bean. Plant Soil 2017, 419, 25–39. [Google Scholar] [CrossRef] [Green Version]
- URBASER. Available online: https://www.urbaser.com/en/ (accessed on 10 March 2020).
- Martinez, S.; Sánchez-Moreno, S.; Gabriel, J.L.; Álvarez, C.; Delgado, M.D. Valorization of a Bio-Stabilized Municipal Solid Waste Amendment for Faba Bean (Vicia faba L.) Fertilization. Agriculture 2021, 11, 1109. [Google Scholar] [CrossRef]
- Mirshekari, M.; Majnounhosseini, N.; Amiri, R.; Moslehi, A.; Zandvakili, O. Effects of Sowing Date and Irrigation Treatment on Safflower Seed Quality. J. Agric. Sci. Technol. 2013, 15, 505–515. [Google Scholar]
- USEPA. Method 3051A Microwave Assisted Acid Digestion of Sediments, Sludges, Soils, and Oils; US Gov. Print Office: Washington, DC, USA, 2007.
- Ministerio de Agricultura, Pesca y Alimentación (MAPA). Métodos Oficiales de Análisis. In Tomo III; Ministerio de Agricultura, Pesca y Alimentación (MAPA): Madrid, Spain, 1994; p. 662. [Google Scholar]
- APHA; AWWA. Standard Methods for the Examination of Water and Wastewater, 21st ed.; American Public Health Association: Washington, DC, USA; American Water Works Assotiation and Water Environment Federation: Washington, DC, USA, 2005; p. 874. [Google Scholar]
- Hseu, Z.-Y.; Chen, Z.-S.; Tsai, C.-C.; Tsui, C.-C.; Cheng, S.-F.; Liu, C.-L.; Lin, H.-T. Digestion Methods for Total Heavy Metals in Sediments and Soils. Water Air Soil Pollut. 2002, 141, 189–205. [Google Scholar] [CrossRef]
- Alonso-Ayuso, M.; Gabriel, J.L.; Quemada, M. Nitrogen Use Efficiency and Residual Effect of Fertilizers with Nitrification Inhibitors. Eur. J. Agron. 2016, 80, 1–8. [Google Scholar] [CrossRef] [Green Version]
- BOE Real Decreto 1310/1990, de 29 de Octubre, Por El Que Se Regula La Utilización de Los Lodos de Depuración En El Sector Agrario 1990. Available online: https://www.boe.es/buscar/doc.php?id=BOE-A-1990-26490 (accessed on 24 March 2020).
- Björkman, T. Buckwheat Production: Planting. Available online: http://nmsp.cals.cornell.edu/publications/factsheets/factsheet50.pdf (accessed on 7 June 2021).
- Du, Z.; Chen, X.; Qi, X.; Li, Z.; Nan, J.; Deng, J. The Effects of Biochar and Hoggery Biogas Slurry on Fluvo-Aquic Soil Physical and Hydraulic Properties: A Field Study of Four Consecutive Wheat–Maize Rotations. J. Soils Sediments 2016, 16, 2050–2058. [Google Scholar] [CrossRef]
- Gao, C.; El-Sawah, A.M.; Ali, D.F.; Alhaj Hamoud, Y.; Shaghaleh, H.; Sheteiwy, M.S. The Integration of Bio and Organic Fertilizers Improve Plant Growth, Grain Yield, Quality and Metabolism of Hybrid Maize (Zea mays L.). Agronomy 2020, 10, 319. [Google Scholar] [CrossRef] [Green Version]
- Vos, J.; van der Putten, P.E.L.; Birch, C.J. Effect of Nitrogen Supply on Leaf Appearance, Leaf Growth, Leaf Nitrogen Economy and Photosynthetic Capacity in Maize (Zea mays L.). Field Crops Res. 2005, 93, 64–73. [Google Scholar] [CrossRef]
