Modeling and Optimizing the Performance of Green Forage Maize Harvester Header Using a Combined Response Surface Methodology–Artificial Neural Network Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Harvesting Process of Green Forage Maize
2.2. Test Bench and Test Control System
2.3. Working Principle
2.4. Material Selection
2.5. Experimental Design and Statistical Analysis by RSM
- (1)
- Specific energy consumption
- (2)
- Loss rate
2.6. Artificial Neural Network (ANN)
3. Results and Discussion
3.1. RSM Modeling and Analysis
3.1.1. Analysis of Variance (ANOVA)
3.1.2. Analysis of Response Surface
3.1.3. Optimization
3.2. ANN Modeling and Analysis
3.3. Comparison to the Traditional RSM
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gao, Z.; Wang, W.; Lu, X.; Zhu, F.; Liu, W.; Wang, X.; Lei, C. Bioconversion performance and life table of black soldier fly (Hermetia illucens) on fermented maize straw. J. Clean. Prod. 2019, 230, 974–980. [Google Scholar] [CrossRef]
- FAOSTAT. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 24 March 2023).
- Igathinathane, C.; Womac, A.R.; Sokhansanj, S. Corn stalk orientation effect on mechanical cutting. Biosys. Eng. 2010, 107, 97–106. [Google Scholar] [CrossRef]
- Sun, M.; Xu, X.; Wang, C.; Bai, Y.; Fu, C.; Zhang, L.; Fu, R.; Wang, Y. Environmental burdens of the comprehensive utilization of straw: Wheat straw utilization from a life-cycle perspective. J. Clean. Prod. 2020, 259, 120702. [Google Scholar] [CrossRef]
- Ni, H.; Han, Y.; Cao, J.; Chen, L.W.A.; Tian, J.; Wang, X.; Chow, J.C.; Watson, J.G.; Wang, Q.; Wang, P.; et al. Emission characteristics of carbonaceous particles and trace gases from open burning of crop residues in China. Atmos. Environ. 2015, 123, 399–406. [Google Scholar] [CrossRef]
- Cai, Y.F.; Zheng, Z.H.; Schafer, F.; Stinner, W.; Yuan, X.F.; Wang, H.L.; Cui, Z.J.; Wang, X.F. A review about pretreatment of lignocellulosic biomass in anaerobic digestion: Achievement and challenge in Germany and China. J. Clean. Prod. 2021, 299, 16885. [Google Scholar] [CrossRef]
- Zhou, W.; Pian, R.Q.; Yang, F.Y.; Chen, X.Y.; Zhang, Q. The sustainable mitigation of ruminal methane and carbon dioxide emissions by co-ensiling corn stalk with Neolamarckia cadamba leaves for cleaner livestock production. J. Clean. Prod. 2021, 311, 127680. [Google Scholar] [CrossRef]
- Balafoutis, A.; Beck, B.; Fountas, S.; Vangeyte, J.; Van Der Wal, T.; Soto, I.; Gomez-Barbero, M.; Barnes, A.; Eory, V. Precision agriculture technologies positively contributing to ghg emissions mitigation, farm productivity and economics. Sustainability 2017, 9, 1339. [Google Scholar] [CrossRef]
- Mantoam, E.J.; Angnes, G.; Mekonnen, M.M.; Romanelli, T.L. Energy, carbon and water footprints on agricultural machinery. Biosyst. Eng. 2020, 198, 304–322. [Google Scholar] [CrossRef]
- Lisowski, A.; Klonowski, J.; Sypula, M.; Chlebowski, J.; Kostyra, K.; Nowakowski, T.; Struzyk, A.; Swietochowski, A.; Dabrowska, M.; Mieszkalski, L.; et al. Energy of feeding and chopping of biomass processing in the working units of forage harvester and energy balance of methane production from selected energy plants species. Biomass Bioenergy 2022, 128, 105301. [Google Scholar] [CrossRef]
