Rhizosphere Bacteria Biofertiliser Formulations Improve Lettuce Growth and Yield under Nursery and Field Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant and Soil Preparations
2.2. Microbial Inoculum Preparation
2.3. Pot Trials under Controlled Laboratory Conditions
2.4. Lettuce Trials at Commercial Farm
2.5. Preliminary Trials at the Nursery
2.6. Nursery and Field Trials with the Green Moon Cultivar
2.7. Nursery and Field Trials with the Liston Cultivar
2.8. Measurements and Statistical Analysis
3. Results
3.1. Rhizosphere Bacterial Treatments under Controlled Pot Trial Conditions Demonstrated the Growth Promotion of Lettuce Plants
3.2. Plant Growth Promotion Was Confirmed in a Nursery Trial at a Commercial Lettuce Farm
3.3. Sprinkling of Microbial Biofertilisers Was Adequate to Achieve Plant Growth Promotion in Nursery Trials
3.4. Plant Growth Promotion Effects Continued from the Nursery to Field Stage
3.5. A Single Treatment before Transplanting Was Sufficient for Growth Promotion in the Field
3.6. Microbial Biofertiliser Treatments Were also Effective on Heat-Tolerant Cultivars and Liston Cultivars
3.7. A Single Application with Microbial Biofertiliser Formulations at Transplanting Was Sufficient for Growth Promotion
3.8. The Pouring of Microbial Fertilisers and Repeat Inoculations Were Effective for Growth Promotion
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mou, B. Lettuce. In Vegetables I Asteraceae, Brassicaceae, Chenopodicaceae, and Cucurbitaceae, 1st ed.; Prohens-Tomás, J., Nuez, F., Eds.; Springer: New York, NY, USA, 2008; pp. 75–116. [Google Scholar]
- Trinh, C.S.; Lee, H.; Lee, W.J.; Lee, S.J.; Chung, N.; Han, J.; Kim, J.; Hong, S.-W.; Lee, H. Evaluation of the plant growth-promoting activity of Pseudomonas nitroreducens in Arabidopsis thaliana and Lactuca sativa. Plant Cell Rep. 2018, 37, 873–885. [Google Scholar] [CrossRef] [PubMed]
- Food and Agriculture Organization Corporate Statistical Database (FAOSTAT). Production Quantities of Lettuce and Chicory by Country. 2020. Available online: http://www.fao.org/faostat/en/#data/QC/visualize/ (accessed on 31 August 2022).
- Pascual, J.A.; Ceglie, F.; Tuzel, Y.; Koller, M.; Koren, A.; Hitchings, R.; Tittarelli, F. Organic substrate for transplant production in organic nurseries. A Review. Agron. Sustain. Dev. 2018, 38, 35. [Google Scholar] [CrossRef]
- Vetrano, F.; Miceli, C.; Angileri, V.; Frangipane, B.; Moncada, A.; Miceli, A. Effect of bacterial inoculum and fertigation management on nursery and field production of lettuce plants. Agronomy 2020, 10, 1477. [Google Scholar] [CrossRef]
- Kubota, C.; McClure, M.A.; Kokalis-Burelle, N.; Bausher, M.G.; Rosskopf, E.N. Vegetable Grafting: History, Use, and Current Technology Status in North America. Hortic. Sci. 2008, 43, 1664–1669. [Google Scholar] [CrossRef]
- Liu, J.; Roland Leatherwood, W.; Mattson, N.S. Irrigation method and fertilizer concentration differentially alter growth of vegetable transplants. HortTechnology 2012, 22, 56–63. [Google Scholar] [CrossRef]
