Predicting Quality Properties of Pears during Storage Using Hyper Spectral Imaging System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Data Acquisition
2.3. Chemical Properties
2.4. Data Pre-Processing
Analysis of Outliers in PLSR Models Based on Different Pre-Processing Methods
2.5. Partial Least Squares Regression (PLSR)
2.6. Model Accuracy Assessment
3. Results and Discussion
3.1. SSC
3.2. Vitamin C
3.3. pH
3.4. TA
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yi, X.; Zhao, B.; Tang, Y.; Xu, Z. Transcriptome analysis reveals the regulation of metabolic processes during the post-harvest cold storage of pear. Genomics 2020, 112, 3933–3942. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, J.; Jiao, C.; Yin, X.; Fei, Z.; Wu, Q.; Chen, K. Transcriptome analysis provides insights into the regulation of metabolic processes during postharvest cold storage of loquat (Eriobotrya japonica) fruit. Hortic. Res. 2019, 6, 49. [Google Scholar] [CrossRef] [PubMed]
- Saquet, A.A. Storage of pears. Sci. Hortic. 2019, 246, 1009–1016. [Google Scholar] [CrossRef]
- Ncama, K.; Magwaza, L.S.; Mditshwa, A.; Tesfay, S.Z. Application of visible to near-infrared spectroscopy for non-destructive assessment of quality parameters of fruit. In Infrared Spectroscopy-Principles, Advances, and Applications; IntechOpen: London, UK, 2018. [Google Scholar]
- Qin, J.; Kim, M.S.; Chao, K.; Dhakal, S.; Cho, B.-K.; Lohumi, S.; Mo, C.; Peng, Y.; Huang, M. Advances in Raman spectroscopy and imaging techniques for quality and safety inspection of horticultural products. Postharvest Biol. Technol. 2019, 149, 101–117. [Google Scholar] [CrossRef]
- Kljusurić, J.G.; Jurina, T.; Valinger, D.; Benkovi, M.; Tušek, A.J. NIR spectroscopy and management of bioactive components, antioxidant activity, and macronutrients in fruits. In Fruit Crops; Elsevier: Amsterdam, The Netherlands, 2020; pp. 95–109. [Google Scholar]
- Sun, X.; Liu, Y.; Li, Y.; Wu, M.; Zhu, D. Simultaneous measurement of brown core and soluble solids content in pear by on-line visible and near infrared spectroscopy. Postharvest Biol. Technol. 2016, 116, 80–87. [Google Scholar] [CrossRef]
- Sun, T.; Lin, H.; Xu, H.; Ying, Y. Effect of fruit moving speed on predicting soluble solids content of ‘Cuiguan’pears (Pomaceae pyrifolia Nakai cv. Cuiguan) using PLS and LS-SVM regression. Postharvest Biol. Technol. 2009, 51, 86–90. [Google Scholar] [CrossRef]
- Cavaco, A.M.; Pinto, P.; Antunes, M.D.; da Silva, J.M.; Guerra, R. ‘Rocha’pear firmness predicted by a Vis/NIR segmented model. Postharvest Biol. Technol. 2009, 51, 311–319. [Google Scholar] [CrossRef]
- Mishra, P.; Marini, F.; Brouwer, B.; Roger, J.M.; Biancolillo, A.; Woltering, E.; Hogeveen-van Echtelt, E. Sequential fusion of information from two portable spectrometers for improved prediction of moisture and soluble solids content in pear fruit. Talanta 2021, 223, 121733. [Google Scholar] [CrossRef]