- Li, Q.J.; Liang, R.Q.; Zhang, C.Y.; Ren, D.M.; Cheng, Y.T.; Zhang, D.X. Design of 4QG-2 silage harvester. J. Agric. Mech. Res. 2017, 9, 129–133. [Google Scholar] [CrossRef]
- Li, Q.J.; Zhong, B.; Ming, L.Q.; Sun, Z.M.; Zhang, D.X.; Gao, Q. Design of cutting conveying mechanism of the harvesting header of 4QZ-45 silage machine. J. Agric. Mech. Res. 2021, 5, 41–46. [Google Scholar] [CrossRef]
- Ige, M.T.; Finner, M.F. Particle movement through the cutterhead of a cylindrical type forage harvester. Trans. ASAE 1975, 18, 1017–1020. [Google Scholar] [CrossRef]
- McRandal, D.M.; McNulty, P.B. Impact cutting behaviour of forage crops I. Mathematical models and laboratory tests. J. Agric. Eng. Res. 1978, 23, 313–328. [Google Scholar] [CrossRef]
- O’Dogherty, M.J. A review of research on forage chopping. J. Agric. Eng. Res. 1982, 27, 267–289. [Google Scholar] [CrossRef]
- Chen, L.D.; Tian, K.Q.; Li, X.Y.; Du, F.B.; Zhang, C.L.; Xie, H. Structural design and mechanical analysis of the cutter of straw feed harvester. J. Chinese Agric. Mech. 2019, 40, 1–4+10. [Google Scholar] [CrossRef]
- Tian, K.Q. Structure Design and Performance Test of 4.5 m Cutting Table of Self-Propelled Straw Feed Harvester. Master’s Dissertation, Hebei Normal University of Science & Technology, Qinhuangdao, China, 2019. [Google Scholar]
- Wang, J.H. Feeding Mechanism Research of Mower Table for Self-Propelled Silage Harvester. Master’s Dissertation, Chinese Academy of Agricultural Mechanization Sciences, Beijing, China, 2011. [Google Scholar]
- Liu, X.; Hou, J.L.; Li, W.; Feng, W.C.; Liu, J.G. Design on header of green fodder harvester. J. Chin. Agric. Mech. 2018, 38, 11–15. [Google Scholar] [CrossRef]
- Gadekar, M.R.; Ahammed, M.M. Modelling dye removal by adsorption onto water treatment residuals using combined response surface methodology-artificial neural network approach. J. Environ. Manag. 2019, 231, 241–248. [Google Scholar] [CrossRef] [PubMed]
- Suresh, T.; Sivarajasekar, N.; Balasubramani, K. Enhanced ultrasonic assisted biodiesel production from meat industry waste (pig tallow) using green copper oxide nanocatalyst: Comparison of response surface and neural network modelling. Renew. Energy 2021, 164, 897–907. [Google Scholar] [CrossRef]
- Taoufik, N.; Boumya, W.; Elmoubarki, R.; Elhalil, A.; Achak, M.; Abdennouri, M.; Barka, N. Experimental design, machine learning approaches for the optimization and modeling of caffeine adsorption. Mater. Today Chem. 2022, 23, 100732. [Google Scholar] [CrossRef]
- Singh, K.P.; Singh, A.K.; Gupta, S.; Rai, P. Modeling and optimization of reductive degradation of chloramphenicol in aqueous solution by zero-valent bimetallic nanoparticles. Environ. Sci. Pollut. Res. 2012, 19, 2063–2078. [Google Scholar] [CrossRef]
- Raj, J.V.A.; Kumar, R.P.; Vijayakumar, B.; Gnansounou, E.; Bharathiraja, B. Modelling and process optimization for biodiesel production from Nannochloropsis salina using artificial neural network. Bioresour. Technol. 2021, 329, 124872. [Google Scholar] [CrossRef]
- Tao, Y.; Wu, D.; Zhang, Q.A.; Sun, D.W. Ultrasound-assisted extraction of phenolics from wine lees: Modeling, optimization and stability of extracts during storage. Ultrason. Sonochem. 2014, 21, 706–715. [Google Scholar] [CrossRef] [PubMed]
