Application of the WRF-DSSAT Modeling System for Assessment of the Nitrogen Fertilizer Used for Improving Rice Production in Northern Thailand
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. WRF Model
2.3. DSSAT Model
2.4. Statistical Model Used
3. Results and Discussion
3.1. Model Performance
3.2. Analysis the Optimal Nitrogen Fertilizer Rate on Rice Production
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bouwman, A.F.; Lee, D.S.; Asman, W.A.; Dentener, F.J.; Van Der Hoek, K.W.; Olivier, J.G.J. A global high-resolution emission inventory for ammonia. Glob. Biogeochem. Cycle 1997, 11, 561–587. [Google Scholar] [CrossRef]
- Khush, G. What it will take to feed 5.0 billion rice consumers in 2030. Plant Mol. Biol. 2005, 59, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Fageria, N.K.; Baligar, V.C. Lowland rice response to nitrogen fertilization. Commun. Soil. Sci. Plant Anal. 2001, 32, 1405–1429. [Google Scholar] [CrossRef]
- Soltani, A.; Rajabi, M.H.; Zeinali, E.; Soltani, E. Evaluation of environmental impact of crop production using LCA: Wheat in Gorgan. Elect. J. Crop. Prod. 2010, 3, 201–218. [Google Scholar]
- Huo, Z.-Y.; Gu, H.-Y.; Ma, Q.; Yang, X.; Li, M.; Li, G.-Y.; Dai, Q.-G.; Xu, K.; Wei, H.Y.; Gao, H.; et al. Differences of nitrogen absorption and utilization in rice varieties with different productivity levels. Acta. Agron. Sin. 2012, 38, 2061–2068. [Google Scholar] [CrossRef]
- Dobermann, A.; Witt, C.; Abdulrachman, S.; Gines, H.C.; Nagarajan, R.; Son, T.T.; Tan, P.S.; Wang, G.H.; Chien, N.V.; Thoa, V.T.K.; et al. Soil fertility and indigenous nutrient supply in irrigated rice domains of Asia. Agron. J. 2003, 95, 913–923. [Google Scholar] [CrossRef]
- Cassman, K.; Peng, S.; Olk, D.; Ladha, J.; Reichardt, W.; Dobermann, A.; Singh, U. Opportunities for increased nitrogen-use efficiency from improved resource management in irrigated rice systems. Field Crop. Res. 1998, 56, 7–39. [Google Scholar] [CrossRef]
- Amnuaylojaroen, T.; Chanvichit, P.; Janta, R.; Surapipith, V. Projection of Rice and Maize Productions in Northern Thailand under Climate Change Scenario RCP8.5. Agriculture 2021, 11, 23. [Google Scholar] [CrossRef]
- Amnuaylojaroen, T.; Parasin, N. The Future Extreme Temperature under RCP8. 5 Reduces the Yields of Major Crops in Northern Peninsular of Southeast Asia. Sci. World J. 2022, 2022, 1410849. [Google Scholar] [CrossRef]
- Jallouli, S.; Ayadi, S.; Landi, S.; Capasso, G.; Santini, G.; Chamekh, Z.; Zouari, I.; Azaiez, F.B.A.; Trifa, Y.; Esposito, S. Physiological and molecular osmotic stress responses in three durum wheat (Triticum turgidum ssp. Durum) genotypes. Agronomy 2019, 9, 550. [Google Scholar] [CrossRef]
- Ayadi, S.; Jallouli, S.; Landi, S.; Capasso, G.; Chamekh, Z.; Cardi, M.; Paradisone, V.; Lentini, M.; Karmous, C.; Trifa, Y.; et al. Nitrogen assimilation under different nitrate nutrition in Tunisian durum wheat landraces and improved genotypes. Plant Biosyst. Int. J. Deal. All Asp. Plant Biol. 2020, 154, 924–934. [Google Scholar] [CrossRef]
- Ritchie, J.T.; Alocijia, E.E.C.; Uehara, G. IBSNAT/CERES Rice Model. Agrotech. Transf. 1986, 3, 1–5. [Google Scholar]
