Variation of Grain Yield, Grain Protein Content and Nitrogen Use Efficiency Components under Different Nitrogen Rates in Mediterranean Durum Wheat Genotypes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material, Sites and Experimental Design
2.2. Soil and Environmental Conditions
2.3. Data Collection and Measurements
2.4. Statistical Analysis
3. Results
3.1. Variation in Grain Yield (GY) and Grain Protein Content (GPC) under Different Nitrogen Rates
3.2. Variation in NUE Traits
3.3. Stepwise Analysis and Relationships among GY, GPC and NUE Components under Different Nitrogen Rates
4. Discussion
4.1. Environment and Nitrogen Supply Impacts on Grain Yield (GY), crop N Supply (CNS) and NUE
4.2. How Genotypic Variability Impacts Grain Yield (GY), Grain Protein Content (GPC) and NUE and Their Relationships
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, X.; Zhou, J.; Wang, X.; Blackmer, A.; Zhang, F. Optimal rates of nitrogen fertilization for a winter wheat corn cropping system in northern China. Commun. Soil Sci. Plant Anal. 2004, 35, 583–597. [Google Scholar] [CrossRef]
- Hirel, B.; Foulkes, J.; Cromier, F.; Gouche, D.; Moênne-Loccoz, Y.; Le Gouis, J. Breeding for increased nitrogen-use efficiency: A review for wheat (Triticum aestivum L.). Plant Breed. 2016, 135, 255–278. [Google Scholar]
- FAO. Available online: https://www.fao.org/documents/card/fr/c/cb1447fr (accessed on 1 April 2022).
- Moll, R.H.; Kamprath, E.J.; Jackson, W.A. Analysis and interpretation of factors which contribute to efficiency of nitrogen utilization. J. Agron. 1982, 74, 562–564. [Google Scholar] [CrossRef]
- Kichey, T.; Hirel, B.; Heumez, E.; Dubois, F.; Le Gouis, J. In winter wheat (Triticum aestivum L.), post-anthesis nitrogen uptake and remobilisationto the grain correlates with agronomic traits and nitrogen physiological markers. Field Crops Res. 2007, 102, 22–32. [Google Scholar] [CrossRef]
- Hawkesford, M.J. Reducing the reliance on nitrogen fertilizer for wheat production. J. Cereal Sci. 2014, 59, 276–283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hawkesford, M.J.; Griffiths, S. Exploiting genetic variation in nitrogen use efficiency for cereal crop improvement. Curr. Opin. Plant Biol. 2019, 49, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Ortiz-Monasterio, J.I.; Sayre, K.D.; Rajaram, S.; Mcmahon, M. Genetic progress in wheat yield and nitrogen use efficiency under four nitrogen rates. Crop. Sci. 1997, 37, 898–904. [Google Scholar] [CrossRef]
- Ortiz-Monasterio, J.I.; Manske, G.G.B.; van Ginkel, M. Nitrogen and phosphorus use efficiency. In Application of Physiology in Wheat Breeding; Reynolds, M.P., Ortiz-Monasterio, J.I., Mcnab, A., Eds.; CIMMYT: El Batan, Mexico, 2002; pp. 200–207. [Google Scholar]
- Gaju, O.; Allard, V.; Martre, P.; Le Gouis, J.; Moreau, D.; Bogard, M.; Hubbar, S.; Foulkes, M.J. Nitrogen partitioning and remobilization in relation to leaf senescence, grain yield and grain nitrogen concentration in wheat cultivars. Field Crops Res. 2014, 155, 213–223. [Google Scholar] [CrossRef]