- Saldaña-Robles, A.L.; Bustos-Gaytán, A.; Diosdado-De la Peña, J.A.; Saldaña-Robles, A.; Alcántar-Camarena, V.; Balvantín-García, A.; Saldaña-Robles, N. Structural design of an agricultural backhoe using TA, FEA, RSM and ANN. Comput. Electron. Agric. 2020, 172, 105278. [Google Scholar] [CrossRef]
- Srikanth, V.; Rajesh, G.K.; Kothakota, A.; Pandiselvam, R.; Sagarika, N.; Manikantan, M.R.; Sudheer, K.P. Modeling and optimization of developed cocoa beans extractor parameters using box-behnken design and artificial neural network. Comput. Electron. Agric. 2020, 177, 105715. [Google Scholar] [CrossRef]
- Zeng, Z.H.; Chen, M.; Wang, X.M.; Wu, W.B.; Zheng, Z.F.; Hu, Z.B.; Ma, B.Q. Modeling and Optimization for Konjac Vacuum Drying Based on Response Surface Methodology (RSM) and Artificial Neural Network (ANN). Processes 2020, 8, 1430. [Google Scholar] [CrossRef]
- Esonye, C.; Onukwuli, O.D.; Ofoefule, A.U. Optimization of methyl ester production from Prunus Amygdalus seed oil using response surface methodology and Artificial Neural Networks. Renew. Energy 2019, 130, 61–72. [Google Scholar] [CrossRef]
- Yahya, H.S.M.; Abbas, T.; Amin, N.A.S. Optimization of hydrogen production via toluene steam reforming over Ni-Co supported modified-activated carbon using ANN coupled GA and RSM. Int. J. Hydrog. Energy 2021, 46, 24632–24651. [Google Scholar] [CrossRef]
- Xue, Z.; Fu, J.; Chen, Z.; Wang, F.D.; Han, S.P.; Ren, L.Q. Optimization experiment on parameters of chopping device of forage maize harvester. J. Jilin Univ. Eng. Technol. Ed. 2020, 50, 739–748. [Google Scholar] [CrossRef]
- Aydin, M.; Uslu, S.; Çelik, M.B. Performance and emission prediction of a compression ignition engine fueled with biodiesel-diesel blends: A combined application of ANN and RSM based optimization. Fuel 2020, 269, 117472. [Google Scholar] [CrossRef]
- Hariharan, N.; Senthil, V.; Krishnamoorthi, M.; Karthic, S.V. Application of artificial neural network and response surface methodology for predicting and optimizing dual-fuel CI engine characteristics using hydrogen and bio fuel with water injection. Fuel 2020, 270, 117576. [Google Scholar] [CrossRef]
- Talebian-Kiakalaieh, A.; Amin, N.A.S.; Zarei, A.; Noshadi, I. Transesterification of waste cooking oil by heteropoly acid (HPA) catalyst: Optimization and kinetic model. Appl. Energy 2013, 102, 283–292. [Google Scholar] [CrossRef]
- Cemek, B.; Ünlükara, A.; Kurunç, A.; Küçüktopcu, E. Leaf area modeling of bell pepper (Capsicum annuum L.) grown under different stress conditions by soft computing approaches. Comput. Electron. Agric. 2020, 174, 105514. [Google Scholar] [CrossRef]
- Ciric, A.; Krajnc, B.; Heath, D.; Ogrin, N. Response surface methodology and artificial neural network approach for the optimization of ultrasound-assisted extraction of polyphenols from garlic. Food Chem. Toxicol. 2020, 135, 110976. [Google Scholar] [CrossRef] [PubMed]
- Onukwuli, D.O.; Esonye, C.; Ofoefulec, A.U.; Eyisi, R. Comparative analysis of the application of artificial neural network-genetic algorithm and response surface methods-desirability function for predicting the optimal conditions for biodiesel synthesis from Chrysophyllum albidum seed oil. J. Taiwan Inst. Chem. Eng. 2021, 125, 153–167. [Google Scholar] [CrossRef]