- Kome, G.; Enang, R.; Tabi, F.; Yerima, B. Influence of Clay Minerals on Some Soil Fertility Attributes: A Review. Open J. Soil Sci. 2019, 9, 155–188. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Xu, J.; Liu, X.; Zhang, D.; Li, L.; Li, W.; Sheng, L. Effects of Long-Term Application of Organic Fertilizer on Improving Organic Matter Content and Retarding Acidity in Red Soil from China. Soil Tillage Res. 2019, 195, 104382. [Google Scholar] [CrossRef]
- Hinesly, T.D.; Redborg, K.E.; Pietz, R.I.; Ziegler, E.L. Cadmium and Zinc Uptake by Corn (Zea mays L.) with Repeated Applications of Sewage Sludge. J. Agric. Food Chem. 1984, 32, 155–163. [Google Scholar] [CrossRef]
- Vos, J.; van der Putten, P.E.L. Effect of Nitrogen Supply on Leaf Growth, Leaf Nitrogen Economy and Photosynthetic Capacity in Potato. Field Crop. Res. 1998, 59, 63–72. [Google Scholar] [CrossRef]
- Raya-Sereno, M.D.; Alonso-Ayuso, M.; Pancorbo, J.L.; Gabriel, J.L.; Camino, C.; Zarco-Tejada, P.J.; Quemada, M. Residual Effect and N Fertilizer Rate Detection by High-Resolution VNIR-SWIR Hyperspectral Imagery and Solar-Induced Chlorophyll Fluorescence in Wheat. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–17. [Google Scholar] [CrossRef]
- Abedi, T.; Alemzadeh, A.; Kazemeini, S.A. Effect of Organic and Inorganic Fertilizers on Grain Yield and Protein Banding Pattern of Wheat. Aust. J. Crop Sci. 2022, 4, 384–389. [Google Scholar] [CrossRef]
- Sieling, K.; Brase, T.; Svib, V. Residual Effects of Different N Fertilizer Treatments on Growth, N Uptake and Yield of Oilseed Rape, Wheat and Barley. Eur. J. Agron. 2006, 25, 40–48. [Google Scholar] [CrossRef]
- Quemada, M.; Lassaletta, L.; Leip, A.; Jones, A.; Lugato, E. Integrated Management for Sustainable Cropping Systems: Looking beyond the Greenhouse Balance at the Field Scale. Glob. Chang. Biol. 2020, 26, 2584–2598. [Google Scholar] [CrossRef]
- Yadav, B.K.; Sidhu, A.S. Dynamics of Potassium and Their Bioavailability for Plant Nutrition. In Potassium Solubilizing Microorganisms for Sustainable Agriculture; Meena, V., Maurya, B., Verma, J., Meena, R., Eds.; Springer: New Delhi, India, 2016; pp. 187–201. [Google Scholar]
- Xu, J.M.; Tang, C.; Chen, Z.L. The Role of Plant Residues in PH Change of Acid Soils Differing in Initial PH. Soil Biol. Biochem. 2006, 38, 709–719. [Google Scholar] [CrossRef]
- Tani, F.; Barrington, S. Zinc and Copper Uptake by Plants under Two Transpiration Rates. Part II. Buckwheat (Fagopyrum esculentum L.). Environ. Pollut. 2006, 138, 548–558. [Google Scholar] [CrossRef]
- Głąb, T.; Gondek, K. The Influence of Soil Compaction and N Fertilization on Physico-Chemical Properties of Mollic Fluvisol Soil under Red Clover/Grass Mixture. Geoderma 2014, 226–227, 204–212. [Google Scholar] [CrossRef]
- Pavek, P.L.S. Plant Guide for Buckwheat (Fagopyrum Esculentum) 2016. Available online: https://mccc.msu.edu/wp-content/uploads/2020/07/NRCS_2016_Buckwheat-Plant-Guide-Fagopyrum-esculentum.pdf (accessed on 12 April 2020).