- Soundy, P.; Cantliffe, D.; Hochmuth, G.; Stoffella, P. Management of nitrogen and irrigation in lettuce transplant production affects transplant root and shoot development and subsequent crop yields. Hortic. Sci. 2005, 40, 607–610. [Google Scholar] [CrossRef]
- Russo, V. Biological amendment, fertilizer rate, and irrigation frequency for organic bell pepper transplant production. Hortic. Sci. 2006, 41, 1402–1407. [Google Scholar] [CrossRef]
- Wang, X.; Xing, Y. Effects of irrigation and nitrogen fertilizer input levels on soil NO3−-N content and vertical distribution in greenhouse tomato (Lycopersicum esculentum Mill.). Scientifica 2016, 2016, 5710915. [Google Scholar] [CrossRef]
- Tuzel, Y.; Oztekin, G.B.; Tan, E. Use of different growing media and nutrition in organic seedling production. In Acta Horticulturae; International Society for Horticultural Science: Leuven, Belgium, 2015; Volume 1107, pp. 165–171. [Google Scholar]
- Zhao, C.; Hu, C.; Huang, W.; Sun, X.; Tan, Q.; Di, H. Lysimeter study of nitrate leaching and optimum nitrogen application rates for intensively irrigated vegetable production systems in Central China. J. Soils Sediments 2010, 10, 9–17. [Google Scholar] [CrossRef]
- Basu, A.; Prasad, P.; Das, S.N.; Kalam, S.; Sayyed, R.Z.; Reddy, M.S.; Enshasy, H.E. Plant Growth Promoting Rhizobacteria (PGPR) as green bioinoculants: Recent developments, constraints, and prospects. Sustainability 2021, 13, 1140. [Google Scholar] [CrossRef]
- Baweja, P.; Kumar, S.; Kumar, G. Fertilizers and pesticides: Their impact on soil health and environment. In Soil Health; Springer International Publishing: Cham, Switzerland, 2020; pp. 265–285. [Google Scholar]
- Knobeloch, L.; Salna, B.; Hogan, A.; Postle, J.; Anderson, H. Blue Babies and Nitrate-Contaminated Well Water. Environ. Health Perspect. 2000, 108, 675–678. [Google Scholar] [CrossRef] [PubMed]
- Ward, M.H.; Jones, R.R.; Brender, J.D.; de Kok, T.M.; Weyer, P.J.; Nolan, B.T.; Villanueva, C.M.; van Breda, S.G. Drinking water nitrate and human health: An updated review. Int. J. Environ. Res. Public Health 2018, 15, 1557. [Google Scholar] [CrossRef] [PubMed]
- Khatoon, Z.; Huang, S.; Rafique, M.; Fakhar, A.; Kamran, M.A.; Santoyo, G. Unlocking the Potential of Plant Growth-Promoting Rhizobacteria on Soil Health and the Sustainability of Agricultural Systems. J. Environ. Manag. 2020, 273, 111118. [Google Scholar] [CrossRef] [PubMed]
- Bashan, Y.; de-Bashan, L.E.; Prabhu, S.R.; Hernandez, J.-P. Advances in Plant Growth-Promoting Bacterial Inoculant Technology: Formulations and Practical Perspectives (1998–2013). Plant Soil 2014, 378, 1–33. [Google Scholar] [CrossRef]
- Hamid, S.; Skinder, B.M.; Mir, M.Y. Biofertilisers: Sustainable Approach for Growing Population Needs. In Microbiota and Biofertilizers; Hakeem, K.R., Dar, G.H., Mehmood, M.A., Bhat, R.A., Eds.; Springer International Publishing AG: Cham, Switzerland, 2020; pp. 123–141. [Google Scholar]
- Singh, H.B.; Keswani, C.; Reddy, M.S.; Sansinenea, E.; García-Estrada, C. Secondary Metabolites of Plant Growth Promoting Rhizomicroorganisms; Springer Singapore Pte. Limited: Singapore, 2019. [Google Scholar]