- Fageria, N.K. Yield physiology of rice. J. Plant. Nutr. 2007, 30, 843–879. [Google Scholar] [CrossRef]
- Ata-Ul-Karim, S.T.; Zhu, Y.M.; Cao, Q.; Rehmani, M.I.A.; Cao, W.; Tang, L. In-season assessment of grain protein and amylose content in rice using critical nitrogen dilution curve. Eur. J. Agr. 2017, 90, 139–151. [Google Scholar] [CrossRef]
- Fageria, N.K.; Baligar, V.C. Enhancing nitrogen use efficiency in crop plants. Adv. Agron. 2005, 88, 97–185. [Google Scholar]
- Ayadi, S.; Karmous, C.; Hammami, Z.; Trifa, Y.; Rezgui, S. Variation of durum wheat yield and nitrogen use efficiency under Mediterranean rainfed environment. Int. J. Agr. Crop. Sci. 2014, 7, 693–699. [Google Scholar]
- Ayadi, S.; Karmous, C.; Chamekh, Z.; Hammami, Z.; Baraket, M.; Esposito, S.; Rezgui, S.; Trifa, Y. Effects of nitrogen agronomic efficiency of Durum wheat genotypes under different environments. Ann. Appl. Biol. 2016, 168, 264–273. [Google Scholar] [CrossRef] [Green Version]
- Ata-Ul-Karim, S.T.; Cao, Q.; Zhou, Y.; Tang, L.; Rehmani, M.I.A.; Cao, W. Non-destructive Assessment of Plant Nitrogen Parameters Using Leaf Chlorophyll Measurements in Rice. Front. Plant. Sci. 2016, 7, 1829. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ben Mariem, S.; González-Torralba, J.; Collar, C.; Aranjuelo, I.; Morales, F. Durum Wheat Grain Yield and Quality under Low and High Nitrogen Conditions: Insights into Natural Variation in Low- and High-Yielding Genotypes. Plants 2020, 9, 1636. [Google Scholar] [CrossRef]
- Chardon, F.; Noêl, V.; Masclaux-Daubresse, C. Exploring NUE in crops and in Arabidopsis ideotypes to improve yield and seed quality. J. Exp. Bot. 2012, 63, 3401–3412. [Google Scholar] [CrossRef] [Green Version]
- Anbessa, Y.; Juskiw, P.; Good, A.; Nyachiro, J.; Helm, J. Genetic variability in nitrogen use efficiency of spring barley. Crop. Sci. 2009, 49, 1259–1269. [Google Scholar] [CrossRef]
- Canãs, R.A.; Amiour, N.; Quillere, I.; Hirel, B. An integrated statistical analysis of the genetic variability of nitrogen metabolism in the ear of three maize inbred lines (Zea mays). J. Exp. Bot. 2011, 62, 2309–2318. [Google Scholar] [CrossRef]
- Gorny, A.G.; Banaszak, Z.M.; Lugowska, B.; Ratajcka, D. Inheritance of the efficiency of nitrogen uptake and utilisation in winter wheat (Triticum aestivum) under diverse nutritional levels. Euphytica 2011, 177, 191–206. [Google Scholar] [CrossRef] [Green Version]
- Guendouz, A.; Guessoum, S.; Maamari, K.; Hafsi, M. Effects of supplementary irrigation on grain yield, yield components and some morphological traits of durum wheat (Triticum durum) Cultivars. Adv. Environ. Biol. 2012, 6, 564–572. [Google Scholar]
- Jallouli, S.; Ayadi, S.; Landi, S.; Capasso, G.; Santini, G.; Chamekh, Z.; Zouari, I.; Azaiez, F.B.A.; Trifa, Y.; Esposito, S. Physiological and molecular osmotic stress responses in three durum wheat (Triticum turgidum ssp Durum) genotypes. Agronomy 2019, 9, 550. [Google Scholar] [CrossRef] [Green Version]