- Song, K.; Yu, D.; Yang, D. Study of Nondestructive Testing of Nanguo Pear Quality Using Vis-NIR Spectroscopy. Spectroscopy 2022, 37, 26–32. [Google Scholar] [CrossRef]
- Wang, Z.; Jiang, Y.; Wang, W.; Hang, B.; Tong, W. Effects of out-store temperature after low-temperature storage on quality and physiological index of ’Suli’ pear fruits. J. Fruit Sci. 2014, 31, 1147–1153. [Google Scholar]
- Zhan, B.; Li, P.; Li, M.; Luo, W.; Zhang, H. Detection of Soluble Solids Content (SSC) in Pears Using Near-Infrared Spectroscopy Combined with LASSO–GWF–PLS Model. Agriculture 2023, 13, 1491. [Google Scholar] [CrossRef]
- Cheng, T.; Guo, S.; Pan, Z.; Fan, S.; Ju, S.; Xin, Z.; Zhou, X.-G.; Jiang, F.; Zhang, D. Near-Infrared Model and Its Robustness as Affected by Fruit Origin for ‘Dangshan’Pear Soluble Solids Content and pH Measurement. Agriculture 2022, 12, 1618. [Google Scholar] [CrossRef]
- Merzlyak, M.N.; Solovchenko, A.E.; Gitelson, A.A. Reflectance spectral features and non-destructive estimation of chlorophyll, carotenoid and anthocyanin content in apple fruit. Postharvest Biol. Technol. 2003, 27, 197–211. [Google Scholar] [CrossRef]
- Xie, L.; Ye, X.; Liu, D.; Ying, Y. Prediction of titratable acidity, malic acid, and citric acid in bayberry fruit by near-infrared spectroscopy. Food Res. Int. 2011, 44, 2198–2204. [Google Scholar] [CrossRef]
- Shin, Y.; Liu, R.H.; Nock, J.F.; Holliday, D.; Watkins, C.B. Temperature and relative humidity effects on quality, total ascorbic acid, phenolics and flavonoid concentrations, and antioxidant activity of strawberry. Postharvest Biol. Technol. 2007, 45, 349–357. [Google Scholar] [CrossRef]
- Xu, Y.; Zhong, P.; Jiang, A.; Shen, X.; Li, X.; Xu, Z.; Shen, Y.; Sun, Y.; Lei, H. Raman spectroscopy coupled with chemometrics for food authentication: A review. Trends Anal. Chem. 2020, 131, 116017. [Google Scholar] [CrossRef]
- Furusjö, E.; Svenson, A.; Rahmberg, M.; Andersson, M. The importance of outlier detection and training set selection for reliable environmental QSAR predictions. Chemosphere 2006, 63, 99–108. [Google Scholar] [CrossRef]
- Zhou, J.; Zhang, S.; Wang, J. A dual robustness projection to latent structure method and its application. IEEE Trans. Ind. Electron. 2020, 68, 1604–1614. [Google Scholar] [CrossRef]
- Rafajłowicz, E.; Steland, A. The Hotelling—Like T2 Control Chart Modified for Detecting Changes in Images having the Matrix Normal Distribution. In Stochastic Models, Statistics and Their Applications: Dresden, Germany, 14 March 2019; Springer International Publishing: Berlin/Heidelberg, Germany, 2019; pp. 193–206. [Google Scholar]
- Nicolai, B.M.; Beullens, K.; Bobelyn, E.; Peirs, A.; Saeys, W.; Theron, K.I.; Lammertyn, J. Nondestructive measurement of fruit and vegetable quality by means of NIR spectroscopy: A review. Postharvest Biol. Technol. 2007, 46, 99–118. [Google Scholar] [CrossRef]
