Climate Change Impacts on Vegetable Crops: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Impact of Climate Change on Productivity
3.2. Pest and Disease Control Methods and Techniques
3.3. Soil Conservation and Water Resource Management
3.4. Technologies and Innovations for Sustainable Horticulture
4. Conclusions
Future Research Perspectives
- Geographical bias: Most studies are from developed countries, which limits the applicability and global relevance of the results. It is essential to extend research to developing countries and regions with different climates. This would provide a more nuanced understanding of how climate change affects vegetable crops in different geographical and socio-economic contexts.
- Crop diversity: Focusing on a limited number of crops, such as tomatoes, limits the general applicability of the results. Future research should include a wider variety of vegetables to better understand species-specific adaptations and develop more comprehensive adaptation strategies.
- Nutritional quality: Few studies address the impact of climate change on the nutritional quality of vegetables. A detailed investigation of how climate change may affect the nutritional composition of vegetables, including vitamins, minerals and antioxidants, is needed.
- Technological integration: While emerging technologies such as the Internet of Things are promising, their practical applicability remains underexplored. Further studies are needed to assess the effectiveness and feasibility of integrating emerging technologies into vegetable production systems, particularly in resource-constrained contexts.
- Funding and scientific activity: The large volume of research in developed countries may lead to bias in the perception of where climate change impacts are most severe or most studied. Future research should take account of this bias and seek to provide a more balanced global perspective, including exploring alternative sources of funding and international collaborations.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Porter, J.R.; Challinor, A.J.; Henriksen, C.B.; Howden, S.M.; Martre, P.; Smith, P. Invited Review: Intergovernmental Panel on Climate Change, Agriculture, and Food—A Case of Shifting Cultivation and History. Global Chang. Biol. 2019, 25, 2518–2529. [Google Scholar] [CrossRef] [PubMed]
- Jasper, J.; Wagstaff, C.; Bell, L. Growth Temperature Influences Postharvest Glucosinolate Concentrations and Hydrolysis Product Formation in First and Second Cuts of Rocket Salad. Postharvest Biol. Technol. 2020, 163, 111157. [Google Scholar] [CrossRef] [PubMed]
- Raza, A.; Razzaq, A.; Mehmood, S.; Zou, X.; Zhang, X.; Lv, Y.; Xu, J. Impact of Climate Change on Crops Adaptation and Strategies to Tackle Its Outcome: A Review. Plants 2019, 8, 34. [Google Scholar] [CrossRef] [PubMed]
- Falco, C.; Donzelli, F.; Olper, A. Climate Change, Agriculture and Migration: A Survey. Sustainability 2018, 10, 1405. [Google Scholar] [CrossRef]
- Chel, A.; Kaushik, G. Renewable Energy for Sustainable Agriculture. Agronomy Sust. Developm. 2011, 31, 91–118. [Google Scholar] [CrossRef]
- Georgopoulou, E.; Mirasgedis, S.; Sarafidis, Y.; Vitaliotou, M.; Lalas, D.P.; Theloudis, I.; Giannoulaki, K.-D.; Dimopoulos, D.; Zavras, V. Climate Change Impacts and Adaptation Options for the Greek Agriculture in 2021–2050: A Monetary Assessment. Clim. Risk Manag. 2017, 16, 164–182. [Google Scholar] [CrossRef]
- Korres, N.E.; Norsworthy, J.K.; Tehranchian, P.; Gitsopoulos, T.K.; Loka, D.A.; Oosterhuis, D.M.; Gealy, D.R.; Moss, S.R.; Burgos, N.R.; Miller, M.R.; et al. Cultivars to Face Climate Change Effects on Crops and Weeds: A Review. Agron. Sustain. Dev. 2016, 36, 12. [Google Scholar] [CrossRef]
- Parajuli, R.; Gustafson, D.; Asseng, S.; Stöckle, C.O.; Kruse, J.; Zhao, C.; Intrapapong, P.; Matlock, M.D.; Thoma, G. Protocol for Life Cycle Assessment Modeling of US Fruit and Vegetable Supply Chains- Cases of Processed Potato and Tomato Products. Data Brief 2021, 34, 106639. [Google Scholar] [CrossRef]
- Iglesias, A.; Garrote, L.; Quiroga, S.; Moneo, M. A Regional Comparison of the Effects of Climate Change on Agricultural Crops in Europe. Clim. Chang. 2012, 112, 29–46. [Google Scholar] [CrossRef]