- Challinor, A.J.; Slingo, J.M.; Wheeler, T.R.; Craufurd, P.Q.; Grimes, D.I.F. Towards a combined seasonal weather and crop productivity forecasting system: Determination of the spatial correlation scale. J. Appl. Meteorol. 2003, 42, 175–192. [Google Scholar] [CrossRef]
- Skamarock, W.C.; Klem, J.B.; Duhia, J.; Gill, D.O.; Barker, D.M.; Duda, M.G.; Huang, X.-Y.; Wang, W.; Powers, J.G. A Description of the Advanced Research WRF Version 3; NCAR Technical Note; National Center for Atmospheric Research: Boulder, CO, USA, 2008. [Google Scholar]
- Ramankutty, N.; Delire, C.; Snyder, P. Feedbacks between agriculture and climate: An illustration of the potential unintendedconsequences of human land use activities. Glob. Planet Change 2006, 54, 79–93. [Google Scholar] [CrossRef]
- Pielke, R.A.; Adegoke, J.O.; Chase, T.N.; Marshall, C.H.; Matsui, T.; Niyogi, D. A new paradigm for assessing the role of agriculture inthe climate system and in climate change. Agric. For. Meteorol. 2007, 142, 234–254. [Google Scholar] [CrossRef]
- MacCarthy, D.S.; Adiku, S.G.K.; Freduah, B.S.; Gbefo, F.; Kamara, A.Y. Using CERESMaize and ENSO as decision support tools to evaluate climate-sensitive farm management practices for maize production in the northern regions of Ghana. Front. Plant Sci. 2017, 8, 31. [Google Scholar] [CrossRef]
- MacCarthy, D.S.; Vlek, P.L.G. Impact of climate change on sorghum production under different nutrient and crop residue management in semi-arid region of Ghana: A modeling perspective. Afr. Crop. Sci. J. 2012, 20, 275–291. Available online: https://www.ajol.info/index.php/acsj/article/view/81717 (accessed on 1 July 2022).
- Ngwira, A.R.; Aune, J.B.; Thierfelder, C. DSSAT modelling of conservation agriculture maize response to climate change in Malawi. Soil Tillage Res. 2014, 143, 85–94. [Google Scholar] [CrossRef]
- Corbeels, M.; Chirat, G.; Messad, S.; Thierfelder, C. Performance and sensitivity of the DSSAT crop growth model in simulating maize yield under conservation agriculture. Eur. J. Agron. 2016, 76, 41–53. [Google Scholar] [CrossRef]
- Adnan, A.A.; Jibrin, J.M.; Abdulrahman, B.L.; Shaibu, A.S.; Garba, I.I. CERES–maize model for determining the optimum planting dates of early maturing maize varieties in Northern Nigeria. Front. Plant Sci. 2017, 8, 1118. [Google Scholar] [CrossRef]
- Adnan, A.A.; Jibrin, J.M.; Kamara, A.Y.; Abdulrahman, B.L.; Shaibu, A.S. Using CERES-Maize model to determine the nitrogen fertilization requirements of early maturing maize in the Sudan Savanna of Nigeria. J. Plant Nutr. 2017, 40, 1066–1082. [Google Scholar] [CrossRef]
- Saseendran, S.A.; Ma, L.; Malone, R.; Heilman, P.; Ahuja, L.R.; Kanwar, R.S.; Karlen, D.L.; Hoogenboom, G. Simulating management effects on crop production, tile drainage, and water quality using RZWQM–DSSAT. Geoderma 2007, 140, 297–309. [Google Scholar] [CrossRef]
- Dias, M.P.; Navaratne, C.M.; Weerasinghe, K.D.; Hettiarachchi, R.H. Application of DSSAT crop simulation model to identify the changes of rice growth and yield in Nilwala river basin for mid-centuries under changing climatic conditions. Procedia Food Sci. 2016, 6, 159–163. [Google Scholar] [CrossRef]
