The Responses of C, N, P and Stoichiometric Ratios to Biochar and Vermicompost Additions Differ from Alfalfa and a Mine Soil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site and Soil Collection
2.2. Experiment Design
2.3. Sampling and Laboratory Analyses
2.4. Statistical Analysis
3. Results
3.1. Plant Nutrient Concentrations and Stoichiometric Characteristics
3.2. Plant Biomass and Their Allocations
3.3. Soil Nutrients and Their Stoichiometric Ratios
3.4. Relationships of Plant and Soil Nutrients and Stoichiometric Ratios
4. Discussion
4.1. Effects of Biochar and Vermicompost on Plant Nutrient Concentrations
4.2. Effects of Biochar and Vermicompost on Plant C, N, P Stoichiometry
4.3. Effects of Soil Mn and Cd on Plant C, N, P Concentrations and Their Ratios
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fan, H.; Wu, J.; Liu, W.; Yuan, Y.; Hu, L.; Cai, Q. Linkages of plant and soil C:N:P stoichiometry and their relationships to forest growth in subtropical plantations. Plant Soil 2015, 392, 127–138. [Google Scholar] [CrossRef]
- Sun, Y.L.; Zhao, Y.Z.; Wei, K.Q.; Li, Z.Z.; Ma, C.H.; Zhang, Q.B. Stoichiometric characteristics of carbon, nitrogen and phosphorus in stems and leaves of alfalfa with different fall dormancy levels. China J. Grassland 2022, 44, 9–19. (In Chinese) [Google Scholar]
- Elser, J.J.; Bracken, M.E.S.; Cleland, E.E.; Gruner, D.S.; Harpole, W.S.; Hillebrand, H.; Ngai, J.T.; Seabloom, E.W.; Shurin, J.B.; Smith, J.E. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater. Mar. Terr. Ecosyst. 2007, 10, 1135–1142. [Google Scholar]
- Reich, P.B.; Oleksyn, J. Global patterns of plant leaf N and P in relation to temperature and latitude. Proc. Natl. Acad. Sci. USA 2004, 101, 11001–11006. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Wang, P.; Niu, Y.; Yu, H.; Ma, F.; Xiao, G.; Xu, X. Changes in C: N: P stoichiometry modify N and P conservation strategies of a desert steppe species Glycyrrhiza uralensis. Sci. Rep. 2018, 8, 12668. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.S.; Yu, P.W.; Qing, Y.S.; Wang, W. Effect of vegetation succession on organic carbon, carbon of humus acids and dissolved organic carbon in soils of copper mine tailings sites. Pedosphere 2014, 24, 271–279. [Google Scholar]
- Xiao, L.; Bi, Y.L.; Du, S.Z.; Wang, Y.; Guo, C.; Christie, P. Response of ecological stoichiometry and stoichiometric homeostasis in the plant-litter-soil system to re-vegetation type in arid mining subsidence areas. J. Arid. Environ. 2021, 184, 104298. [Google Scholar] [CrossRef]
- Chen, H.W.; Yang, C.X.; Tang, W.J. Ecological stoichiometric characteristics in leaf under different vegetation types of jungar banner opencast coal mining area. Res. Soil Water Conserv. 2016, 23, 9–14. (In Chinese) [Google Scholar]
- Wang, C. Effect of Biochar Prepared by 4 Kinds of Raw Material on Zn, Cd Forms and Enzyme Activities in Soils. Master’s Dissertation, Shandong Agricultural University, Taian, China, 2016. (In Chinese). [Google Scholar]
- Li, W.Y.; Liu, X.L.; Li, Z.X.; Zeng, X. Research on curing effect of biochar on heavy metals in soil of manganese ore. Ecol. Environ. Sci. 2018, 27, 1306–1312. (In Chinese) [Google Scholar]