- Ozlu, E.; Kumar, S. Response of Soil Organic Carbon, PH, Electrical Conductivity, and Water Stable Aggregates to Long-Term Annual Manure and Inorganic Fertilizer. Soil Sci. Soc. Am. J. 2018, 82, 1243–1251. [Google Scholar] [CrossRef]
- Singh Brar, B.; Singh, J.; Singh, G.; Kaur, G. Effects of Long Term Application of Inorganic and Organic Fertilizers on Soil Organic Carbon and Physical Properties in Maize–Wheat Rotation. Agronomy 2015, 5, 220–238. [Google Scholar] [CrossRef]
- Madejón, E.; López, R.; Murillo, J.M.; Cabrera, F. Agricultural Use of Three (Sugar-Beet) Vinasse Composts: Effect on Crops and Chemical Properties of a Cambisol Soil in the Guadalquivir River Valley (SW Spain). Agric. Ecosyst. Environ. 2001, 84, 55–65. [Google Scholar] [CrossRef]
- Melero, S.; Porras, J.C.R.; Herencia, J.F.; Madejon, E. Chemical and Biochemical Properties in a Silty Loam Soil under Conventional and Organic Management. Soil Tillage Res. 2006, 90, 162–170. [Google Scholar] [CrossRef]
- Melero, S.; Madejón, E.; Ruiz, J.C.; Herencia, J.F. Chemical and Biochemical Properties of a Clay Soil under Dryland Agriculture System as Affected by Organic Fertilization. Eur. J. Agron. 2007, 26, 327–334. [Google Scholar] [CrossRef] [Green Version]
- De Conti, L.; Ceretta, C.; Couto, R.; Ferreira, P.; Stefanello, L.; Piccin, R.; Lourenzi, C.; Girotto, E.; Brunetto, G. Aluminum Species and Activity in Sandy Soil Solution with Pig Slurry Addition. Pesqui. Agropecuária Bras. 2017, 52, 914–922. [Google Scholar] [CrossRef] [Green Version]
- Förster, S.; Welp, G.; Scherer, H.W. Sulfur Specification in Bulk Soil as Influenced by Long-Term Application of Mineral and Organic Fertilizers. Plant Soil Environ. 2012, 58, 316–321. [Google Scholar] [CrossRef] [Green Version]
- Soyano, T.; Liu, M.; Kawaguchi, M.; Hayashi, M. Leguminous Nodule Symbiosis Involves Recruitment of Factors Contributing to Lateral Root Development. Curr. Opin. Plant Biol. 2021, 59, 102000. [Google Scholar] [CrossRef]
- Costa, F.; García, C.; Hernandez, T.; Polo, A. Residuos Organicos Urbanos. Manejo y Utilizacion; Consejo Superior de Investigaciones Científicas, Centro de Edafología y Biología Aplicada del Segura: Murcia, Spain, 1991. [Google Scholar]
- Gascho, G.J.; Hubbard, R.K. Long-Term Impact of Broiler Litter on Chemical Properties of a Coastal Plain Soil. J. Soil Water Conserv. 2006, 61, 65–74. [Google Scholar]
- Harmel, R.D.; Harmel, B.; Patterson, M.C. On-Farm Agro-Economic Effects of Fertilizing Cropland with Poultry Litter. J. Appl. Poult. Res. 2008, 17, 545–555. [Google Scholar] [CrossRef]