- Nemecek, T.; Weiler, K.; Plassmann, K.; Schnetzer, J.; Gaillard, G.; Jefferies, D.; García–Suárez, T.; King, H.; Milà I Canals, L. Estimation of the Variability in Global Warming Potential of Worldwide Crop Production Using a Modular Extrapolation Approach. J. Clean. Prod. 2012, 31, 106–117. [Google Scholar] [CrossRef]
- Ciscar, J.-C.; Iglesias, A.; Feyen, L.; Szabó, L.; Van Regemorter, D.; Amelung, B.; Nicholls, R.; Watkiss, P.; Christensen, O.B.; Dankers, R.; et al. Physical and Economic Consequences of Climate Change in Europe. Proc. Natl. Acad. Sci. USA 2011, 108, 2678–2683. [Google Scholar] [CrossRef] [PubMed]
- Saeed, F.; Chaudhry, U.K.; Raza, A.; Charagh, S.; Bakhsh, A.; Bohra, A.; Ali, S.; Chitikineni, A.; Saeed, Y.; Visser, R.G.F.; et al. Developing Future Heat-Resilient Vegetable Crops. Funct. Integr. Genom. 2023, 23, 47. [Google Scholar] [CrossRef] [PubMed]
- Dumitru, E.A.; Sterie, C.M.; Rodino, S.; Butu, M. Consumer Preferences in the Purchase of Agri-Food Products: Implications for the Development of Family Farms. Agriculture 2023, 13, 1478. [Google Scholar] [CrossRef]
- Payen, S.; Basset-Mens, C.; Perret, S. LCA of Local and Imported Tomato: An Energy and Water Trade-Off. J. Clean. Prod. 2015, 87, 139–148. [Google Scholar] [CrossRef]
- Lobell, D.B.; Bänziger, M.; Magorokosho, C.; Vivek, B. Nonlinear Heat Effects on African Maize as Evidenced by Historical Yield Trials. Nature Clim. Chang. 2011, 1, 42–45. [Google Scholar] [CrossRef]
- Reidsma, P.; Wolf, J.; Kanellopoulos, A.; Schaap, B.F.; Mandryk, M.; Verhagen, J.; Van Ittersum, M.K. Climate Change Impact and Adaptation Research Requires Farming Systems Analysis and Integrated Assessment: A Case Study in the Netherlands. Procedia Environ. Sci. 2015, 29, 286–287. [Google Scholar] [CrossRef]
- Malhotra, S.K. Horticultural Crops and Climate Change: A Review. Indian J. Agric. Sci. 2017, 87, 12–22. [Google Scholar] [CrossRef]
- Ramlall, I. Gauging the Impact of Climate Change on Food Crops Production in Mauritius: An Econometric Approach. Int. J. Clim. Chang. Strateg. Manag. 2014, 6, 332–355. [Google Scholar] [CrossRef]
- Harrison, P.A.; Dunford, R.W.; Holman, I.P.; Rounsevell, M.D.A. Climate Change Impact Modelling Needs to Include Cross-Sectoral Interactions. Nat. Clim. Chang. 2016, 6, 885–890. [Google Scholar] [CrossRef]
- Smith, P.; Olesen, J.E. Synergies between the Mitigation of, and Adaptation to, Climate Change in Agriculture. J. Agric. Sci. 2010, 148, 543–552. [Google Scholar] [CrossRef]
- Garrett, K.A.; Dendy, S.P.; Frank, E.E.; Rouse, M.N.; Travers, S.E. Climate Change Effects on Plant Disease: Genomes to Ecosystems. Annu. Rev. Phytopathol. 2006, 44, 489–509. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.K.; Mishra, P.; Kashyap, S.P.; Karkute, S.G.; Singh, P.M.; Rai, N.; Bahadur, A.; Behera, T.K. Molecular Insights into Mechanisms Underlying Thermo-Tolerance in Tomato. Front. Plant Sci. 2022, 13, 1040532. [Google Scholar] [CrossRef] [PubMed]
- Guo, C.; Liu, X.; He, X. A Global Meta-Analysis of Crop Yield and Agricultural Greenhouse Gas Emissions under Nitrogen Fertilizer Application. Sci. Total Environ. 2022, 831, 154982. [Google Scholar] [CrossRef]
- Dou, J.; Zhou, J.; Zhao, X.; Lei, L.; Wang, L.; Shi, W.; Zhang, D.; Wei, W.; Zhu, G.; Huang, J.; et al. Optimization of Planting Structure Underthe Background of Water-Saving Irrigationin Shiyang River Basin, China. Pol. J. Environ. Stud. 2022, 31, 5009–5026. [Google Scholar] [CrossRef] [PubMed]
- Wimalasiri, E.M.; Jahanshiri, E.; Perego, A.; Azam-Ali, S.N. A Novel Crop Shortlisting Method for Sustainable Agricultural Diversification across Italy. Agronomy 2022, 12, 1636. [Google Scholar] [CrossRef]
- Tripathi, A.; Tripathi, D.K.; Chauhan, D.K.; Kumar, N.; Singh, G.S. Paradigms of Climate Change Impacts on Some Major Food Sources of the World: A Review on Current Knowledge and Future Prospects. Agric. Ecosyst. Environ. 2016, 216, 356–373. [Google Scholar] [CrossRef]