- Shafi, J.; Tian, H.; Ji, M. Bacillus species as versatile weapons for plant pathogens: A review. Biotechnol. Biotechnol. Equip. 2017, 31, 446–459. [Google Scholar] [CrossRef]
- Kröber, M.; Wibberg, D.; Grosch, R.; Eikmeyer, F.; Verwaaijen, B.; Chowdhury, P.S.; Hartmann, A.; Pühler, A.; Schlüter, A. Effect of the Strain Bacillus amyloliquefaciens FZB42 on the Microbial Community in the Rhizosphere of Lettuce Under Field Conditions Analyzed by Whole Metagenome Sequencing. Front. Microbiol. 2014, 5, 252. [Google Scholar]
- Cipriano, M.A.; Lupatini, M.; Santos, L.; Silva, M.; da Roesch, L.F.; Destefano, S.; Freitas, S.; Kuramae, E. Lettuce and rhizosphere microbiome responses to growth promoting Pseudomonas species under field conditions. FEMS Microbiol. Ecol. 2016, 92, fiw197. [Google Scholar] [CrossRef]
- Ansari, F.A.; Jabeen, M.; Ahmad, I. Pseudomonas azotoformans FAP5, a novel biofilm-forming PGPR strain, alleviates drought stress in wheat plant. Intern. J. Environ. Sci. Technol. 2021, 18, 3855–3870. [Google Scholar] [CrossRef]
- Garrido-Sanz, D.; Meier-Kolthoff, J.P.; Goeker, M.; Martin, M.; Rivilla, R.; Redondo-Nieto, M. Genomic and genetic diversity within the Pseudomonas fluorescens Complex. PLoS ONE 2016, 11, e0150183. [Google Scholar] [CrossRef]
- Haque, M.M.; Mosharaf, M.K.; Khatun, M.; Haque, M.A.; Biswas, M.S.; Islam, M.S.; Islam, M.M.; Shozib, H.B.; Miah, M.M.U.; Mollah, A.H.; et al. Biofilm producing rhizobacteria with multiple plant growth-promoting traits promote growth of tomato under water-deficit stress. Front. Microbiol. 2020, 11, 542053. [Google Scholar] [CrossRef]
- Houida, S.; Yakkou, L.; Kaya, L.O.; Bilen, S.; Fadil, M.; Raouane, M.; El Harti, A.; Amghar, S. Biopriming of maize seeds with plant growth-promoting bacteria isolated from the earthworm Aporrectodea molleri: Effect on seed germination and seedling growth. Lett. Appl. Microbiol. 2022, 75, 61–69. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Rajkumar, M.; Moreno, A.; Zhang, C.; Freitas, H. Serpentine endophytic bacterium Pseudomonas azotoformans ASS1 accelerates phytoremediation of soil metals under drought stress. Chemosphere 2017, 185, 75–85. [Google Scholar] [CrossRef] [PubMed]
- Saha, M.; Maurya, B.R.; Meena, V.S.; Bahadur, I.; Kumar, A. Identification and characterization of potassium solubilizing bacteria (KSB) from Indo-Gangetic Plains of India. Biocatal. Agricult. Biotechnol. 2016, 7, 202–209. [Google Scholar] [CrossRef]
- Sang, M.K.; Kim, E.N.; Han, G.D.; Kwack, M.S.; Jeun, Y.C.; Kim, K.D. Priming-mediated systemic resistance in cucumber induced by Pseudomonas azotoformans GC-B19 and Paenibacillus elgii MM-B22 against Colletotrichum orbiculare. Phytopathology 2014, 104, 834–842. [Google Scholar] [CrossRef] [PubMed]
- Mustafa, S.; Kabir, S.; Shabbir, U.; Batool, R. Plant growth promoting rhizobacteria in sustainable agriculture: From theoretical to pragmatic approach. Symbiosis 2019, 78, 115–123. [Google Scholar] [CrossRef]