- Alloway, B.J. (Ed.) Sources of Heavy Metals and Metalloids in Soils. In Heavy Metals in Soils. Environmental Pollution; Springer: Dordrecht, The Netherlands, 2013; Volume 22. [Google Scholar] [CrossRef]
- Gong, Q.; Chen, P.; Shi, R.; Gao, Y.; Zheng, S.-A.; Xu, Y.; Shao, C.; Zheng, X. Health Assessment of Trace Metal Concentrations in Organic Fertilizer in Northern China. Int. J. Environ. Res. Public Health 2019, 16, 1031. [Google Scholar] [CrossRef] [Green Version]
- Deng, W.; Zhang, A.; Chen, S.; He, X.; Jin, L.; Yu, X.; Yang, S.; Li, B.; Fan, L.; Ji, L.; et al. Heavy Metals, Antibiotics and Nutrients Affect the Bacterial Community and Resistance Genes in Chicken Manure Composting and Fertilized Soil. J. Environ. Manag. 2020, 257, 109980. [Google Scholar] [CrossRef]
- Zahedifar, M.; Dehghani, S.; Moosavi, A.A.; Gavili, E. Temporal Variation of Total and DTPA-Extractable Heavy Metal Contents as Influenced by Sewage Sludge and Perlite in a Calcareous Soil. Arch. Agron. Soil Sci. 2017, 63, 136–149. [Google Scholar] [CrossRef]
- da Rosa Couto, R.; Faversani, J.; Ceretta, C.A.; Ferreira, P.A.A.; Marchezan, C.; Basso Facco, D.; Garlet, L.P.; Silva, J.S.; Comin, J.J.; Bizzi, C.A.; et al. Health Risk Assessment and Soil and Plant Heavy Metal and Bromine Contents in Field Plots after Ten Years of Organic and Mineral Fertilization. Ecotoxicol. Environ. Saf. 2018, 153, 142–150. [Google Scholar] [CrossRef] [PubMed]
- Zaman, Q.; Nazir, B.; Mahmood, F.; Al-Mijalli, S.H.; Iqbal, M.; Younes, I.; Nazir, A. Versatility and Effectiveness of the Commercial Composts for Ecological Restoration of Heavy Metal Contaminated Soil for Sunflower Crop. Biocatal. Agric. Biotechnol. 2021, 34, 102025. [Google Scholar] [CrossRef]
- Zahedifar, M. Iron Fractionation in the Calcareous Soils of Different Land Uses as Influenced by Biochar. Waste Biomass Valorization 2020, 11, 2321–2330. [Google Scholar] [CrossRef]
Parameter | MSW | Parameter | MSW | Parameter | MSW |
---|---|---|---|---|---|
Humidity (%) | 78.8 | Ratio C/N | 13.48 | Co (mg/kg) | <1.00 |
Ashes (g/kg) | 39 | N-NH4+ (mg/kg) | 3174.5 | Mn (mg/kg) | 92.4 |
pH,1:2.5 H2O | 6.8 | N-NO3− (mg/kg) | 208.32 | Zn (mg/kg) | 140 |
E.C.,1:5 H2O (dS/m) | 5.59 | P2O5 total (g/kg) | 2.1 | As (mg/kg) | 1.7 |
Humic acids (%) | 8.3 | K2O total (g/kg) | 10.9 | S (mg/kg) | 6822.8 |
Fulvic acids (%) | 8 | CaO total (g/kg) | 68.6 | Cu (mg/kg) | 92.4 |
Humic extract (%) | 16 | MgO total (g/kg) | 69.7 | Cr (mg/kg) | 31.9 |
Organic carbon (%) | 17.46 | Na total (g/kg) | 7.8 | Ni (mg/kg) | 5.4 |
Organic matter (%) | 30.01 | Al (mg/kg) | 2600 | Mo (mg/kg) | <1.00 |
N Kjeldahl (%) | 1.29 | Fe (mg/kg) | 5010 | Pb, Cd (mg/kg) | 26 |
Soil Properties | Soils | Treatments | |||||