- Chandran, M.A.; Banerjee, S.; Mukherjee, A.; Nanda, M.K.; Mondal, S.; Kumari, V.V. Evaluating the impact of projected climate on rice–wheat-groundnut cropping sequence in lower Gangetic plains of India: A study using multiple GCMs, DSSAT model, and long-term sequence analysis. Theor. Appl. Climatol. 2021, 145, 1243–1258. [Google Scholar] [CrossRef]
- Brooks, R.J.; Semanov, M.A.; Jamieson, P.D. Simplifying sirus: Sensitivity analysis and development of a meta-model for wheat yield prediction. Eur. J. Agron. 2001, 14, 43–60. [Google Scholar] [CrossRef]
- Landau, S.; Mitchell, R.A.C.; Barnett, V.; Colls, J.J.; Craigon, J.; Payne, R.W. A parsimonious, multiple-regression model of wheat yield response to environment. Agric. For. Meteorol. 2000, 101, 151–166. [Google Scholar] [CrossRef]
- Jagtap, S.S.; Jones, J.W. Adaptation and evaluation of the CROPGRO-soybean model to predict regional yield and production. Agric. Ecosyst. Environ. 2002, 93, 73–85. [Google Scholar] [CrossRef]
- Billé, A.G.; Rogna, M. The effect of weather conditions on fertilizer applications: A spatial dynamic panel data analysis. J. R. Stat. Soc. Ser. A (Stat. Soc.) 2022, 185, 3–36. [Google Scholar] [CrossRef]
- Jones, J.W.; Hoogenboom, G.; Porter, C.H.; Boote, K.J.; Batchelor, W.D.; Hunt, L.A.; Wilkens, P.W.; Singh, U.; Gijsman, A.J.; Ritchie, J.T. The DSSAT cropping system model Eur. J. Agron. 2003, 18, 235–265. [Google Scholar]
- Intaboot, N. The Study of Water Demand to Grow Rice in Thailand. In Proceedings of the 6th International Symposium on the Fusion of Science and Technologies (ISFT2017), Jeju, Korea, 17–21 July 2017; Available online: http://www.rdi.rmutsb.ac.th/2011/digipro/isft2017/CA/11.%5BCA003%5D_F.pdf (accessed on 1 July 2022).
- Amnuaylojaroen, T.; Chanvichit, P. Projection of near-future climate change and agricultural drought in Mainland Southeast Asia under RCP8.5. Clim. Change 2019, 155, 175–193. [Google Scholar] [CrossRef]
- Iacono, M.J.; Delamere, J.S.; Mlawer, E.J.; Shephard, M.W.; Clough, S.A.; Collins, W.D. Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res. 2008, 113, D13103. [Google Scholar] [CrossRef]
- Thompson, G.; Rasmussen, R.M.; Manning, K. Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part I: Description and sensitivity analysis. Mon Weather. Rev. 2004, 132, 519–542. [Google Scholar] [CrossRef]
- Chen, F.; Dudhia, J. Coupling an advanced land-surface/hydrology model with the Penn State/NCAR MM5 modeling system. Part I: Model description and implementation. Mon. Weather. Rev. 2001, 129, 569–585. [Google Scholar] [CrossRef]
- Stauffer, D.R.; Seaman, N.L. Use of four-dimensional data assimilation in a limited area mesoscale model, Part 1: Experiments with synoptic-scale data. Mon. Weather. Rev. 1990, 118, 1250–1277. [Google Scholar] [CrossRef]
- Buddhaboon, C.; Kongton, S.; Jintrawet, A. Climate Scenario Verification; Impact on Rainfed Rice Production. Report of APN CAPABLE Project; Southeast Asia START Regional Center, Chulalongkorn University: Bangkok, Tailand, 2004; Available online: http://startcc.iwlearn.org/doc/Doc_eng_1.pdf (accessed on 6 July 2022).
- Jongkaewattana, S.; Vejpas, C. Validation of CERES-RICE Model. 2020. Available online: http://www.mcc.cmu.ac.th/research/DSSARM/ThaiRice/ricevalid.html (accessed on 4 December 2020).