- Liu, Z.W.; Xiao, H.; Khatri, P.; Ding, S.L.; Wang, X. A study of a flux switching linear generator with a novel speed amplified mechanism and its optimization for the maximum power output and minimum cogging force of wave energy conversion. Mech. Syst. Signal Process 2022, 166, 108413. [Google Scholar] [CrossRef]
- Chaker, H.; Ameur, N.; Saidi-Bendahou, K.; Djennas, M.; Fourmentin, S. Modeling and Box-Behnken design optimization of photocatalytic parameters for efficient removal of dye by lanthanum-doped mesoporous TiO2. J. Environ. Chem. Eng. 2021, 9, 104584. [Google Scholar] [CrossRef]
- Yolmeh, M.; Jafari, S.M. Applications of response surface methodology in the food industry processes. Food Bioprocess Technol. 2017, 10, 413–433. [Google Scholar] [CrossRef]
- Derringer, G.; Suich, R. Simultaneous optimization of several response variables. J. Qual. Technol. 1980, 12, 214–219. [Google Scholar] [CrossRef]
- Aung, T.; Kim, S.-J.; Eun, J.-B. A hybrid RSM-ANN-GA approach on optimisation of extraction conditions for bioactive component-rich laver (Porphyra dentata) extract. Food Chem. 2022, 366, 130689. [Google Scholar] [CrossRef]
- Sharafi, K.; Pirsaheb, M.; Gupta, V.K.; Agarwal, S.; Moradi, M.; Vasseghian, Y.; Dragoi, E.N. Phenol adsorption on scoria stone as adsorbent- application of response surface method and artificial neural networks. J. Mol. Liq. 2019, 274, 699–714. [Google Scholar] [CrossRef]
- Gupta, S.; Patel, P.; Mondal, P. Biofuels production from pine needles via pyrolysis: Process parameters modeling and optimization through combined RSM and ANN based approach. Fuel 2022, 310, 122230. [Google Scholar] [CrossRef]
- Jiang, Q.J.; He, Z.L.; Wang, Y.W.; Wang, J. Optimizing the working performance of a boat-type tractor using central composite rotatable design and response surface method. Comput. Electron. Agric. 2021, 181, 105944. [Google Scholar] [CrossRef]
- Santana, J.C.C.; Araújo, S.A.; Alves, W.A.L.; Belan, P.A.; Ling, J.G.; Chen, J.C.; Liu, D.H. Optimization of vacuum cooling treatment of postharvest broccoli using response surface methodology combined with genetic algorithm technique. Comput. Electron. Agric. 2018, 144, 209–215. [Google Scholar] [CrossRef]
Parameters | Value |
---|---|
Size (length × width × height) (mm × mm × mm) | 7700 × 2750 × 4050 |
Forward speed/(m·s−1) | ≥0.5 |
Cutting length/mm | 11~29 |
Power/kW | 80 |
Working width/mm | 1800 |
Disc cutter diameter/mm | 738 |
Cutter spped/(r/min) | 1106 |
Drum speed/(r/min) | 36.6 |
Cutter blade thickness/mm | 3 |
Serrated blade edge length/mm | 6 |
Serrated blade edge angle/° | 65 |
Independent Variables | Coded | Range and Levels (Coded) | ||
---|---|---|---|---|
−1 | 0 | +1 | ||
Forward speed (km/h) | X1 | 1.2 | 1.6 | 2.0 |
Cutting height (mm) | X2 | 100 | 150 | 200 |
Number of rows | X3 | 2 | 3 | 4 |
Run | Forward Speed X1/(km/h) | Cutting Height X2/(mm) | Number of Rows X3 | Specific Energy Consumption Y1/(kWh/t) | Loss Rate Y2/(%) |
---|---|---|---|---|---|
1 | −1 | 1 | 0 | 0.232 | 1.34 |
2 | 0 | 1 | 1 | 0.171 | 0.71 |
3 | −1 | 0 | 1 | 0.193 | 0.3 |
4 | 0 | 0 | 0 | 0.199 | 1.29 |
5 | 1 | 0 | −1 | 0.246 | 2.02 |
6 | −1 | −1 | 0 | 0.274 | 1.76 |
7 | 1 | −1 | 0 | 0.189 | 2.87 |
8 | 0 | 0 | 0 | 0.204 | 1.08 |