---|---|---|---|---|---|---|---|
NFW_NF | NFF_NF | MinF_RMin | MSWF_RMSW | MinW_Min | MSWW_MSW | ||
pH | Sandy | 7.35 d | 7.71 c | 7.91 b | 8.03 a | 7.46 d | 7.91 b |
Clay | 7.65 d | 7.82 c | 7.91 b | 8.06 a | 7.84 bc | 8.00 ab | |
E.C. (dS/m) | Sandy | 0.06 b | 0.07 b | 0.11 a | 0.11 a | 0.07 b | 0.10 a |
Clay | 0.10 ab | 0.09 b | 0.11 a | 0.11 a | 0.12 a | 0.12 a | |
Organic Matter (%) | Sandy | 0.50 d | 0.67 b | 0.69 ab | 0.72 a | 0.53 d | 0.60 c |
Clay | 0.50 d | 0.67 b | 0.69 ab | 0.73 a | 0.58 c | 0.68 ab | |
N Kjeldahl (%) | Sandy | 0.06 b | 0.08 ab | 0.09 a | 0.10 a | 0.07 ab | 0.08 ab |
Clay | 0.07 a | 0.07 a | 0.09 a | 0.10 a | 0.08 a | 0.09 a | |
P2O5 (g/kg) | Sandy | 0.30 c | 0.60 b | 0.80 a | 0.90 a | 0.50 b | 0.70 ab |
Clay | 0.40 b | 0.50 b | 0.70 a | 0.70 a | 0.60 ab | 0.70 a | |
K2O (g/kg) | Sandy | 4.80 bc | 5.10 b | 4.30 c | 6.10 a | 5.20 b | 5.70 ab |
Clay | 4.30 b | 4.50 b | 4.70 ab | 5.30 a | 4.80 ab | 5.10 a | |
CaO (g/kg) | Sandy | 30.00 c | 31.00 c | 36.00 ab | 36.90 a | 34.80 b | 35.20 b |
Clay | 34.30 c | 35.80 bc | 36.10 b | 37.30 a | 35.00 c | 35.80 bc | |
MgO (g/kg) | Sandy | 3.00 c | 3.50 bc | 4.10 a | 4.40 a | 3.70 b | 4.00 ab |
Clay | 3.00 b | 3.50 ab | 4.20 a | 4.10 a | 3.80 ab | 4.00 a | |
Zn (mg/kg) | Sandy | 15.00 c | 15.77 c | 28.33 b | 35.57 a | 25.4 b | 30.33 ab |
Clay | 17.20 c | 19.36 c | 27.1 b | 36.53 a | 26.31 b | 36.53 a | |
Cu (mg/kg) | Sandy | 17.92 c | 18.63 bc | 23.10 b | 32.40 a | 20.32 b | 30.50 a |
Clay | 17.81 c | 16.90 c | 22.73 b | 30.13 a | 21.17 b | 28.50 a | |
Cr (mg/kg) | Sandy | 5.41 c | 5.41 c | 16.58 b | 21.43 a | 16.02 b | 20.3 a |
Clay | 7.22 c | 7.26 c | 12.97 bc | 24.93 a | 16.12 b | 23.4 a | |
Ni (mg/kg) | Sandy | 4.77 b | 4.85 b | 5.96 b | 16.30 a | 5.31 b | 15.83 a |
Clay | 4.68 b | 4.68 b | 5.76 b | 16.49 a | 5.27 b | 15.50 a | |
Pb, Cd (mg/kg) | Sandy | <0.20 a | <0.20 a | <0.20 a | <0.20 a | <0.20 a | <0.20 a |
Clay | <0.20 a | <0.20 a | <0.20 a | <0.20 a | <0.20 a | <0.20 a |
Parameter | Soils | Treatments | Soil | Treatment | Soil × Treatment | |||||
---|---|---|---|---|---|---|---|---|---|---|
NFW_NF | NFF_NF | MinF_RMin | MSWF_RMSW | MinW_Min | MSWW_MSW | p | p | p | ||
Biomass yield (g/plant) | Sandy | 12.72 c | 12.82 c | 14.91 b | 18.42 b | 34.03 a | 35.61 a | ns | * | ns |
Clay | 18.82 c | 20.10 c | 21.65 bc | 27.76 b | 35.50 a | 39.20 a | ||||
Seed yield (g/plant) | Sandy | 3.79 c | 4.45 c | 5.26 b | 5.52 b | 7.98 ab | 9.87 a | * | * | ns |
Clay | 5.44 c | 5.52 c | 6.21 b | 6.35 b | 10.83a | 11.23 a | ||||
Nitrogen (%) | Sandy | 0.89 d | 0.95 d | 0.97 cd | 1.01 c | 1.49 b | 1.87 a | ns | * | ns |
Clay | 1.04 d | 1.11 cd | 1.13 cd | 1.18 c | 1.51 b | 1.88 a | ||||