- Gumel, D.Y.; Abdullah, A.M.; Sood, A.M.; Elhadia, R.E.; Jamalani, M.A.; Youssefa, K.A. Assessing paddy rice yield sensitivity to temperature and rainfall variability in Peninsular Malaysia using DSSAT model. Int. J. Appl. Environ. Sci. 2017, 12, 1521–1545. [Google Scholar]
- Nyang, A.W.; Mati, B.M.; Kalamwa, K.; Wanjogu, R.K.; Kiplagat, L.K. Estimating rice yield under changing weather conditions in Kenya using CERES rice model. Int. J. Agron. 2014, 26, 2014. [Google Scholar] [CrossRef]
- Morita, S.; Yonemaru, J.-I.; Takanashi, J.-I. Grain growth and endosperm cell size under high night temperatures in rice (Oryza sativa L.). Ann. Bot. 2005, 95, 695–701. [Google Scholar] [CrossRef]
- Nguyen, N.V. Global Climate Changes and Rice Food Security; FAO: Rome, Italy, 2002. [Google Scholar]
- Abbas, S.; Mayo, Z.A. Impact of temperature and rainfall on rice production in Punjab, Pakistan. Environ. Dev. Sustain. 2021, 23, 1706–1728. [Google Scholar] [CrossRef]
- Gao, L.; Jin, Z.; Huang, Y.; Zhang, L. Rice clock model—A computer model to simulate rice development. Agric. For. Meteorol. 1992, 60, 1–16. [Google Scholar] [CrossRef]
- Jagadish, S.V.K.; Muthurajan, R.; Oane, R.; Wheeler, T.R.; Heuer, S.; Bennett, J.; Craufurd, P.Q. Physiological and proteomic approaches to dissect reproductive stage heat tolerance in rice (Oryza sativa L.). J. Exp. Bot. 2010, 61, 143–156. [Google Scholar] [CrossRef]
- Meisinger, J.J.; Palmer, R.E.; Timlin, D.J. Effects of tillage practices on drainage and nitrate leaching from winter wheat in the Northern Atlantic Coastal-Plain USA. Soil Tillage Res. 2015, 151, 18–27. [Google Scholar] [CrossRef]
- Fang, H. Impacts of soil conservation measures on runoff and soil loss in a hilly region, Northern China. Agric. Water Manag. 2021, 247, 106740. [Google Scholar]
- Yang, T.; Zeng, Y.; Sun, Y.; Zhang, J.; Tan, X.; Zeng, Y.; Huang, S.; Pan, X. Experimental warming reduces fertilizer nitrogen use efficiency in a double rice cropping system. Plant Soil Environ. 2019, 65, 483–489. [Google Scholar] [CrossRef]
- Ju, X.T.; Xing, G.X.; Chen, X.P.; Zhang, S.L.; Zhang, L.J.; Liu, X.J.; Cui, Z.L.; Yin, B.; Christie, P.; Zhu, Z.L.; et al. Reducing environmental risk by improving N management in intensive Chinese agricultural systems. Proc. Natl. Acad. Sci. USA 2009, 106, 3041–3046. [Google Scholar] [CrossRef]
- Xu, Y.; Guan, X.; Han, Z.; Zhou, L.; Zhang, Y.; Asad, M.A.U.; Wang, Z.; Jin, R.; Pan, G.; Cheng, F. Combined Effect of Nitrogen Fertilizer Application and High Temperature on Grain Quality Properties of Cooked Rice. Front. Plant Sci. 2022, 13, 874033. [Google Scholar] [CrossRef]
- Wei, H.Y.; Zhu, Y.; Qiu, S.; Han, C.; Hu, L.; Xu, D.; Zhou, N.; Xing, Z.; Hu, Y.; Cui, P.; et al. Combined effect of shading time and nitrogen level on grain filling and grain quality in japonica super rice. J. Integr. Agric. 2018, 17, 2405–2417. [Google Scholar] [CrossRef]
- Yang, L.X.; Wang, Y.L.; Dong, G.C.; Gu, H.; Huang, J.; Zhu, J.; Yang, H.; Liu, Z.; Han, Y. The impact of free-air CO2 enrichment (FACE) and nitrogen supply on grain quality of rice. Field Crop. Res. 2007, 102, 128–140. [Google Scholar] [CrossRef]
- Ning, H.F.; Sun, J.S.; Liu, H.; Gao, Y.; Shen, X.; Wang, G.; Zhang, K. The effects of nitrogen application rate on the grain physicochemical properties of japonica rice under controlled and flooding irrigation. J. Sci. Food Agric. 2020, 101, 2428–2438. [Google Scholar] [CrossRef]