- Sarkar, S.; Basak, J.K.; Moon, B.E.; Kim, H.T. A comparative study of PLSR and SVM-R with various preprocessing techniques for the quantitative determination of soluble solids content of hardy kiwi fruit by a portable vis/NIR spectrometer. Foods 2020, 9, 1078. [Google Scholar] [CrossRef]
- Li, J.; Zhang, H.; Zhan, B.; Wang, Z.; Jiang, Y. Determination of SSC in pears by establishing the multi-cultivar models based on visible-NIR spectroscopy. Infrared Phys. Technol. 2019, 102, 103066. [Google Scholar] [CrossRef]
- Li, M.; Landahl, S.; East, A.R.; Verboven, P.; Terry, L.A. Optical coherence tomography—A review of the opportunities and challenges for postharvest quality evaluation. Postharvest Biol. Technol. 2019, 150, 9–18. [Google Scholar] [CrossRef]
- Wang, L.; Chen, Y.; Wang, S.; Xue, H.; Su, Y.; Yang, J.; Li, X. Identification of candidate genes involved in the sugar metabolism and accumulation during pear fruit post-harvest ripening of ‘Red Clapp’s Favorite’ (Pyrus communis L.) by transcriptome analysis. Hereditas 2018, 155, 11. [Google Scholar] [CrossRef] [PubMed]
- Plaza, L.; Sánchez-Moreno, C.; Elez-Martínez, P.; de Ancos, B.; Martín-Belloso, O.; Cano, M.P. Effect of refrigerated storage on vitamin C and antioxidant activity of orange juice processed by high-pressure or pulsed electric fields with regard to low pasteurization. Eur. Food Res. Technol. 2006, 223, 487–493. [Google Scholar] [CrossRef]
- Del Caro, A.; Piga, A.; Vacca, V.; Agabbio, M. Changes of flavonoids, vitamin C and antioxidant capacity in minimally processed citrus segments and juices during storage. Food Chem. 2004, 84, 99–105. [Google Scholar] [CrossRef]
- Klimczak, I.; Małecka, M.; Szlachta, M.; Gliszczyńska-Świgło, A. Effect of storage on the content of polyphenols, vitamin C and the antioxidant activity of orange juices. J. Food Compos. Anal. 2007, 20, 313–322. [Google Scholar] [CrossRef]
- Grant, A.; Bhattacharyya, P.K. Application of derivative spectroscopy to the determination of chromatographic peak purity. J. Chromatogr. A 1985, 347, 219–235. [Google Scholar] [CrossRef]
- Park, Y.; Jung, S.; Gorinstein, S. Ethylene treatment of ‘Hayward’ kiwifruits (Actinidia deliciosa) during ripening and its influence on ethylene biosynthesis and antioxidant activity. Sci. Hortic. 2006, 108, 22–28. [Google Scholar] [CrossRef]
- Morais, C.L.; Paraskevaidi, M.; Cui, L.; Fullwood, N.J.; Isabelle, M.; Lima, K.M.; Martin-Hirsch, P.L.; Sreedhar, H.; Trevisan, J.; Walsh, M.J.; et al. Standardization of complex biologically derived spectrochemical datasets. Nat. Protoc. 2019, 14, 1546–1577. [Google Scholar] [CrossRef]