9 | 1 | 1 | 0 | 0.159 | 2.52 |
10 | 1 | 0 | 1 | 0.153 | 0.62 |
11 | 0 | 1 | −1 | 0.231 | 2.36 |
12 | 0 | 0 | 0 | 0.213 | 1.13 |
13 | 0 | −1 | −1 | 0.303 | 2.45 |
14 | −1 | 0 | −1 | 0.341 | 1.27 |
15 | 0 | −1 | 1 | 0.186 | 1.77 |
16 | 0 | 0 | 0 | 0.195 | 1.31 |
17 | 0 | 0 | 0 | 0.215 | 1.42 |
No. | Transfer Function | Mean Squared Error (MSE) | Determination Coefficient (R2) | |
---|---|---|---|---|
Hidden Layer | Output Layer | |||
1 | tansig | purelin | 0.01904 | 0.9365 |
2 | tansig | tansig | 0.002770 | 0.9908 |
3 | logsig | purelin | 0.005388 | 0.9820 |
4 | logsig | tansig | 0.003139 | 0.9895 |
5 | purelin | purelin | 0.08267 | 0.7243 |
6 | purelin | tansig | 0.07913 | 0.7361 |
Source | Specific Energy Consumption (kWh/t) | Loss Rate (%) | ||
---|---|---|---|---|
F-Value | p-Value | F-Value | p-Value | |
Model | 33.66 | <0.0001 ** | 22.03 | 0.0002 ** |
X1 | 82.82 | <0.0001 ** | 35.08 | 0.0006 ** |
X2 | 24.39 | 0.0017 ** | 11.45 | 0.0117 * |
X3 | 168.55 | <0.0001 ** | 68.63 | <0.0001 ** |
X1X2 | 0.2778 | 0.6144 | 0.0304 | 0.8664 |
X1X3 | 5.84 | 0.0464 * | 1.15 | 0.3193 |
X2X3 | 6.27 | 0.0408 * | 5.85 | 0.0462 * |
X12 | 2.87 | 0.1340 | 0.2968 | 0.6028 |
X22 | 0.0393 | 0.8485 | 70.93 | <0.0001 ** |
X32 | 11.30 | 0.0121 * | 6.37 | 0.0396 * |
Lack of fit | 2.69 | 0.1818 | 3.52 | 0.1277 |
Name | Goal | Lower Limit | Upper Limit | Weight | Importance | Desirability | |
---|---|---|---|---|---|---|---|
Lower | Upper | ||||||
Forward speed | In range | 1.20 | 2.00 | 1 | 1 | 3 | 1 |
Cutting height | In range | 100 | 200 | 1 | 1 | 3 | 1 |
Number of rows | In range | 2 | 4 | 1 | 1 | 3 | 1 |
Specific energy consumption | minimize | 0.153 | 0.341 | 1 | 0.1 | 3 | 0.990928 |
Loss rate | minimize | 0.300 | 2.87 | 1 | 0.1 | 3 | 0.998215 |
Statistical Parameters | Specific Energy Consumption (kWh/t) | Loss Rate (%) | ||
---|---|---|---|---|
RSM | RSM–ANN | RSM | RSM–ANN | |
R2 | 0.9774 | 0.9925 | 0.9658 | 0.9906 |
MSE | 0.00005341 | 0.00001775 | 0.01662 | 0.004558 |
RMSE | 0.007308 | 0.004214 | 0.1289 | 0.06752 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xue, Z.; Fu, J.; Fu, Q.; Li, X.; Chen, Z. Modeling and Optimizing the Performance of Green Forage Maize Harvester Header Using a Combined Response Surface Methodology–Artificial Neural Network Approach. Agriculture 2023, 13, 1890. https://doi.org/10.3390/agriculture13101890
Xue Z, Fu J, Fu Q, Li X, Chen Z. Modeling and Optimizing the Performance of Green Forage Maize Harvester Header Using a Combined Response Surface Methodology–Artificial Neural Network Approach. Agriculture. 2023; 13(10):1890. https://doi.org/10.3390/agriculture13101890
Chicago/Turabian StyleXue, Zhao, Jun Fu, Qiankun Fu, Xiaokang Li, and Zhi Chen. 2023. "Modeling and Optimizing the Performance of Green Forage Maize Harvester Header Using a Combined Response Surface Methodology–Artificial Neural Network Approach" Agriculture 13, no. 10: 1890. https://doi.org/10.3390/agriculture13101890
APA StyleXue, Z., Fu, J., Fu, Q., Li, X., & Chen, Z. (2023). Modeling and Optimizing the Performance of Green Forage Maize Harvester Header Using a Combined Response Surface Methodology–Artificial Neural Network Approach. Agriculture, 13(10), 1890. https://doi.org/10.3390/agriculture13101890