- Scheelbeek, P.F.D.; Moss, C.; Kastner, T.; Alae-Carew, C.; Jarmul, S.; Green, R.; Taylor, A.; Haines, A.; Dangour, A.D. United Kingdom’s Fruit and Vegetable Supply Is Increasingly Dependent on Imports from Climate-Vulnerable Producing Countries. Nat. Food 2020, 1, 705–712. [Google Scholar] [CrossRef]
- Zhang, Y.; Mu, J.; Musumba, M.; McCarl, B.; Gu, X.; Zhou, Y.; Cao, Z.; Li, Q. The Role of Climate Factors in Shaping China’s Crop Mix: An Empirical Exploration. Sustainability 2018, 10, 3757. [Google Scholar] [CrossRef]
- Sundling, C.; Jakobsson, M. How Do Urban Walking Environments Impact Pedestrians’ Experience and Psychological Health? A Systematic Review. Sustainability 2023, 15, 10817. [Google Scholar] [CrossRef]
- Xie, H.; Lau, T.C. Evidence-Based Green Human Resource Management: A Systematic Literature Review. Sustainability 2023, 15, 10941. [Google Scholar] [CrossRef]
- Mavromatis, T.; Georgoulias, A.K.; Akritidis, D.; Melas, D.; Zanis, P. Spatiotemporal Evolution of Seasonal Crop-Specific Climatic Indices under Climate Change in Greece Based on EURO-CORDEX RCM Simulations. Sustainability 2022, 14, 17048. [Google Scholar] [CrossRef]
- Ellegaard, O. The Application of Bibliometric Analysis: Disciplinary and User Aspects. Scientometrics 2018, 116, 181–202. [Google Scholar] [CrossRef]
- Jung, Y.; Jang, H.; Matthews, K.R. Effect of the Food Production Chain from Farm Practices to Vegetable Processing on Outbreak Incidence. Microb. Biotechnol. 2014, 7, 517–527. [Google Scholar] [CrossRef] [PubMed]
- Tasca, A.L.; Nessi, S.; Rigamonti, L. Environmental Sustainability of Agri-Food Supply Chains: An LCA Comparison between Two Alternative Forms of Production and Distribution of Endive in Northern Italy. J. Clean. Prod. 2017, 140, 725–741. [Google Scholar] [CrossRef]
- Alliaume, F.; Rossing, W.A.H.; Tittonell, P.; Jorge, G.; Dogliotti, S. Reduced Tillage and Cover Crops Improve Water Capture and Reduce Erosion of Fine Textured Soils in Raised Bed Tomato Systems. Agric. Ecosyst. Environ. 2014, 183, 127–137. [Google Scholar] [CrossRef]
- Liu, Y.; Li, D.; Wan, S.; Wang, F.; Dou, W.; Xu, X.; Li, S.; Ma, R.; Qi, L. A Long Short-term Memory-based Model for Greenhouse Climate Prediction. Int. J. Intell. Syst. 2022, 37, 135–151. [Google Scholar] [CrossRef]
- Pérez Neira, D.; Soler Montiel, M.; Delgado Cabeza, M.; Reigada, A. Energy Use and Carbon Footprint of the Tomato Production in Heated Multi-Tunnel Greenhouses in Almeria within an Exporting Agri-Food System Context. Sci. Total Environ. 2018, 628–629, 1627–1636. [Google Scholar] [CrossRef]
- Malhi, G.S.; Kaur, M.; Kaushik, P.; Alyemeni, M.N.; Alsahli, A.A.; Ahmad, P. Arbuscular Mycorrhiza in Combating Abiotic Stresses in Vegetables: An Eco-Friendly Approach. Saudi J. Biol. Sci. 2021, 28, 1465–1476. [Google Scholar] [CrossRef]
- Azam, A.; Khan, I.; Mahmood, A.; Hameed, A. Yield, Chemical Composition and Nutritional Quality Responses of Carrot, Radish and Turnip to Elevated Atmospheric Carbon Dioxide: Responses of Carrot, Radish and Turnip to Carbon Dioxide. J. Sci. Food Agric. 2013, 93, 3237–3244. [Google Scholar] [CrossRef]
- Shrestha, R.P.; Nepal, N. An Assessment by Subsistence Farmers of the Risks to Food Security Attributable to Climate Change in Makwanpur, Nepal. Food Sec. 2016, 8, 415–425. [Google Scholar] [CrossRef]
- Cammarano, D.; Ronga, D.; Di Mola, I.; Mori, M.; Parisi, M. Impact of Climate Change on Water and Nitrogen Use Efficiencies of Processing Tomato Cultivated in Italy. Agric. Water Manag. 2020, 241, 106336. [Google Scholar] [CrossRef]
- Silva, R.S.; Kumar, L.; Shabani, F.; Picanço, M.C. Assessing the Impact of Global Warming on Worldwide Open Field Tomato Cultivation through CSIRO-Mk3·0 Global Climate Model. J. Agric. Sci. 2017, 155, 407–420. [Google Scholar] [CrossRef]
- Min, J.; Lu, K.; Sun, H.; Xia, L.; Zhang, H.; Shi, W. Global Warming Potential in an Intensive Vegetable Cropping System as Affected by Crop Rotation and Nitrogen Rate: Air. Clean Soil Air Water 2016, 44, 766–774. [Google Scholar] [CrossRef]
- Tarek, H.; Aly, H.; Eisa, S.; Abul-Soud, M. Optimized Deep Learning Algorithms for Tomato Leaf Disease Detection with Hardware Deployment. Electronics 2022, 11, 140. [Google Scholar] [CrossRef]