- Chu, Y.W.; Tang, S.S.; Ma, S.X.; Ma, Y.Y.; Hao, Z.Q.; Guo, Y.M.; Guo, L.B.; Lu, Y.F.; Zeng, X.Y. Accuracy and stability improvement for meat species identification using multiplicative scatter correction and laser-induced breakdown spectroscopy. Opt. Express 2018, 26, 10119–10127. [Google Scholar] [CrossRef]
- Elmqvist, N.; Fekete, J.-D. Hierarchical aggregation for information visualization: Overview, techniques, and design guidelines. IEEE Trans. Vis. Comput. Graph. 2009, 16, 439–454. [Google Scholar] [CrossRef] [PubMed]
- Crouch, I. 1-Methylcyclopropene (Smartfresh TM) as an alternative to modified atmosphere and controlled atmosphere storage of apples and pears. In Proceedings of the VIII International Controlled Atmosphere Research Conference, Rotterdam, The Netherlands, 8–13 July 2001; ISHS: Rotterdam, The Netherlands, 2001; pp. 433–436. [Google Scholar]
- Tahir, I.; Ericsson, N. Effect of postharvest heating & Ca-storage on storability and quality of apple cv. ‘Aroma’. In Proceedings of the VIII International Controlled Atmosphere Research Conference Rotterdam, The Netherlands, 8–13 July 2001; ISHS: Rotterdam, The Netherlands, 2001; pp. 127–134. [Google Scholar]
- Schreiner, M.; Huyskens-Keil, S. Phytochemicals in fruit and vegetables: Health promotion and postharvest elicitors. Crit. Rev. Plant Sci. 2006, 25, 267–278. [Google Scholar] [CrossRef]
Statistical Criteria | Pre-Processing Method | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Raw | SG | SNV | Baseline | MSC | D1 | D2 | SG + Baseline | SG + MSC + D1 | SG + MSC + D2 | |
F-Residuals | 0 | 0 | 0 | 4 | 1 | 4 | 4 | 4 | 1 | 1 |
Hotelling’s T2 | 2 | 2 | 0 | 6 | 0 | 5 | 8 | 8 | 1 | 3 |
both | 0 | 0 | 0 | 0 | 0 | 2 | 1 | 0 | 0 | 0 |
Pre-Processing | The Number of Latent Variables (LVs) | rc | RMSEC | rcv | RMSECV | rp | RMSECP | SDR |
---|---|---|---|---|---|---|---|---|
Raw | 1 | 0.93 | 0.84 | 0.93 | 0.85 | 0.96 | 0.71 | 4.7 |
SG | 1 | 0.93 | 0.84 | 0.93 | 0.85 | 0.96 | 0.71 | 4.7 |
D1 | 4 | 0.90 | 1.0 | 0.88 | 1.13 | 0.92 | 0.81 | 4.12 |
D2 | 4 | 0.90 | 1.06 | 0.88 | 1.15 | 0.92 | 0.83 | 4.02 |
MSC | 4 | 0.93 | 0.90 | 0.91 | 0.98 | 0.93 | 0.74 | 4.5 |
SNV | 4 | 0.93 | 0.78 | 0.91 | 0.96 | 0.94 | 0.72 | 4.6 |
Baseline | 7 | 0.91 | 0.96 | 0.9 | 1.02 | 0.94 | 0.73 | 4.57 |
S.G. + Baseline | 7 | 0.90 | 1.0 | 0.89 | 1.1 | 0.94 | 0.72 | 4.64 |
S.G. + MSC + D1 | 5 | 0.96 | 0.70 | 0.94 | 0.81 | 0.95 | 0.69 | 4.83 |
S.G. + MSC + D2 | 8 | 0.96 | 0.70 | 0.93 | 0.85 | 0.91 | 0.87 | 3.84 |
Pre-Processing | LVs | rc | RMSEC | rcv | RMSECV | rp | RMSECP | SDR |
---|---|---|---|---|---|---|---|---|
Raw | 2 | 0.93 | 0.77 | 0.93 | 0.94 | 0.93 | 0.71 | 4.2 |
SG | 2 | 0.91 | 0.84 | 0.90 | 0.85 | 0.95 | 0.6 | 4.9 |
D1 | 6 | 0.88 | 0.99 | 0.86 | 1.1 | 0.93 | 0.71 | 4.2 |
D2 | 3 | 0.88 | 1.02 | 0.86 | 1.12 | 0.91 | 0.81 | 3.7 |
MSC | 4 | 0.91 | 0.89 | 0.89 | 0.99 | 0.93 | 0.73 | 4.1 |
SNV | 4 | 0.91 | 0.87 | 0.89 | 0.97 | 0.94 | 0.7 | 4.3 |