Protein (%) | Sandy | 5.58 d | 5.91 cd | 6.04 c | 6.32 c | 9.28 b | 11.66 a | ns | * | ns |
Clay | 6.48 d | 6.91 cd | 7.07 c | 7.36 c | 9.43 b | 11.74 a | ||||
CaO (g/kg) | Sandy | 0.03 c | 0.05 b | 0.05 b | 0.05 b | 0.04 bc | 0.06 a | * | * | * |
Clay | 0.05 b | 0.04 b | 0.05 b | 0.05 b | 0.07 a | 0.06 ab | ||||
Cr (mg/kg) | Sandy | 1.24± | 1.23 | 1.25 | 1.76 | 1.27 | 1.78 | - | - | - |
Clay | n.d. | 0.59 | 0.88 | 1.01 | n.d. | 1.03 | ||||
Cu (mg/kg) | Sandy | 7.12 b | 6.28 c | 6.77 c | 7.20 ab | 6.75 c | 7.56 a | * | * | * |
Clay | 4.59 bc | 4.54 c | 4.98 b | 5.47 a | 4.99 b | 5.12 a | ||||
Fe (mg/kg) | Sandy | 54.94 b | 53.28 b | 54.89 b | 78.23 a | 55.57 b | 80.71 a | * | * | * |
Clay | 37.12 b | 32.86 b | 37.12 b | 39.17 ab | 39.46 ab | 41.63 a | ||||
K2O (g/kg) | Sandy | 6.20 b | 5.70 c | 5.90 bc | 6.00 bc | 6.30 b | 6.50 a | ns | * | ns |
Clay | 5.00 b | 4.30 c | 4.60 bc | 4.90 bc | 5.30 a | 5.40 a | ||||
MgO (g/kg) | Sandy | 3.60 a | 3.00 b | 3.10 b | 3.10 b | 3.40 ab | 3.40 ab | ns | * | ns |
Clay | 3.00 b | 2.90 b | 3.00 b | 3.10 b | 3.30 ab | 3.70 a | ||||
Mn (mg/kg) | Sandy | 5.77 d | 4.15 e | 7.39 c | 8.07 b | 7.88 bc | 8.98 a | * | * | * |
Clay | 6.89 d | 5.69 e | 7.47 cd | 9.00 b | 7.89 c | 10.85 a | ||||
Ni (mg/kg) | Sandy | n.d. | n.d. | 0.53 | 1.04 | n.d. | 1.38 | - | - | - |
Clay | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | ||||
P2O5 (g/kg) | Sandy | 7.20 b | 7.30 b | 7.40 b | 7.50 b | 7.60 b | 9.30 a | * | * | * |
Clay | 6.9 b | 4.80 c | 6.00 b | 7.40 ab | 8.00 ab | 8.60 a | ||||
Zn (mg/kg) | Sandy | 26.39 c | 41.99 b | 47.31 ab | 52.51 a | 36.52 bc | 56.39 a | * | * | * |
Clay | 25.00 b | 29.62 a | 29.90 a | 30.34 a | 28.75 a | 29.98 a | ||||
Pb (mg/kg) | Sandy | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | - | - | - |
Clay | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
Soil Properties | Soils | Treatments | Soil | Treatment | Soil × Treatment | |||||
---|---|---|---|---|---|---|---|---|---|---|
NFW_NF | NFF_NF | MinF_RMin | MSWF_RMSW | MinW_Min | MSWW_MSW | p | p | p | ||
pH | Sandy | 7.20 d | 7.68 c | 7.87 b | 7.95 b | 7.54 c | 8.12 a | ns | * | ns |
Clay | 7.77 b | 7.74 b | 7.83 b | 7.99 b | 7.89 b | 8.20 a | ||||
E.C. (dS/m) | Sandy | 0.07 b | 0.07 b | 0.12 a | 0.12 a | 0.08 ab | 0.11 ab | ns | * | ns |
Clay | 0.10 ab | 0.09 b | 0.13 a | 0.13 a | 0.13 a | 0.13 a | ||||
Organic Matter (%) | Sandy | 0.52 b | 0.70 a | 0.72 a | 0.77 a | 0.54 b | 0.76 a | ns | * | ns |
Clay | 0.52 b | 0.71 a | 0.74 a | 0.76 a | 0.62 b | 0.84 a | ||||
N Kjeldahl (%) | Sandy | 0.07 b | 0.09 ab | 0.11 a | 0.12 a | 0.09 ab | 0.12 a | ns | * | ns |