- Potopová, V.; Zahradníček, P.; Štěpánek, P.; Türkott, L.; Farda, A.; Soukup, J. The Impacts of Key Adverse Weather Events on the Field-Grown Vegetable Yield Variability in the Czech Republic from 1961 to 2014: The impacts of key adverse weather events on the crop vegetables. Int. J. Climatol. 2017, 37, 1648–1664. [Google Scholar] [CrossRef]
- Ahmad, W.; Ayyub, C.M.; Shehzad, M.A.; Ziaf, K.; Ijaz, M.; Sher, A.; Abbas, T.; Shafi, J. Supplemental Potassium Mediates Antioxidant Metabolism, Physiological Processes, and Osmoregulation to Confer Salt Stress Tolerance in Cabbage (Brassica Oleracea L.). Hortic. Environ. Biotechnol. 2019, 60, 853–869. [Google Scholar] [CrossRef]
- Bisbis, M.; Gruda, N.; Blanke, M. Securing Horticulture in a Changing Climate—A Mini Review. Horticulturae 2019, 5, 56. [Google Scholar] [CrossRef]
- Litskas, V.D.; Migeon, A.; Navajas, M.; Tixier, M.-S.; Stavrinides, M.C. Impacts of Climate Change on Tomato, a Notorious Pest and Its Natural Enemy: Small Scale Agriculture at Higher Risk. Environ. Res. Lett. 2019, 14, 084041. [Google Scholar] [CrossRef]
- Schmidt, N.; Zinkernagel, J. Model and Growth Stage Based Variability of the Irrigation Demand of Onion Crops with Predicted Climate Change. Water 2017, 9, 693. [Google Scholar] [CrossRef]
- Pérez-Alfocea, F. Why should we investigate vegetable grafting? Acta Hortic. 2015, 1086, 21–29. [Google Scholar] [CrossRef]
- Hoshikawa, K.; Pham, D.; Ezura, H.; Schafleitner, R.; Nakashima, K. Genetic and Molecular Mechanisms Conferring Heat Stress Tolerance in Tomato Plants. Front. Plant Sci. 2021, 12, 786688. [Google Scholar] [CrossRef] [PubMed]
- Stoilova, T.; Van Zonneveld, M.; Roothaert, R.; Schreinemachers, P. Connecting Genebanks to Farmers in East Africa through the Distribution of Vegetable Seed Kits. Plant Genet. Resour. 2019, 17, 306–309. [Google Scholar] [CrossRef]
- Koundinya, A.V.V.; Kumar, P.P.; Ashadevi, R.K.; Hegde, V.; Kumar, P.A. Adaptation and Mitigation of Climate Change in Vegetable Cultivation: A Review. J. Water Clim. Chang. 2018, 9, 17–36. [Google Scholar] [CrossRef]
- Cecílio Filho, A.B.; Nascimento, C.S.; Pereira, B.D.J.; Nascimento, C.S. Nitrogen Fertilisation Impacts Greenhouse Gas Emissions, Carbon Footprint, and Agronomic Responses of Beet Intercropped with Arugula. J. Environ. Manag. 2022, 307, 114568. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Kim, S.; Kiniry, J.R.; Ku, K.-M. A Hybrid Decision Tool for Optimizing Broccoli Production in a Changing Climate. Hortic. Environ. Biotechnol. 2021, 62, 299–312. [Google Scholar] [CrossRef]
- Abdelkader, M.; Zargar, M.; Murtazova, K.M.-S.; Nakhaev, M.R. Life Cycle Assessment of the Cultivation Processes for the Main Vegetable Crops in Southern Egypt. Agronomy 2022, 12, 1527. [Google Scholar] [CrossRef]
- Kazandjiev, V. Climate Change: Fundamentals, Agroclimatic Conditions in Bulgaria, and Resilience Agriculture through Adaptation. In Implications of Climate Change and Disasters on Military Activities; NATO Science for Peace and Security Series C: Environmental Security; Nikolov, O., Veeravalli, S., Eds.; Springer: Dordrecht, The Netherlands, 2017; pp. 119–135. ISBN 978-94-024-1070-9. [Google Scholar]
- Lohr, V.I. Climate Change Literacy in Postsecondary Horticultural Education in the United States. HortTechnol. Hortte 2014, 24, 132–137. [Google Scholar] [CrossRef]
- Singh, D.; Bisen, M.; Shukla, R.; Prabha, R.; Maurya, S.; Reddy, Y.; Singh, P.; Rai, N.; Chaubey, T.; Chaturvedi, K.; et al. Metabolomics-Driven Mining of Metabolite Resources: Applications and Prospects for Improving Vegetable Crops. Int. J. Mol. Sci. 2022, 23, 12062. [Google Scholar] [CrossRef]
- Ma, M.; Taylor, P.W.J.; Chen, D.; Vaghefi, N.; He, J.-Z. Major Soilborne Pathogens of Field Processing Tomatoes and Management Strategies. Microorganisms 2023, 11, 263. [Google Scholar] [CrossRef]
- Yonekura, T.; Kihira, A.; Shimada, T.; Miwa, M.; Aruzate, A.; Izuta, T.; Ogaw, K. Impacts of O3 and CO2 Enrichment on Growth of Komatsuna (Brassica Campestris) and Radish (Raphanus Sativus). Phyton-Ann. Rei Bot. 2005, 45, 229–235. [Google Scholar]