- Xu, X.Y. Biochar from Different Feedstock for Remediation of Heavy Metal Contaminated Tailings Soil. Master’s Dissertation, Central South University of Forestry and Technology, Changsha, China, 2022. (In Chinese). [Google Scholar]
- Kimetu, J.M.; Lehmann, J. Stability and stabilisation of biochar and green manure in soil with different organic carbon contents. Soil Res. 2010, 48, 577–585. [Google Scholar] [CrossRef]
- Gao, Y.; Wu, P.; Jeyakumar, P.; Bolan, N.; Wang, H.L.; Gao, B.; Wang, S.S.; Wang, B. Biochar as a potential strategy for remediation of contaminated mining soils: Mechanisms, applications, and future perspectives. J. Environ. Manag. 2022, 313, 114973. [Google Scholar] [CrossRef]
- Rees, F.; Simonnot, M.O.; Morel, J.L. Short-term effects of biochar on soil heavy metal mobility are controlled by intra-particle diffusion and soil pH increase. Eur. J. Soil Sci. 2014, 65, 149–161. [Google Scholar] [CrossRef]
- Bandara, T.; Herath, I.; Kumarathilaka, P.; Seneviratne, M.; Seneviratne, G.; Rajakaruna, N.; Vithanage, M.; Ok, Y.S. Role of woody biochar and fungal-bacterial co-inoculation on enzyme activity and metal immobilization in serpentine soil. J. Soils Sediments 2017, 17, 665–673. [Google Scholar] [CrossRef]
- Lu, J.; Yuan, M.; Hu, L.; Yao, H. Migration and transformation of multiple heavy metals in the soil-plant system of e-waste dismantling site. Microorganisms 2022, 10, 725. [Google Scholar] [CrossRef] [PubMed]
- Forján, R.; Rodríguez-Vila, A.; Covelo, E.F. Increasing the nutrient content in a mine soil through the application of technosol and biochar and grown with Brassica juncea L. Waste Biomass Valori. 2019, 10, 103–119. [Google Scholar] [CrossRef]
- Netherway, P.; Gascó, G.; Méndez, A.; Surapaneni, A.; Reichman, S.; Shah, K.; Paz-Ferreiro, J. Using Phosphorus-rich biochars to remediate lead-contaminated soil: Influence on soil enzymes and extractable P. Agronomy 2020, 10, 454. [Google Scholar] [CrossRef]
- Rodríguez-Vila, A.; Forján, R.; Guedes, R.S.; Covelo, E.M. Changes on the phytoavailability of nutrients in a mine soil reclaimed with compost and biochar. Water Air Soil Pollut. 2016, 227, 453. [Google Scholar] [CrossRef]
- Guo, X.F. Effects of biochar and arbuscular mycorrhizal fungi on soil nutrients and growth of Cassia occidental is under heavy metal contamination. Acta Prataculturae Sin. 2018, 27, 150–161. (In Chinese) [Google Scholar]
- Joshi, R.; Singh, J.; Vig, A.P. Vermicompost as an effective organic fertilizer and biocontrol agent: Effect on growth, yield and quality of plants. Rev. Environ. Sci. Bio/Technol. 2015, 14, 137–159. [Google Scholar] [CrossRef]
- Ogundare, A.O.; Liasu, M.O.; Ogundola, A.F. Effects of soil supplementation with organic fertilization from earthworm casts and inorganic fertilization from NPK on growth, development and yield of pepper (Capsicum annuum L.) plants. Appl. Ecol. Environ. Sci. 2018, 6, 6–14. [Google Scholar]
- Lukashe, N.S.; Mupambwa, H.A.; Mnkeni, P.N.S. Changes in nutrients and bioavailability of potentially toxic metals in mine waste contaminated soils amended with fly ash enriched vermicompost. Water Air Soil Pollut. 2019, 230, 306. [Google Scholar] [CrossRef]