- Ayadi, S.; Jallouli, S.; Landi, S.; Capasso, G.; Chamekh, Z.; Cardi, M.; Paradisone, V.; Lentini, M.; Karmous, C.; Trifa, Y.; et al. Nitrogen assimilation under different nitrate nutrition in Tunisian durum wheat landraces and improved genotypes. Plant Biosyst. 2020, 154, 1–21. [Google Scholar] [CrossRef]
- Landi, S.; Capasso, G.; Ben Azaiez, F.E.; Jallouli, S.; Ayadi, S.; Trifa, Y.; Esposito, S. Different roles of heat shock proteins (70 kda) during abiotic stresses in barley (Hordeum vulgare) genotypes. Plants 2019, 8, 248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deghaïs, M.; Kouki, M.; Gharbi, M.S.; El Faleh, M. Les Variétés des Céréales Cultivées en Tunisie; Institut National de la Recherche Agronomique de Tunisie: Tunis, Tunisia, 2007; p. 445. [Google Scholar]
- Rhine, E.D.; Sims, G.K.; Mulvaney, R.L.; Pratt, E.J. Improving the Berthelot reaction for determining ammonium in soil extracts and water. Soil Sci. Soc. Am. J. 1998, 62, 473–480. [Google Scholar] [CrossRef]
- Cataldo, D.A.; Schrader, L.E.; Youngs, V.L. Analysis by digestion and colorimetric assay of total nitrogen in plant tissues high in nitrate. Crop. Sci. 1974, 14, 854–856. [Google Scholar] [CrossRef]
- Good, A.; Shrawat, A.K.; Muench, D. Can Less Yield More? Is Reducing Nutrient Input into The Environment Compatible with Maintaining Crop Production? Trends Plant Sci. 2004, 9, 597–605. [Google Scholar] [CrossRef]
- SAS Institute. The SAS System for Windows Version 9.2.; SAS Institute: Cary, NC, USA, 1999. [Google Scholar]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schlwikowski, B.; Ideker, T. Cytoscape a software environment for integrated models of biomolecular Interaction networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef] [PubMed]
- Roy, R.N.; Finck, A.; Blair, G.J.; Tandon, H.L. Plant Nutrition for Food Security: A Guide for Integrated Nutrient Management. FAO Fertilizer and Plant Nutrition Bulletin 16; Food and Agriculture Organization of the United Nations: Rome, Italy, 2006; 368p. [Google Scholar]
- Lopez-Bellido, L.; Lopez-Bellido, R.J.; Lopez-Bellido, F.J. Fertilizer nitrogen efficiency in durum wheat under rain fed Mediterranean conditions: Effect of split application. Agric. J. 2006, 98, 55–62. [Google Scholar]
- Foulkes, M.J.; Sylvester-Bradley, R.; Scott, R.K. Evidence for differences between winter wheat cultivars in acquisition of soil mineral nitrogen and uptake and utilization of applied fertilizer nitrogen. J. Agric. Sci. 1998, 130, 29–44. [Google Scholar] [CrossRef] [Green Version]
- Le Gouis, J.; Béghin, D.; Heumez, E.; Pluchard, P. Genetic differences for nitrogen uptake and nitrogen utilization efficiencies in winter wheat. Eur. J. Agron. 2000, 12, 163–173. [Google Scholar] [CrossRef]
- Wang, R.F.; An, D.G.; Hu, C.S.; Li, L.H.; Zhang, Y.M.; Jia, Y.G.; Tong, Y.P. Relationship between nitrogen uptake and use efficiency of winter wheat grown in the North China Plain. Crop. Pasture Sci. 2011, 62, 504–514. [Google Scholar] [CrossRef]