- Hansen, L.; Sorgho, R.; Mank, I.; Nayna Schwerdtle, P.; Agure, E.; Bärnighausen, T.; Danquah, I. Home Gardening in sub-Saharan Africa: A Scoping Review on Practices and Nutrition Outcomes in Rural Burkina Faso and Kenya. Food Energy Secur. 2022, 11, e388. [Google Scholar] [CrossRef]
- Jaenicke, H.; Virchow, D. The Contribution of Horticulture to Sustainable Development. Acta Hortic. 2018, 1205, 13–20. [Google Scholar] [CrossRef]
- Le Quillec, S.; Brajeul, E.; Lesourd, D.; Loda, D.; Herraux, R. Using temperature integration over 24 hours in soilless tomato cultivation in greenhouse: Application in the west of france. Acta Hortic. 2011, 893, 907–914. [Google Scholar] [CrossRef]
- Lee, K.; Rajametov, S.N.; Jeong, H.-B.; Cho, M.-C.; Lee, O.-J.; Kim, S.-G.; Yang, E.-Y.; Chae, W.-B. Comprehensive Understanding of Selecting Traits for Heat Tolerance during Vegetative and Reproductive Growth Stages in Tomato. Agronomy 2022, 12, 834. [Google Scholar] [CrossRef]
- Temmen, J.; Montenegro, A.; Juras, S.; Field, J.S.; DeGrand, J. Floating the Sweet Potato to Polynesia: Considering the Feasibility of Oceanic Drift for the Prehistoric Introduction of the Sweet Potato (Ipomoea Batatas) to Pacific Islands. Quat. Sci. Rev. 2022, 295, 107709. [Google Scholar] [CrossRef]
- Saqib, M.; Anjum, M.A. Mitigation of climate change effect in sweet pepper (Capsicum Annuum L.) through adjustment of planting time. Pak. J. Agri. Sci 2021, 58, 919–927. [Google Scholar] [CrossRef]
- Lounsbury, N.P.; Lounsbury, B.B.; Warren, N.D.; Smith, R.G. Tarping Cover Crops Facilitates Organic No-till Cabbage Production and Suppresses Weeds. HortScience 2022, 57, 508–515. [Google Scholar] [CrossRef]
- Pérez-Alfocea, F. Grafting to Address Grand Challenges. Acta Hortic. 2021, 1302, 9–20. [Google Scholar] [CrossRef]
- Bhusal, K.; Udas, E.; Bhatta, L.D. Ecosystem-Based Adaptation for Increased Agricultural Productivity by Smallholder Farmers in Nepal. PLoS ONE 2022, 17, e0269586. [Google Scholar] [CrossRef]
- Kumar, P.; Kar, A.; Singh, D.R.; Perumal, A.; Shivamurthy, S.G.C.; Reddy, K.V.; Badal, P.S.; Lala Kamble, A.; Kamalvanshi, V.; Jha, G.K.; et al. Protected Cultivation of Horticultural Crops in Uttarakhand: An Economic Analysis. Agronomy 2021, 11, 692. [Google Scholar] [CrossRef]
- Kalanda Joshua, M.D.; Ngongondo, C.; Chipungu, F.; Malidadi, C.; Liwenga, E.; Majule, A.; Stathers, T.; Kosgei, J.R.; Lamboll, R. Strengthening Horticultural Innovation Systems for Adaptation to Effects of Urbanisation and Climate Variability in Peri-Urban Areas. In Climate Variability and Change in Africa; Sustainable Development Goals Series; Matondo, J.I., Alemaw, B.F., Sandwidi, W.J.P., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 137–156. ISBN 978-3-030-31542-9. [Google Scholar]
- Van Loon, J.; Heuts, R.F.; Schrevens, E.; Vansteenkiste, J.; Diels, J. Decision support in horticultural production—Impact on accuracy from a fully monitored to a minimal data framework. Acta Hortic. 2012, 957, 281–288. [Google Scholar] [CrossRef]
- Choudhary, M.L.; Patel, V.B.; Siddiqui, M.W.; Mahdl, S.S. (Eds.) Climate Change: Impact On Productivity And Quality Of Temperate Fruits And Its Mitigation Strategies. In Climate Dynamics in Horticultural Science; Apple Academic Press: Palm Bay, FL, USA, 2015; Volume 1, pp. 53–74. ISBN 978-0-429-17385-1. [Google Scholar]
- Klostermann, H.R.; Zinkernagel, J.; Kahlen, K. Geisenheim FACE for Vegetable Crops—Methodological Framework. Procedia Environ. Sci. 2015, 29, 106. [Google Scholar] [CrossRef]
- Yang, Q.; Zeng, X.; Kuang, W.; Liu, D. Heavy Metal Enrichment and Edible Safety of Two Vegetables in Rare Earth Tailings. Acad. J. Agric. Res. 2016, 4, 268–276. [Google Scholar] [CrossRef]
- Tang, R.; Supit, I.; Hutjes, R.; Zhang, F.; Wang, X.; Chen, X.; Zhang, F.; Chen, X. Modelling Growth of Chili Pepper (Capsicum Annuum L.) with the WOFOST Model. Agric. Syst. 2023, 209, 103688. [Google Scholar] [CrossRef]
- Flores-Saavedra, M.; Plazas, M.; Vilanova, S.; Prohens, J.; Gramazio, P. Induction of Water Stress in Major Solanum Crops: A Review on Methodologies and Their Application for Identifying Drought Tolerant Materials. Sci. Hortic. 2023, 318, 112105. [Google Scholar] [CrossRef]