- Nada, W.M.; Van, R.L.; Claassens, S.; Blumenstein, O. Effect of vermicompost on soil and plant properties of coal spoil in the Lusatian region (Eastern Germany). Commun. Soil Sci. Plant Anal. 2011, 42, 1945–1957. [Google Scholar] [CrossRef]
- Madiba, O.F.; Solaiman, Z.M.; Carson, J.K.; Murphy, D.V. Biochar increases availability and uptake of phosphorus to wheat under leaching conditions. Biol. Fertil. Soils 2016, 52, 439–446. [Google Scholar] [CrossRef]
- Sharma, A.; Nagpal, A.K. Soil amendments: A tool to reduce heavy metal uptake in crops for production of safe food. Rev. Environ. Sci. Biotechnol. 2018, 17, 187–203. [Google Scholar] [CrossRef]
- Esteves, G.F.; Souza, K.R.D.; Bressanin, L.A.; Andrade, P.C.C.; Júnior, V.V.; Reis, R.E.; Silva, A.B.; Mantovani, J.R.; Magalhães, P.C.; Pasqual, M.; et al. Vermicompost improves maize, millet and sorghum growth in iron mine tailings. J. Environ. Manag. 2020, 264, 110468. [Google Scholar] [CrossRef]
- Peralta-Videa, J.R.; Dela, R.G.; Gonzalez, J.H.; Gardea-Torresdey, J.L. Effects of the growth stage on the heavy metal tolerance of alfalfa plants. Adv. Environ. Res. 2004, 8, 679–685. [Google Scholar] [CrossRef]
- Lu, J.Y.; Yang, M.; Liu, M.G.; Lu, Y.X.; Yang, H.M. Nitrogen and phosphorus fertilizations alter nitrogen, phosphorus and potassium resorption of alfalfa in the Loess Plateau of China. J. Plant Nutr. 2019, 42, 2234–2246. [Google Scholar] [CrossRef]
- Lu, J.Y.; Liu, M.G.; Yang, M.; Xie, J.H.; Yang, H.M.; Li, L.L. Leaf resorption and stoichiometry of N and P of 1, 2 and 3 year-old alfalfa under one-time P fertilization. Soil Tillage Res. 2020, 197, 104481. [Google Scholar] [CrossRef]
- Gu, Y.J.; Han, C.L.; Fan, J.W.; Shi, X.P.; Kong, M.; Shi, X.Y.; Siddique, K.H.M.; Zhao, Y.Y.; Li, F.M. Alfalfa forage yield, soil water and P availability in response to plastic film mulch and P fertilization in a semiarid environment. Field Crop Res. 2018, 215, 94–103. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, Y.; Cao, J.; Fu, S.; Hu, S.; Wu, J.; Zhao, J.; Liu, Z. Stand age and species traits alter the effects of understory removal on litter decomposition and nutrient dynamics in subtropical Eucalyptus plantations. Glob. Ecol. Conserv. 2019, 20, e00693. [Google Scholar] [CrossRef]
- Bao, S.D. Soil Agrochemical Analysis; Agricultural Press: Beijing, China, 2000; pp. 30–34, 42–49, 71–78. (In Chinese) [Google Scholar]
- Wang, K.; Qiao, Y.; Li, H.; Zhang, H.; Yue, S.; Ji, X.; Liu, L. Structural equation model of the relationship between metals in contaminated soil and in earthworm (Metaphire californica) in Hunan Province, subtropical China. Ecotoxicol. Environ. Saf. 2018, 156, 443–451. [Google Scholar] [CrossRef] [PubMed]
- Olatunji, O.A.; Pan, K.; Tariq, A.; Okunlola, G.O.; Wang, D.; Raimi, I.O.; Zhang, L. Planting systems affect soil microbial communities and enzymes activities differentially under drought and phosphorus addition. Plants 2022, 11, 319. [Google Scholar] [CrossRef] [PubMed]
- Cui, Q.; Lü, X.T.; Wang, Q.B.; Han, X.G. Nitrogen fertilization and fire act independently on foliar stoichiometry in a temperate steppe. Plant Soil 2010, 334, 209–219. [Google Scholar] [CrossRef]