- Cormier, F.; Faure, S.; Dubreuil, P.; Heumez, E.; Beauchêne, K.; Lafarge, S.; Praud, S.; Le Gouis, J. A multi-environmental study of recent breeding progress on nitrogen use efficiency in wheat (Triticum aestivum). Theor. Appl. Genet. 2013, 126, 3035–3048. [Google Scholar] [CrossRef] [PubMed]
- Worku, M.; Bänziger, M.; Erley, G.S.; Friesen, D.; Diallo, A.O.; Horst, W.J. Nitrogen uptake and utilization in contrasting nitrogen efficient tropical maize hybrids. Crop. Sci. 2007, 47, 519–528. [Google Scholar] [CrossRef] [Green Version]
- Jat, R.S.; Choudhary, M. Nitrogen utilization efficiency variability in genotypes of Indian mustard (Brassica juncea) under contrasting N supply. J. Plant Nutr. 2019, 42, 2435–2446. [Google Scholar] [CrossRef]
- Martre, P.; Porter, J.R.; Jamieson, P.D.; Triboi, E. Modeling grain nitrogen accumulation and protein composition to understand the sink/source regulations of nitrogen remobilization for wheat. Plant Physiol. 2003, 133, 1959–1967. [Google Scholar] [CrossRef] [Green Version]
Genotypes | Origin, Selection or Release History |
---|---|
Bidi (landrace) | Local landrace introduced from Morocco, pure line selection started in 1908. |
Azizi (landrace) | Local landrace of various origins, present pre-1893, pure line selection started in 1908. |
Om Rabiaa (improved) | From cross made at ICARDA, introduced as fixed line in 1987, registered in 1996. |
Khiar (improved) | From cross made at CIMMYT, introduced in 1987, registered in 1992. |
Soil Layer (cm) | Clay (%) | Silt (%) | Sand (%) | Limestone (%) | pH |
---|---|---|---|---|---|
0–10 | 22.5 | 57.3 | 17.3 | 20.1 | 8.3 |
10–30 | 21.6 | 57.3 | 18.3 | 20.9 | 8.4 |
≥30 | 18.5 | 52 | 16.1 | 19.9 | 8.5 |
GY | GPC | NupE | NutE | NUE | CNS | ||
---|---|---|---|---|---|---|---|
Experimental year (S) | |||||||
2010 (S1) | 4.6 a | 9.75 b | 0.17 b | 59.34 a | 9.42 b | 476.40 a | |
2011 (S2) | 3.3 b | 12.76 a | 0.52 a | 44.94 b | 20.92 a | 158.05 b | |
Nitrogen Rate (N) | |||||||
0 N | 2.4 c | 10.73 b | 0.32 b | 53.24 a | 13.27 b | 240.21 c | |
75 N | 3.4 b | 11.12 b | 0.31 b | 54.72 a | 14.92 b | 320.19 b | |
150 N | 5.7 a | 11.91 a | 0.40 a | 48.46 b | 17.34 a | 391.27 a | |
Genotypes (G) | |||||||
Landrace genotypes | |||||||
Azizi | 3.2 a | 11.49 a | 0.34 a | 51.50 b | 14.75 a | 326.85 a | |
Bidi | 4.2 a | 11.78 a | 0.40 a | 49.59 b | 16 a | 311.46 a | |
Means | 3.7 | 11.63 | 0.37 | 50.54 | 15.37 | 319.15 | |
Improved genotypes | |||||||
Khiar | 3.9 a | 9.97 b | 0.32 a | 57.03 a | 15.86 a | 312.02 a | |
Om Rabiaa | 3.8 a | 11.78 a | 0.32 a | 50.43 b | 14.09 a | 318.55 a | |
Means | 3.85 | 10.87 | 0.32 | 53.73 | 14.97 | 315.28 | |
DF | Mean Square | ||||||
Year (S) | 1 | 27.28 *** | 162.32 *** | 2.2321 *** | 3497 *** | 2379.8 *** | 1,823,051 *** |
Nitrogen Rate (N) | 3 | 70.95 *** | 8.54 ** | 0.0657 * | 250 *** | 100.5 *** | 136,864 *** |
Genotype (G) | 2 | 0.33 ns | 13.46 *** | 0.0220 ns | 199 *** | 15.0 ns | 929 ns |