- Carrasquilla-Batista, A.; Chacon-Rodriguez, A.; Solorzano-Quintana, M. Using IoT Resources to Enhance the Accuracy of Overdrain Measurements in Greenhouse Horticulture. In Proceedings of the 2016 IEEE 36th Central American and Panama Convention (CONCAPAN XXXVI), San Jose, Costa Rica, 9–11 November 2016; pp. 1–5. [Google Scholar]
- Siomos, A.S.; Koularmanis, K.; Tsouvaltzis, P. The Impacts of the Emerging Climate Change on Broccoli (Brassica Oleracea L. Var. Italica Plenck.) Crop. Horticulturae 2022, 8, 1032. [Google Scholar] [CrossRef]
- Manea, V.; Balas, C.; Toma, D.-M.; Burnichi, F.; Jitea, D.; Mirea, E.; Toader, A.-C.; Staicu, B.-G.; Dorogan, A. Vegetable Culture vs. Climate Change. Innovative Solutions.Part 1. Research on the Chemical Analysis of Buzau White Onion Bulbscultivated Using Diatomite and Trichoderma. Ind. Textila 2022, 73, 77–83. [Google Scholar] [CrossRef]
Approach | Document Type | 1998–2002 | 2003–2007 | 2008–2012 | 2013–2017 | 2018–2023 | Total |
---|---|---|---|---|---|---|---|
Including vegetables | Article | 1 | - | 5 | 10 | 37 | 53 |
Article; Book Chapter | - | - | 1 | 3 | - | 4 | |
Article; Data Paper | - | - | - | - | 1 | 1 | |
Proceedings Paper | 1 | - | - | 4 | 3 | 8 | |
Review | 1 | - | 1 | 3 | 6 | 11 | |
Total | 3 | 0 | 7 | 20 | 47 | 77 | |
Exclusive vegetables | Article | - | - | - | 9 | 18 | 27 |
Article; Book Chapter | - | - | - | 1 | 1 | 2 | |
Article; Proceedings Paper | - | 1 | - | - | - | 1 | |
Proceedings Paper | - | - | 2 | 5 | 2 | 9 | |
Review | - | - | - | 2 | 12 | 14 | |
Total | 0 | 1 | 2 | 17 | 33 | 53 | |
Excluse | Article | - | 1 | 1 | 20 | 29 | 51 |
Article; Book Chapter | - | - | - | 1 | 2 | 3 | |
Article; Proceedings Paper | - | - | - | 1 | - | 1 | |
Editorial Material; Book Chapter | 1 | - | - | - | - | 1 | |
Proceedings Paper | - | 1 | 2 | 7 | 1 | 11 | |
Review | - | - | 3 | 2 | 16 | 21 | |
Review; Book Chapter | - | - | - | 1 | - | 1 | |
Total | 1 | 2 | 6 | 32 | 48 | 89 | |
Total general | 4 | 3 | 15 | 69 | 128 | 219 |
Authors | Year of Publication | Citations | Objectives | Methods | Results |
---|---|---|---|---|---|
Jung, Y.J.; et al. [33] | 2014 | 114 | Microbiological risk assessment of vegetables | Analysis of disease outbreaks and laboratory studies | Potential increase in risks due to climate change |
Tasca, A.L.; et al. [34] | 2017 | 83 | Comparing the environmental impact of two supply chains | Comparing organic and integrated production | The need to improve organic farming techniques |
Alliaume, F.; et al. [35] | 2014 | 71 | Impact of different soil management practices | Field study with four soil management practices | Significant reduction of run-off and soil erosion |
Liu, Y.W.; et al. [36] | 2022 | 62 | Climate prediction in greenhouses | Model LSTM | Robust, more efficient model |
Neira, D.P.; et al. [37] | 2018 | 38 | Energy use and carbon footprint analysis | Life cycle analysis | Increasing productivity but also energy demand and carbon footprint |
Malhotra, S.K. [17] | 2017 | 33 | Climate change impact assessment | Analysis of physiological responses | The need to adapt horticulture |
Malhi, G.S.; et al. [38] | 2021 | 33 | Climate change impact investigation | Arbuscular mycorrhizal association examination | Mycorrhiza improves plant stress tolerance |
Azam, A.; et al. [39] | 2013 | 32 | Impact of atmospheric CO2 on yield and nutritional quality | Yield assessment under increased CO2 conditions | Evaluation of yield and chemical characteristics under increased CO2 |
Shrestha, R.P. and Nepal, N. [40] | 2016 | 25 | Impact of climate change on food security | Climate data analysis, interviews, group discussions | Climate change affects food security |
Cammarano, D.; et al. [41] | 2020 | 24 | Agricultural crop simulation model evaluation | Use of field data, selection of climate projections, use of DSSAT model | Model successfully simulated tomato response to nitrogen fertilization |
Silva, R.S.; et al. [42] | 2017 | 23 | Assessing the impact of climate change on tomato cultivation | Use CLIMatic indEX climate model, A2 emissions scenario, CSIRO-Mk30 climate model | Current favourable areas will become unsuitable for tomato growing |