- Saeed, Q.; Xiukang, W.; Haider, F.U.; Kučerik, J.; Mumtaz, M.Z.; Holatko, J.; Naseem, M.; Kintl, A.; Ejaz, M.; Naveed, M.; et al. Rhizosphere bacteria in plant growth promotion, biocontrol, and bioremediation of contaminated sites: A comprehensive review of effects and mechanisms. Intern. J. Mol. Sci. 2021, 22, 10529. [Google Scholar] [CrossRef]
- Singh, P.; Singh, R.K.; Zhou, Y.; Wang, J.; Jiang, Y.; Shen, N.; Wang, Y.; Yang, L.; Jiang, M. Unlocking the strength of plant growth promoting Pseudomonas in improving crop productivity in normal and challenging environments: A review. J. Plant Interact. 2022, 17, 220–238. [Google Scholar] [CrossRef]
- Silambarasan, S.; Logeswari, P.; Ruiz, A.; Cornejo, P.; Kannan, V.R. Influence of plant beneficial Stenotrophomonas rhizophila strain CASB3 on the degradation of diuron-contaminated saline soil and improvement of Lactuca sativa growth. Nat. Environ. Pollut. Technol. 2020, 27, 35195–35207. [Google Scholar] [CrossRef]
- Mirzaee, H.; Ariens, E.; Blaskovich, M.A.T.; Clark, R.J.; Schenk, P.M. Biostimulation of bacteria in liquid culture for identification of new antimicrobial compounds. Pharmaceuticals 2021, 14, 1232. [Google Scholar] [CrossRef]
- Arkhipov, A.; Carvalhais, L.C.; Schenk, P.M. PGPR control Phytophthora capsici in tomato through induced systemic resistance, early hypersensitive response and direct antagonism in a cultivar-specific manner. Eur. J. Plant Pathol. 2023, 1–22. [Google Scholar] [CrossRef]
- Haney, C.H.; Samuel, B.S.; Bush, J.; Ausubel, F.M. Associations with rhizosphere bacteria can confer an adaptive advantage to plants. Nat. Plants 2015, 1, 15051. [Google Scholar] [CrossRef]
- Pieterse, C.M.J.; de Jonge, R.; Berendsen, R.L. The soil-borne supremacy. J. Plant Sci. Res. 2016, 21, 171–173. [Google Scholar] [CrossRef] [PubMed]
- Tabassum, B.; Khan, A.; Tariq, M.; Ramzan, M.; Iqbal Khan, M.S.; Shahid, N.; Aaliya, K. Bottlenecks in commercialisation and future prospects of PGPR. Agric. Ecosyst. Environ. Appl. Soil Ecol. 2017, 121, 102–117. [Google Scholar] [CrossRef]
- Trivedi, P.; Schenk, P.M.; Wallenstein, M.D.; Singh, B.K. Tiny Microbes, Big yields: Enhancing food crop production with biological solutions. Microb. Biotechnol. 2017, 10, 999–1003. [Google Scholar] [CrossRef] [PubMed]
- Wallenstein, M.D. Managing and manipulating the rhizosphere microbiome for plant health: A systems approach. Rhizosphere 2017, 3, 230–232. [Google Scholar] [CrossRef]
- Wintermans, P.C.A.; Bakker, P.A.H.M.; Pieterse, C.M.J. Natural genetic variation in Arabidopsis for responsiveness to plant growth-promoting rhizobacteria. Plant Mol. Biol. 2016, 90, 623–634. [Google Scholar] [CrossRef]
- Adhikari, P.; Jain, R.; Sharma, A.; Pandey, A. Plant growth promotion at low temperature by phosphate-solubilizing Pseudomonas spp. isolated from high-altitude Himalayan soil. Microb. Ecol. 2021, 82, 677–687. [Google Scholar] [CrossRef]
- Arkhipova, T.N.; Veselov, S.U.; Melentiev, A.I.; Martynenko, E.V.; Kudoyarova, G.R. Ability of bacterium Bacillus subtilis to produce cytokinins and to influence the growth and endogenous hormone content of lettuce plants. Plant Soil 2005, 272, 201–209. [Google Scholar] [CrossRef]