- Mitsui, T.; Yamakawa, H.; Kobata, T. Molecular physiological aspects of chalking mechanism in rice grains under high-temperature stress. Plant Prod. Sci. 2016, 19, 22–29. [Google Scholar] [CrossRef]
- Cheng, C.; Ali, A.; Shi, Q.H.; Zeng, Y.; Tan, X.; Shang, Q.; Huang, S.; Xie, X.; Zeng, Y. Response of chalkiness in high-quality rice (Oryza sativa L.) to temperature across different ecological regions. J. Cereal Sci. 2019, 87, 39–45. [Google Scholar] [CrossRef]
- Jiang, Z.; Raghavan, S.V.; Hur, J.; Sun, Y.; Liong, S.Y.; Nguyen, V.Q.; Van Pham Dang, T. Future changes in rice yields over the Mekong River Delta due to climate change—Alarming or alerting? Theor. Appl. Climatol. 2019, 137, 545–555. [Google Scholar] [CrossRef]
- Deng, M.H.; Shi, X.J.; Tian, Y.H.; Yin, B.; Zhang, S.L.; Zhu, Z.L.; Kimura, S.D. Optimizing nitrogen fertilizer application for rice production in the Taihu Lake region, China. Pedosphere 2012, 22, 48–57. [Google Scholar] [CrossRef]
- Woli, K.P.; Nagumo, T.; Lie, L.; Hatano, R. Evaluation of the impact of paddy fields on stream water nitrogen concentration in central Hokkaido. Soil Sci. Plant Nutr. 2004, 50, 45–55. [Google Scholar] [CrossRef]
- Ghoneim, A.M.; Gewaily, E.E.; Osman, M.M. Effects of nitrogen levels on growth, yield and nitrogen use efficiency of some newly released Egyptian rice genotypes. Open Agric. 2018, 3, 310–318. [Google Scholar] [CrossRef]
- Squires, E. The impact of different nitrogen fertilizer rates on soil characteristics, plant properties, and economic returns in a southeastern Minnesota cornfield. Available online: https://wp.stolaf.edu/naturallands/files/2015/08/Squires_2013.pdf (accessed on 1 July 2022).
- Sapkota, T.B.; Singh, L.K.; Yadav, A.K.; Khatri-Chhetri, A.; Jat, H.S.; Sharma, P.C.; Stirling, C.M. Identifying optimum rates of fertilizer nitrogen application to maximize economic return and minimize nitrous oxide emission from rice–wheat systems in the Indo-Gangetic Plains of India. Arch. Agron. Soil Sci. 2020, 66, 2039–2054. [Google Scholar] [CrossRef]
- Flores, I. Agroquímicos en China. In ICEX. Instituto de Comercio Exterior. Ministerio de Industria Cormercio y Turismo; Oficina Económica y Comercial de la Embajada de España en Shanghai: Shanghai, China, 2018. [Google Scholar]
- Ulrich-Schad, J.D.; de Jalón, S.G.; Babin, N.; Pape, A.; Prokopy, L.S. Measuring and understanding agricultural producers’ adoption of nutrient best management practices. J. Soil Water Conserv. 2017, 72, 506–518. [Google Scholar] [CrossRef]
- Xiang, L.; Li, Y.-W.; Liu, B.-L.; Zhao, H.-M.; Li, H.; Cai, Q.-Y.; Mo, C.-H.; Wong, M.-H.; Li, Q.X. High ecological and human health risks from microcystins in vegetable fields in southern China. Environ. Int. 2019, 133, 105142. [Google Scholar] [CrossRef]
- Feng, H.; Clara, T.; Huang, F.; Wei, J.; Yang, F. Identification and characterization of the dominant Microcystissp cyanobacteria detected in Lake Dong Ting, China. J. Toxicol. Environ. Health Part A 2019, 82, 1143–1150. [Google Scholar] [CrossRef]