S×G | 3 | 1.65 ** | 4.20 * | 0.0167 ns | 48 ns | 19.2 ns | 929 ns |
S×N | 2 | 4.00 *** | 1.05 ns | 0.0372 ns | 94 ** | 31.7 * | 159 ns |
G×N | 6 | 1.86 *** | 0.40 ns | 0.0110 ns | 84 *** | 13.9 ns | 703 ns |
S×G×N | 6 | 0.60 ns | 0.91 ns | 0.0075 ns | 62 ** | 6.9 ns | 703 ns |
Experimental Year (S) | |||||||
---|---|---|---|---|---|---|---|
N rates | S1—2010 | S2—2011 | |||||
GY | 0 N | 2.89 c | 1.57 d | ||||
75 N | 4.97 b | 2.98 c | |||||
150 N | 5.85 a | 5.48 b | |||||
LSD (0.05) | †: 370.61 | ‡: 343.62 | |||||
Genotypes | |||||||
GPC | Azizi | 9.57 de | 13.41 a | ||||
Bidi | 9.91 cde | 13.64 a | |||||
Khiar | 8.66 e | 11.29 bc | |||||
Om Rabiaa | 10.88 cd | 12.69 ab | |||||
LSD (0.05) | †: 0.38 | †: 0.77 | |||||
0 N | 75 N | 150 N | 0 N | 75 N | 150 N | ||
NutE | Om Rabiaa | 56.8 bcde | 62.1 | 49.7 defghi | 46.6 fghij | 45.7 ghij | 43 hij |
Khiar | 57.9 bcd | 77.7 a | 53.2 bcdefg | 54.6 bcdefg | 52.5 cdefgh | 47.2 bcg | |
Bidi | 62.2 b | 55.5 bcdef | 54.7 bcdefg | 45.4 ghij | 41.4 ij | 39.8 j | |
Azizi | 58.9 bcd | 61.1 bc | 62 bc | 45.2 ghij | 43 hij | 40.05 ij | |
SE | 2.5 |
Genotypes | Variable | R2 | Significance | |
---|---|---|---|---|
GYN0 | Landraces Improved | CNS CNS CNS, NupE | 0.696 0.628 0.742 | ** ** ** |
GYN75 | Landraces | CNS CNS, NUE | 0.679 0.877 | ** ** |
Improved | CNS | 0.887 | ** | |
GYN150 | Landraces | CNS | 0.451 | ** |
Improved | -- | -- | -- |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ayadi, S.; Jallouli, S.; Chamekh, Z.; Zouari, I.; Landi, S.; Hammami, Z.; Ben Azaiez, F.E.; Baraket, M.; Esposito, S.; Trifa, Y. Variation of Grain Yield, Grain Protein Content and Nitrogen Use Efficiency Components under Different Nitrogen Rates in Mediterranean Durum Wheat Genotypes. Agriculture 2022, 12, 916. https://doi.org/10.3390/agriculture12070916
Ayadi S, Jallouli S, Chamekh Z, Zouari I, Landi S, Hammami Z, Ben Azaiez FE, Baraket M, Esposito S, Trifa Y. Variation of Grain Yield, Grain Protein Content and Nitrogen Use Efficiency Components under Different Nitrogen Rates in Mediterranean Durum Wheat Genotypes. Agriculture. 2022; 12(7):916. https://doi.org/10.3390/agriculture12070916
Chicago/Turabian StyleAyadi, Sawsen, Salma Jallouli, Zoubeir Chamekh, Inès Zouari, Simone Landi, Zied Hammami, Fatma Ezzahra Ben Azaiez, Mokhtar Baraket, Sergio Esposito, and Youssef Trifa. 2022. "Variation of Grain Yield, Grain Protein Content and Nitrogen Use Efficiency Components under Different Nitrogen Rates in Mediterranean Durum Wheat Genotypes" Agriculture 12, no. 7: 916. https://doi.org/10.3390/agriculture12070916
APA StyleAyadi, S., Jallouli, S., Chamekh, Z., Zouari, I., Landi, S., Hammami, Z., Ben Azaiez, F. E., Baraket, M., Esposito, S., & Trifa, Y. (2022). Variation of Grain Yield, Grain Protein Content and Nitrogen Use Efficiency Components under Different Nitrogen Rates in Mediterranean Durum Wheat Genotypes. Agriculture, 12(7), 916. https://doi.org/10.3390/agriculture12070916