- Astorga-Eló, M.; Gonzalez, S.; Acuña, J.J.; Sadowsky, M.J.; Jorquera, M.A. Rhizobacteria from ‘flowering desert’ events contribute to the mitigation of water scarcity stress during tomato seedling germination and growth. Sci. Rep. 2021, 11, 13745. [Google Scholar] [CrossRef]
- Baliyan, N.; Dhiman, S.; Dheeman, S.; Kumar, S.; Arora, N.K.; Maheshwari, D.K. Optimization of gibberellic acid production in endophytic Bacillus cereus using response surface methodology and its use as plant growth regulator in chickpea. J. Plant Growth Regul. 2022, 41, 3019–3029. [Google Scholar] [CrossRef]
- Goudarzi, T.; Tabrizi, L.; Alikhani, H.A.; Nazeri, V.; Najafi, F. Phytostimulation properties of indigenous plant growth-promoting bacteria from licorice (Glycyrrhiza glabra L.): Benefits for seed germination and seedling growth. Int. J. Hortic. Sci. Technol. 2023, 10, 53–68. [Google Scholar]
- Radhakrishnan, R.; Lee, I.J. Gibberellins producing Bacillus methylotrophicus KE2 supports plant growth and enhances nutritional metabolites and food values of lettuce. Plant Physiol. Biochem. 2016, 109, 181–189. [Google Scholar] [CrossRef] [PubMed]
- Saeid, A.; Prochownik, E.; Dobrowolska-Iwanek, J. Phosphorus solubilization by Bacillus species. Molecules 2018, 23, 2897. [Google Scholar] [CrossRef] [PubMed]
- Satyaprakash, M.; Nikitha, T.; Reddi, E.U.B.; Sadhana, B.; Vani, S.S. Phosphorous and phosphate solubilising bacteria and their role in plant nutrition. Intern. J. Curr. Microbiol. Appl. Sci. 2017, 6, 2133–2144. [Google Scholar]
- Wang, C.; Zhao, D.; Qi, G.; Mao, Z.; Hu, X.; Du, B.; Liu, K.; Ding, Y. Effects of Bacillus velezensis FKM10 for Promoting the Growth of Malus hupehensis Rehd. and Inhibiting Fusarium verticillioides. Front. Microbiol. 2020, 10, 2889. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, J.; Wang, X.; An, J.; You, C.; Zhou, B.; Hao, Y. The growth-promoting mechanism of Brevibacillus laterosporus AMCC100017 on apple rootstock Malus robusta. Hortic. Plant J. 2022, 8, 22–34. [Google Scholar] [CrossRef]
- Fan, B.; Wang, C.; Song, X.; Ding, X.; Wu, L.; Wu, H.; Gao, X.; Borriss, R. Bacillus velezensis FZB42 in 2018: The gram-positive model strain for plant growth promotion and biocontrol. Front. Microbiol. 2018, 9, 2491. [Google Scholar] [CrossRef]
- Ngalimat, M.S.; Yahaya, R.S.R.; Baharudin, M.M.A.A.; Yaminudin, S.M.; Karim, M.; Ahmad, S.A.; Sabri, S. A review on the biotechnological applications of the operational group Bacillus amyloliquefaciens. Microorganisms 2021, 9, 614. [Google Scholar] [CrossRef]
- Tsotetsi, T.; Nephali, L.; Malebe, M.; Tugizimana, F. Bacillus for plant growth promotion and stress resilience: What have we learned? Plants 2022, 11, 2482. [Google Scholar] [CrossRef]
- Alina, S.O.; Constantinscu, F.; Petruţa, C.C. Biodiversity of Bacillus subtilis group and beneficial traits of Bacillus species useful in plant protection. Roman. Biotechnol. Lett. 2015, 20, 10737–10750. [Google Scholar]