Min, J.; et al. [43] | 2016 | 17 | Estimation of global warming potential in vegetable growing system | Comparative field experiment | Changing crop rotation reduced N2O emissions and increased economic benefit |
Tarek, H.; et al. [44] | 2022 | 16 | Identification of tomato diseases | Evaluation of pre-trained models | 98.99–99.81% accuracy |
Potopova, V.; et al. [45] | 2017 | 16 | Temperature and precipitation response estimation | Statistical analysis of historical data | Positive effects of warming |
Ahmad, W.; et al. [46] | 2019 | 13 | Understanding stress tolerance in cabbage | NaCl stress testing | Growth and regulation of mechanisms under saline conditions |
Jasper, J.; et al. [2] | 2020 | 13 | Impact of temperatures on arugula | Growing at different temperatures | Arugula survival decreases at 40 °C |
Bisbis, M.B.; et al. [47] | 2019 | 12 | Climate impact assessment on crops | Literature review | Negative impact of climate change |
Litskas, V.D.; et al. [48] | 2019 | 10 | Climate impact on tomatoes | Modelling irrigation conditions | Potential for red spider mite outbreaks increases |
Schmidt, N. and Zinkernagel, J. [49] | 2017 | 9 | Impact of climate on onion irrigation | Simulation of various scenarios | Increasing water demand |
Perez-Alfocea, F. [50] | 2015 | 9 | Increasing agricultural productivity | Study of plant interactions | Contributing to sustainable agriculture |
Saeed, F.; et al. [12] | 2023 | 8 | Heat-resistant vegetables | Omics technologies and genomic editing | Vegetables more resistant to high temperatures |
Hoshikawa, K.; et al. [51] | 2021 | 7 | Climate impact on food security | Literary review | Reducing production and genetic diversity |
Stoilova, T.; et al. [52] | 2019 | 7 | The role of seed kits in supporting agriculture | Distribution and monitoring of seed kits | Increasing vegetable diversity |
Koundinya, A.V.V.; et al. [53] | 2018 | 6 | Climate change adaptation strategies | Analysis of genomics and phenomics | Multiple adaptation strategies identified |
Cecilio, A.B.; et al. [54] | 2022 | 6 | Effect of nitrogen on growth and greenhouse gas emissions | Evaluation of nitrogen efficiency | Higher winter beet productivity |
Kim, S.; et al. [55] | 2021 | 5 | Impact of climate on broccoli production | Plant-oriented cropping pattern | Close yield linked to nitrogen application |
Abdelkader, M.; et al. [56] | 2022 | 4 | Energy footprint and greenhouse gas emissions in vegetable production | Analysis of energy consumption and GHG emissions | Potato production has the lowest environmental impact |
Kazandjiev, V. [57] | 2017 | 3 | Maximising yield by controlling the plant growth environment | Protected cultivation techniques | Successful growing of fruit and vegetables under controlled conditions |
Lohr, V.I. [58] | 2014 | 3 | Assessing awareness of climate change in horticulture | Survey on the inclusion of climate change in courses | Most programmes do not offer specific courses on climate change |
Singh, D.P.; et al. [59] | 2022 | 3 | Exploring metabilome to improve vegetable crop performance | Metabilomic analysis technologies | Identification of metabolic biomarkers for improved molecular crop improvement |
Ma, M.X.; et al. [60] | 2023 | 2 | Examining the impact of soilborne pathogens on the processing tomato crop | Literature review | Identification of various management methods for disease control |
Yonekura, T.; et al. [61] | 2005 | 2 | Investigating the effects of O3 and CO2 on the growth of komatsuna and radish crop plants | Exposure of plants to different levels of O3 and CO2 | O3 reduced leaf area and biomass, while CO2 significantly increased biomass |
Singh, A.K.; et al. [22] | 2022 | 2 | Understanding the molecular mechanisms of heat resistance in tomatoes | Scientific literature review | Identifying the importance of generative tissue research and genetic and epigenetic mechanisms in heat resistance |
Hansen, L.S.; et al. [62] | 2022 | 2 | Analysis of gardening in sub-Saharan Africa | Literature review | Variation in home gardens |
Jaenicke, H. and Virchow, D. [63] | 2018 | 2 | Analysis of the role of horticulture in sustainable development | Evaluation of the SDGs | Horticulture contributes to several SDGs |