- Biederman, L.A.; Harpole, W.S. Biochar and its effects on plant productivity and nutrient cycling: A meta-analysis. GCB Bioenergy 2013, 5, 202–214. [Google Scholar] [CrossRef]
- Yao, Y.; Gao, B.; Zhang, M.; Inyang, M.; Zimmerman, A.R. Effect of biochar amendment on sorption and leaching of nitrate, ammonium, and phosphate in a sandy soil. Chemosphere 2012, 89, 1467–1471. [Google Scholar] [CrossRef]
- Treseder, K.K.; Vitousek, P.M. Effects of soil nutrient availability on investment in acquisition of N and P in Hawaiian rain forests. Ecology 2001, 82, 946–954. [Google Scholar] [CrossRef]
- Lu, J.Y.; Tian, H.; Zhang, H.S.; Xiong, J.B.; Yang, H.M.; Liu, Y. Shoot-soil ecological stoichiometry of alfalfa under nitrogen and phosphorus fertilization in the Loess Plateau. Sci. Rep. 2021, 11, 15049. [Google Scholar] [CrossRef]
- Gao, X.; Dong, S.; Xu, Y.; Fry, E.L.; Li, Y.; Li, S.; Shen, H.; Xiao, J.; Wu, S.; Yang, M.; et al. Plant biomass allocation and driving factors of grassland revegetation in a Qinghai-Tibetan Plateau chronosequence. Land Degrad. Dev. 2021, 32, 1732–1741. [Google Scholar] [CrossRef]
- Turp, G.A.; Turp, S.M.; Ozdemir, S.; Yetilmezsoy, K. Vermicomposting of biomass ash with bio-waste for solubilizing nutrients and its effect on nitrogen fixation in common beans. Environ. Technol. Innovation 2021, 23, 101691. [Google Scholar] [CrossRef]
- Guan, Z.H.; Yang, L.J.; Yao, L.; Wang, Y.D.; Yang, Z.; Zhang, X.Y. Regulation of activated carbon and nitrogen contents in greenhouse soil by different proportions of vermicompost instead of chemical fertilizers. China J. Soil Sci. 2022, 53, 403–412. (In Chinese) [Google Scholar]
- Wang, F.; Wang, X.; Song, N. Biochar and vermicompost improve the soil properties and the yield and quality of cucumber (Cucumis sativus L.) grown in plastic shed soil continuously cropped for different years. Agric. Ecosyst. Environ. 2021, 315, 107425. [Google Scholar] [CrossRef]
- Sterner, R.W.; Elser, J.J. Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere; Princeton University Press: Princeton, NJ, USA, 2002. [Google Scholar]
- Noda, H.M.; Muraoka, H.; Nasahara, K.N.; Saigusa, N.; Murayama, S.; Koizumi, H. Phenology of leaf morphological, photosynthetic, and nitrogen use characteristics of canopy trees in a cool-temperate deciduous broad leaf forest at Takayama, central Japan. Ecol. Res. 2015, 30, 247–266. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, W.C.; Xu, M.P.; Deng, J.; Han, X.H.; Yang, G.H.; Feng, Y.Z.; Ren, G.X. Response of forestgrowth to C:N:P stoichiometry in plants and soils during Robinia pseudoacacia afforestation on the Loess Plateau, China. Geoderma 2019, 337, 280–289. [Google Scholar] [CrossRef]
- Tian, H.Q.; Chen, G.S.; Zhang, C.; Jerry, M.M.; Hall, C.A.S. Pattern and variation of C:N:P ratios in China’s soils: A synthesis of observational data. Biogeochemistry 2010, 98, 139–151. [Google Scholar] [CrossRef]
- Rondon, M.A.; Lehmann, J.; Ramírez, J.; Hurtado, M. Biological nitrogen fixation by common beans (Phaseolus vulgaris L.) increases with biochar additions. Biol. Fertil. Soils 2007, 43, 699–708. [Google Scholar] [CrossRef]
- Jiang, Y.; Liu, J.; Li, Y.; Xiao, P.; Liu, S.; Shao, J.; Cai, Y.; Yan, X.; Fan, L. Biochar amendment reduces biological nitrogen fixation and nitrogen use efficiency in cadmium-contaminated paddy fields. J. Environ. Manag. 2023, 344, 118338. [Google Scholar] [CrossRef]