- Kang, S.-M.; Khan, A.L.; Waqas, M.; Asaf, S.; Lee, K.-E.; Park, Y.-G.; Kim, A.-Y.; Khan, M.A.; You, Y.-H.; Lee, I.-J. Integrated phytohormone production by the plant growth-promoting rhizobacterium Bacillus tequilensis SSB07 induced thermotolerance in soybean. J. Plant Interact. 2019, 14, 416–423. [Google Scholar] [CrossRef]
- Shao, J.; Li, S.; Zhang, N.; Cui, X.; Zhou, X.; Zhang, G.; Shen, Q.; Zhang, R. Analysis and cloning of the synthetic pathway of the phytohormone indole-3-acetic acid in the plant-beneficial Bacillus amyloliquefaciens SQR9. Microb. Cell Factories 2015, 14, 130. [Google Scholar] [CrossRef] [PubMed]
- Goryluk-Salmonowicz, A.; Orzeszko-Rywka, A.; Piórek, M.; Rekosz-Burlaga, H.; Otłowska, A.O.; Gozdowski, D.; Błaszczyk, M. Plant growth promoting bacterial endophytes isolated from Polish herbal plants. Acta Sci. Pol. Hortorum Cultus 2018, 17, 101–110. [Google Scholar] [CrossRef]
- Paungfoo-Lonhienne, C.; Lonhienne, T.G.; Rentsch, D.; Robinson, N.; Christie, M.; Webb, R.I.; Gamage, H.K.; Carroll, B.J.; Schenk, P.M.; Schmidt, S. Plants can use protein as a nitrogen source without assistance from other organisms. Proc. Natl. Acad. Sci. USA 2008, 105, 4524–4529. [Google Scholar] [CrossRef] [PubMed]
- Arif, I.; Batool, M.; Schenk, P.M. Plant Microbiome Engineering: Expected Benefits for Improved Crop Growth and Resilience. Trends Biotechnol. 2020, 38, 1385–1396. [Google Scholar] [CrossRef] [PubMed]
- Khalediyan, N.; Weisany, W.; Schenk, P.M. Arbuscular mycorrhizae and rhizobacteria improve growth, nutritional status and essential oil production in Ocimum basilicum and Satureja hortensis. Ind. Crops Prod. 2021, 160, 113163. [Google Scholar] [CrossRef]
- Weisany, W.; Tahir, N.A.; Schenk, P.M. Coriander/soybean intercropping and mycorrhizae application lead to overyielding and changes in essential oil profiles. Eur. J. Agron. 2021, 126, 126283. [Google Scholar] [CrossRef]
- Agrahari, R.K.; Singh, P.; Koyama, H.; Panda, S.K. Plant-Microbe Interactions for Sustainable Agriculture in the Post-Genomic Era. Curr. Genet. 2020, 21, 168–178. [Google Scholar] [CrossRef]
- Berlanga-Clavero, M.V.; Molina-Santiago, C.; Vicente, A.; Romero, D. More than words: The chemistry behind the interactions in the plant holobiont. Environ. Microbiol. 2020, 22, 4532–4544. [Google Scholar] [CrossRef]
- Yadav, A.N. Beneficial plant-microbe interactions for agricultural sustainability. J. Appl. Biol. Biotechnol. 2021, 9, 1–4. [Google Scholar] [CrossRef]
- Schreiter, S.; Sandmann, M.; Smalla, K.; Grosch, R. Soil type dependent rhizosphere competence and biocontrol of two bacterial inoculant strains and their effects on the rhizosphere microbial community of field-grown lettuce. PLoS ONE 2014, 9, e103726. [Google Scholar] [CrossRef] [PubMed]
Trial Number | Experiment Type | Field Row Number | Plant Cultivar | Number of Plants (Per Treatment) | Bacteria Name | Bacteria Volume (OD 600 nm of 0.1) | Treatment Type | Treatment Time | Harvest/Measure Time | Measured Parameters |