- Sutton, M.; Raghuram, N.; Adhya, T.K.; Baron, J.; Cox, C.; de Vries, W.; Hicks, K.; Howard, C.; Ju, X.; Kanter, D. The Nitrogen Fix: From Nitrogen Cycle Pollution to Nitrogen Circular Economy. In Frontiers 2018/19: Emerging Issues of Environmental Concern; Pinya, S., Ed.; United Nations Environment Programme: Nairobi, Kenya, 2019; pp. 52–64. [Google Scholar]
- Beeckman, F.; Motte, H.; Beeckman, T. Nitrification in agricultural soils: Impact, actors and mitigation. Curr. Opin. Biotechnol. 2018, 50, 166–173. [Google Scholar] [CrossRef]
- Daxini, A.; Ryan, M.; O’Donoghue, C.; Barnes, A.P. Understanding farmers’ intentions to follow a nutrient management plan using the theory of planned behaviour. Land Use Policy 2019, 85, 428–437. [Google Scholar] [CrossRef]
- Berbel, J.; Esteban, E. Droughts as a catalyst for water policy change. Analysis of Spain, Australia (MDB), and California. Glob. Environ. Change 2019, 58, 101969. [Google Scholar] [CrossRef]
- Chen, Y.-H.; Wen, X.-W.; Wang, B.; Nie, P.Y. Agricultural pollution an dregulation: How to subsidize agriculture. J. Clean. Prod. 2017, 164, 258–264. [Google Scholar] [CrossRef]
Month | Water Demand (mm/month) |
---|---|
June | 274 |
July | 67.8 |
August | 49.3 |
September | 58.5 |
October | 32.2 |
Cultivar | P1 | P2 | P5 | P2R | P2O | G1 | G2 | G3 | G4 |
---|---|---|---|---|---|---|---|---|---|
KDML105 | 502.30 | - | 386.50 | 1233.00 | 12.70 | 45.47 | 0.027 | 1 | 0.95 |
Variables | R2 | SD | MAE |
---|---|---|---|
Precipitation (mm/day) | 0.84 | 5.68 | 1.55 |
Temperature (°C) | 0.95 | 3.58 | 1.12 |
Rice Production (kg/ha) | 0.87 | 100.61 | 30.49 |
Experiment | Nitrogen Level (kg/ha) | Rice Productivity (kg/ha) | Percentage of Rice Growing (%) Compared to Control |
---|---|---|---|
Plot 1 | 6 | 4427.4 ± 14.71 | - |
Plot 2 | 12 | 4793.00 ± 25.7 | 8.26 |
Plot 3 | 18 | 4811.00 ± 19.5 | 8.66 |
Plot 4 | 24 | 4821.20 ± 19.6 | 8.89 |
Plot 5 | 30 | 4828.00 ± 8.51 | 9.05 |
Plot6 | 36 | 4829.60 ± 8.80 | 9.08 |
Plot 7 | 42 | 4831.40 ± 8.21 | 9.12 |
Plot 8 | 48 | 4834.80 ± 10.38 | 9.20 |
Plot 9 | 54 | 4836.60 ± 10.13 | 9.24 |
Plot 10 | 60 | 4836.80 ± 9.95 | 9.25 |
Temperature | Precipitation | Rice Productivity | Nitrogen Fertilizer | |
---|---|---|---|---|
Temperature | 1 | 0.42 | 0.92 | −0.91 |
Precipitation | 1 | 0.85 | −0.92 | |
Rice Productivity | 1 | 0.6 | ||
Nitrogen Fertilizer | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amnuaylojaroen, T.; Chanvichit, P. Application of the WRF-DSSAT Modeling System for Assessment of the Nitrogen Fertilizer Used for Improving Rice Production in Northern Thailand. Agriculture 2022, 12, 1213. https://doi.org/10.3390/agriculture12081213
Amnuaylojaroen T, Chanvichit P. Application of the WRF-DSSAT Modeling System for Assessment of the Nitrogen Fertilizer Used for Improving Rice Production in Northern Thailand. Agriculture. 2022; 12(8):1213. https://doi.org/10.3390/agriculture12081213
Chicago/Turabian StyleAmnuaylojaroen, Teerachai, and Pavinee Chanvichit. 2022. "Application of the WRF-DSSAT Modeling System for Assessment of the Nitrogen Fertilizer Used for Improving Rice Production in Northern Thailand" Agriculture 12, no. 8: 1213. https://doi.org/10.3390/agriculture12081213
APA StyleAmnuaylojaroen, T., & Chanvichit, P. (2022). Application of the WRF-DSSAT Modeling System for Assessment of the Nitrogen Fertilizer Used for Improving Rice Production in Northern Thailand. Agriculture, 12(8), 1213. https://doi.org/10.3390/agriculture12081213