Clay | 0.08 b | 0.08 b | 0.11 ab | 0.12 a | 0.10 ab | 0.13 a | ||||
P2O5 (g/kg) | Sandy | 0.20 b | 0.40 ab | 0.70 a | 0.80 a | 0.50 ab | 0.80 a | ns | * | ns |
Clay | 0.40 b | 0.30 b | 0.60 ab | 0.60 ab | 0.60 ab | 0.80 a | ||||
K2O (g/kg) | Sandy | 1.60 b | 2.10 b | 1.90 b | 4.60 a | 4.20 a | 5.00 a | ns | * | ns |
Clay | 1.30 b | 1.90 b | 2.60 ab | 3.20 ab | 4.10 a | 4.70 a | ||||
CaO (g/kg) | Sandy | 14.40 c | 30.20 ab | 35.40 a | 36.10 a | 22.80 b | 24.70 b | ns | * | ns |
Clay | 18.40 c | 34.50 a | 35.20 a | 36.20 a | 23.10 b | 25.40 b | ||||
MgO (g/kg) | Sandy | 1.20 c | 2.30 ab | 3.40 a | 3.60 a | 2.70 ab | 3.40 a | ns | * | ns |
Clay | 1.50 c | 2.80 ab | 3.20 a | 3.00 a | 2.80 ab | 3.50 a | ||||
Zn (mg/kg) | Sandy | 15.20 c | 14.98 c | 27.11 b | 31.02 b | 30.31 b | 43.64 a | ns | * | ns |
Clay | 18.89 c | 18.03 c | 26.21 b | 33.26 b | 32.10 b | 49.78 a | ||||
Cu (mg/kg) | Sandy | 19.57 bc | 17.56 c | 21.06 bc | 30.45 b | 30.81 b | 45.61 a | ns | * | ns |
Clay | 18.54 c | 15.00 c | 20.36 bc | 28.34 b | 32.33 b | 42.46 a | ||||
Cr (mg/kg) | Sandy | 5.93 c | 4.96 c | 16.04 b | 20.06 b | 27.23 a | 36.37 a | ns | * | ns |
Clay | 7.87 c | 6.87 c | 11.99 c | 24.03 b | 17.37 bc | 39.62 a | ||||
Ni (mg/kg) | Sandy | 4.83 c | 4.04 c | 4.87 c | 15.63 b | 6.71 c | 27.63 a | ns | * | ns |
Clay | 4.77 c | 4.03 c | 5.10 c | 15.98 b | 6.43 c | 27.56 a | ||||
Pb, Cd (mg/kg) | Sandy | <0.20 a | <0.20 a | <0.20 a | <0.20 a | <0.20 a | <0.20 a | ns | ns | ns |
Clay | <0.20 a | <0.20 a | <0.20 a | <0.20 a | <0.20 a | <0.20 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martinez, S.; Gabriel, J.L.; Allende-Montalbán, R.; San-Juan-Heras, R.; Delgado, M.d.M. The Application of a Bio-Stabilized Municipal Solid Waste-Based Fertilizer for Buckwheat Production. Agriculture 2022, 12, 776. https://doi.org/10.3390/agriculture12060776
Martinez S, Gabriel JL, Allende-Montalbán R, San-Juan-Heras R, Delgado MdM. The Application of a Bio-Stabilized Municipal Solid Waste-Based Fertilizer for Buckwheat Production. Agriculture. 2022; 12(6):776. https://doi.org/10.3390/agriculture12060776
Chicago/Turabian StyleMartinez, Sara, José Luis Gabriel, Raúl Allende-Montalbán, Raúl San-Juan-Heras, and María del Mar Delgado. 2022. "The Application of a Bio-Stabilized Municipal Solid Waste-Based Fertilizer for Buckwheat Production" Agriculture 12, no. 6: 776. https://doi.org/10.3390/agriculture12060776
APA StyleMartinez, S., Gabriel, J. L., Allende-Montalbán, R., San-Juan-Heras, R., & Delgado, M. d. M. (2022). The Application of a Bio-Stabilized Municipal Solid Waste-Based Fertilizer for Buckwheat Production. Agriculture, 12(6), 776. https://doi.org/10.3390/agriculture12060776