Potting trial | Preliminary experiment | NA | Green Cos | 30 | 33YE; UQ9000N | 2 mL per plant | 1st treatment: Seed treatment | Week 0 | Week 2 | Surface area |
2nd treatment Soil treatment | Week 4 | Week 6 | Fresh weight, dry weight | |||||||
Preliminary trial | Preliminary experiment | NA | Green Moon | 60 | 33YE | 2 mL per plant | Seed treatment | Week 0 | Week 2 | Surface area |
Week 4 | Week 4 | Plant height, fresh weight, chlorophyll content | ||||||||
Trial 1 | Nursery experiment | NA | Green Moon | 144 | 33YE; UQ9000N; YEP | 2 mL per plant | 1st treatment: Soil treatment | Week 1 | Week 6 | Plant height |
2nd treatment Soil treatment | Week 3 | |||||||||
Trial 2 | Field experiment, transplant at week 6 | 68L | Green Moon | 144 | 33YE; UQ9000N; YEP | 2 mL per plant | 1st treatment: Seed treatment | Week 0 | Week 8 | Head diameter |
2nd treatment: Soil treatment | Week 2 | Week 10 | Fresh weight | |||||||
Trial 3 | Field experiment, transplant at week 6 | 71L | Green Moon | 144 | 33YE | 5 mL per plant | Soil treatment | Week 5 | Week 7 | Head diameter |
Week 9 | Head diameter | |||||||||
Week 12 | Fresh weight | |||||||||
Trial 4 | Nursery experiment | NA | Liston | 20 | 33YE; UQ9000N; UQ4510A; 4YE; YEP | 2 mL per plant | Seed treatment | Week 0 | Week 2 | Surface area |
Week 4 | Plant height, fresh weight, dry weight | |||||||||
Trial 5 | Field experiment, transplant at week 6 | 74L | Liston | 60 | 33YE; YEP; water | 5 mL per plant | Soil treatment | Week 6 | Week 8 | Head diameter |
Trial 6 | Field experiment, transplant at week 6 | 74L | Liston | 60; 10 | 33YE(pip); 33YE(Po); UQ9000N; 4YE; YEP; water | 2 mL per plant | Seed treatment | Week 0 | Week 8 | Head diameter, fresh weight |
Soil treatment | Week 6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shao, Z.; Arkhipov, A.; Batool, M.; Muirhead, S.R.; Harry, M.S.; Ji, X.; Mirzaee, H.; Carvalhais, L.C.; Schenk, P.M. Rhizosphere Bacteria Biofertiliser Formulations Improve Lettuce Growth and Yield under Nursery and Field Conditions. Agriculture 2023, 13, 1911. https://doi.org/10.3390/agriculture13101911
Shao Z, Arkhipov A, Batool M, Muirhead SR, Harry MS, Ji X, Mirzaee H, Carvalhais LC, Schenk PM. Rhizosphere Bacteria Biofertiliser Formulations Improve Lettuce Growth and Yield under Nursery and Field Conditions. Agriculture. 2023; 13(10):1911. https://doi.org/10.3390/agriculture13101911
Chicago/Turabian StyleShao, Ziyu, Alexander Arkhipov, Maria Batool, Sean R. Muirhead, Muchineripi S. Harry, Xuan Ji, Hooman Mirzaee, Lilia C. Carvalhais, and Peer M. Schenk. 2023. "Rhizosphere Bacteria Biofertiliser Formulations Improve Lettuce Growth and Yield under Nursery and Field Conditions" Agriculture 13, no. 10: 1911. https://doi.org/10.3390/agriculture13101911
APA StyleShao, Z., Arkhipov, A., Batool, M., Muirhead, S. R., Harry, M. S., Ji, X., Mirzaee, H., Carvalhais, L. C., & Schenk, P. M. (2023). Rhizosphere Bacteria Biofertiliser Formulations Improve Lettuce Growth and Yield under Nursery and Field Conditions. Agriculture, 13(10), 1911. https://doi.org/10.3390/agriculture13101911