Le Quillec, S.; et al. [64] | 2011 | 2 | Evaluating the effectiveness of a temperature strategy | Studies from 2006–2008 | Energy consumption reduced by 5–15% |
Lee, K.; et al. [65] | 2022 | 2 | Impact of heat stress on tomatoes | Review of studies | Negative impact on yield |
Temmen, J.; et al. [66] | 2022 | 1 | Evaluation of ocean drift of sweet potato | Laboratory and numerical experiments | Feasible, but seed viability decreases |
Saqib, M. and Anjum, M.A. [67] | 2021 | 1 | Impact of planting date on sweet pepper | Evaluation of transplants | Better performance in early plantings |
Lounsbury, N.P.; et al. [68] | 2022 | 1 | The efficiency of prelayers in cabbage production | Cover crop + use of tarpaulins | Heavier cousin in no-till system |
Perez-Alfocea, F. [69] | 2021 | 1 | The potential of grafting in vegetable production | Identification of problems that can be solved by grafting | Propose tolerable root to parasitic broomrapes |
Bhusal, K.; et al. [70] | 2022 | 1 | Adapting to climate change in Nepal | Participatory field assessment | 30.5% and 31.1% increase in bitter harvest |
Kumar, P.; et al. [71] | 2021 | 1 | Economic analysis of protected cultivation in Uttarakhand | Survey and focus group discussions with 96 farmers | Protected cultivation is a highly profitable activity |
Joshua, M.D.K.; et al. [72] | 2020 | 0 | Sustainable technologies to improve vegetable production in peri-urban context | Participatory Action Research (PAR) approach | Significant improvements in vegetable production |
Van Loon, J.; et al. [73] | 2012 | 0 | Influence of daily weather variations on the use of decision support systems | Development of a cauliflower growth model | Proposed framework for using a cauliflower growth model with minimum data |
Choudhary et al. [74] | 2015 | 0 | Climate stress resistance of vegetables | Identification of resistant germplasm | Holistic approach needed |
Klostermann, H.R.; et al. [75] | 2015 | 0 | CO2 impact on vegetable productivity | Experiments in the FACE facility | Results not yet available |
Yang, Q.H.; et al. [76] | 2016 | 0 | Assessment of heavy metal pollution | Plasma mass spectrometry | Heavy metal content determined |
Tang, R.L.; et al. [77] | 2023 | 0 | Adaptation of the WOFOST model for chilli peppers | Use of field data from 2021 | Good growth simulation |
Flores-Saavedra, M.; et al. [78] | 2023 | 0 | Review of water stress induction methods | Analysis of stress induction techniques | Water stress affects crop performance |
Carrasquilla-Batista, A.; et al. [79] | 2016 | 0 | Introducing IoT in greenhouses | Integration of an IoT platform | Improved drainage measurements |
Siomos, A.S.; et al. [80] | 2022 | 0 | Highlighting climate impacts on broccoli | Analysis of temperature requirements | The significant impact of climate change |
Manea, V.; et al. [81] | 2022 | 0 | Identification of organic fertiliser alternatives | Chemical analysis of onion bulbs | Effectiveness of organic diatomite and Trichoderma |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dumitru, E.A.; Berevoianu, R.L.; Tudor, V.C.; Teodorescu, F.-R.; Stoica, D.; Giucă, A.; Ilie, D.; Sterie, C.M. Climate Change Impacts on Vegetable Crops: A Systematic Review. Agriculture 2023, 13, 1891. https://doi.org/10.3390/agriculture13101891
Dumitru EA, Berevoianu RL, Tudor VC, Teodorescu F-R, Stoica D, Giucă A, Ilie D, Sterie CM. Climate Change Impacts on Vegetable Crops: A Systematic Review. Agriculture. 2023; 13(10):1891. https://doi.org/10.3390/agriculture13101891
Chicago/Turabian StyleDumitru, Eduard Alexandru, Rozi Liliana Berevoianu, Valentina Constanta Tudor, Florina-Ruxandra Teodorescu, Dalila Stoica, Andreea Giucă, Diana Ilie, and Cristina Maria Sterie. 2023. "Climate Change Impacts on Vegetable Crops: A Systematic Review" Agriculture 13, no. 10: 1891. https://doi.org/10.3390/agriculture13101891
APA StyleDumitru, E. A., Berevoianu, R. L., Tudor, V. C., Teodorescu, F. -R., Stoica, D., Giucă, A., Ilie, D., & Sterie, C. M. (2023). Climate Change Impacts on Vegetable Crops: A Systematic Review. Agriculture, 13(10), 1891. https://doi.org/10.3390/agriculture13101891