Baseline | 7 | 0.89 | 0.96 | 0.86 | 1.08 | 0.91 | 0.83 | 3.6 |
S.G. + Baseline | 7 | 0.88 | 0.99 | 0.86 | 1.1 | 0.90 | 0.86 | 3.5 |
S.G. + MSC + D1 | 4 | 0.92 | 0.82 | 0.90 | 0.94 | 0.91 | 0.83 | 3.6 |
S.G. + MSC + D2 | 12 | 0.91 | 0.89 | 0.90 | 0.87 | 0.95 | 0.6 | 4.9 |
Pre-Processing | LVs | rc | RMSEC | rcv | RMSECV | rp | RMSECP | SDR |
---|---|---|---|---|---|---|---|---|
Raw | 1 | 0.84 | 0.23 | 0.83 | 0.24 | 0.94 | 0.11 | 5.2 |
SG | 1 | 0.84 | 0.23 | 0.83 | 0.24 | 0.94 | 0.11 | 5.2 |
D1 | 10 | 0.82 | 0.24 | 0.77 | 0.27 | 0.88 | 0.16 | 3.6 |
D2 | 12 | 0.83 | 0.23 | 0.77 | 0.27 | 0.91 | 0.14 | 4.1 |
MSC | 9 | 0.85 | 0.21 | 0.80 | 0.25 | 0.95 | 0.10 | 5.7 |
SNV | 9 | 0.86 | 0.21 | 0.81 | 0.24 | 0.97 | 0.08 | 7.2 |
Baseline | 7 | 0.85 | 0.21 | 0.79 | 0.26 | 0.93 | 0.12 | 4.8 |
S.G. + Baseline | 7 | 0.84 | 0.22 | 0.78 | 0.26 | 0.91 | 0.14 | 4.1 |
S.G. + MSC + D1 | 6 | 0.88 | 0.19 | 0.82 | 0.24 | 0.98 | 0.06 | 9.6 |
S.G. + MSC + D2 | 7 | 0.89 | 0.18 | 0.81 | 0.24 | 0.96 | 0.09 | 6.4 |
Pre-Processing | LVs | rc | RMSEC | rcv | RMSECV | rp | RMSECP | SDR |
---|---|---|---|---|---|---|---|---|
Raw | 2 | 0.94 | 0.018 | 0.92 | 0.019 | 0.94 | 0.016 | 4.6 |
SG | 2 | 0.94 | 0.018 | 0.93 | 0.019 | 0.94 | 0.016 | 4.6 |
D1 | 3 | 0.90 | 0.022 | 0.89 | 0.024 | 0.90 | 0.021 | 3.5 |
D2 | 12 | 0.90 | 0.022 | 0.89 | 0.024 | 0.92 | 0.019 | 3.9 |
MSC | 5 | 0.92 | 0.021 | 0.91 | 0.021 | 0.93 | 0.017 | 4.3 |
SNV | 4 | 0.93 | 0.019 | 0.91 | 0.021 | 0.93 | 0.017 | 4.3 |
Baseline | 6 | 0.92 | 0.020 | 0.90 | 0.023 | 0.91 | 0.019 | 3.9 |
S.G. + Baseline | 7 | 0.91 | 0.021 | 0.89 | 0.024 | 0.93 | 0.018 | 4.1 |
S.G. + MSC + D1 | 3 | 0.94 | 0.017 | 0.93 | 0.019 | 0.92 | 0.019 | 3.9 |
S.G. + MSC + D2 | 3 | 0.96 | 0.014 | 0.94 | 0.018 | 0.96 | 0.012 | 6.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taghinezhad, E.; Rasooli Sharabiani, V.; Shahiri, M.; Moinfar, A.; Szumny, A. Predicting Quality Properties of Pears during Storage Using Hyper Spectral Imaging System. Agriculture 2023, 13, 1913. https://doi.org/10.3390/agriculture13101913
Taghinezhad E, Rasooli Sharabiani V, Shahiri M, Moinfar A, Szumny A. Predicting Quality Properties of Pears during Storage Using Hyper Spectral Imaging System. Agriculture. 2023; 13(10):1913. https://doi.org/10.3390/agriculture13101913
Chicago/Turabian StyleTaghinezhad, Ebrahim, Vali Rasooli Sharabiani, Mohammadali Shahiri, Abdolmajid Moinfar, and Antoni Szumny. 2023. "Predicting Quality Properties of Pears during Storage Using Hyper Spectral Imaging System" Agriculture 13, no. 10: 1913. https://doi.org/10.3390/agriculture13101913
APA StyleTaghinezhad, E., Rasooli Sharabiani, V., Shahiri, M., Moinfar, A., & Szumny, A. (2023). Predicting Quality Properties of Pears during Storage Using Hyper Spectral Imaging System. Agriculture, 13(10), 1913. https://doi.org/10.3390/agriculture13101913