- Han, Y.; Dong, S.; Zhao, Z.; Sha, W.; Li, S.; Shen, H.; Xiao, J.; Zhang, J.; Wu, X.; Jiang, X. Response of soil nutrients and stoichiometry to elevated nitrogen deposition in alpine grassland on the Qinghai-Tibetan Plateau. Geoderma 2019, 343, 263–268. [Google Scholar] [CrossRef]
- Berg, W.K.; Brouder, S.M.; Cunningham, S.M.; Volenec, J.J. Potassium and phosphorus fertilizer impacts on alfalfa taproot carbon and nitrogen reserve accumulation and use during fall acclimation and initial growth in spring. Front. Plant Sci. 2021, 12, 715936. [Google Scholar] [CrossRef]
- Gorokhova, E.; Kyle, M. Analysis of nucleic acids in Daphnia: Development of methods and ontogenetic variations in RNA-DNA content. J. Plankton Res. 2002, 24, 511–522. [Google Scholar] [CrossRef]
- Hogan, E.J.; Minnullina, G.; Smith, R.I. Effects of nitrogen enrichment on phosphatase activity and nitrogen: Phosphorus relationships in Cladonia Portentosa. New Phytol. 2010, 186, 911–925. [Google Scholar] [CrossRef]
- Zheng, J.; Arif, M.; Zhang, S.L.; Yuan, Z.X.; Zhang, L.M.; Li, J.J.; Ding, D.D.; Li, C.X. Dam inundation simplifies the plant community composition. Sci. Total Environ. 2021, 801, 149827. [Google Scholar] [CrossRef]
- Ding, D.D.; Arif, M.; Liu, M.H.; Li, J.J.; Hu, X.; Geng, Q.W. Plant-soil interactions and C:N:P stoichiometric homeostasis of plant organs in riparian plantation. Front. Plant Sci. 2022, 13, 2734. [Google Scholar] [CrossRef]
- Chen, L.L.; Deng, Q.; Yuan, Z.Y.; Mu, X.M.; Kallenbach, R.L. Age-related C:N: P stoichiometry in two plantation forests in the Loess Plateau of China. Ecol. Eng. 2018, 120, 14–22. [Google Scholar] [CrossRef]
- Zhou, X.B.; Bowker, M.A.; Zhang, Y.M. Chronic nitrogen addition induces a cascade of plant community responses with both seasonal and progressive dynamics. Sci. Total Environ. 2018, 626, 99–108. [Google Scholar] [CrossRef]
- El-Jaoual, T.; Cox, D.A. Manganese toxicity in plants. J. Plant Nutr. 1998, 21, 353–386. [Google Scholar] [CrossRef]
- Dimkpa, C.O.; Singh, U.; Adisa, I.O.; Bindraban, P.S.; Elmer, W.H.; Gardea-Torresdey, J.L.; White, J.C. Effects of manganese nanoparticle exposure on nutrient acquisition in wheat (Triticum aestivum L.). Agronomy 2018, 8, 158. [Google Scholar] [CrossRef]
- Pedas, P.; Husted, S.; Skytte, K.; Schjoerring, J.K. Elevated phosphorus impedes manganese acquisition by barley plants. Front. Plant Sci. 2011, 2, 12699. [Google Scholar] [CrossRef]
- An, T.T.; Wu, Y.J.; Xu, B.C.; Zhang, S.Q.; Deng, X.P.; Zhang, Y.; Siddique, K.M.; Chen, Y.L. Nitrogen supply improved plant growth and Cd translocation in maize at the silking and physiological maturity under moderate Cd stress. Ecotoxicol. Environ. Saf. 2022, 230, 113137. [Google Scholar] [CrossRef]
- Zhang, L.; Zong, L.; Ren, C.; Shen, Z. Effects of Si on rice seedling growth and uptake of Cd in the low level of Cd pollution. J. Agro. Environ. Sci. 2007, 26, 494–499. [Google Scholar]
- Jach, M.E.; Sajnaga, E.; Ziaja, M. Utilization of legume-nodule bacterial symbiosis in phytoremediation of heavy metal-contaminated soils. Biology 2022, 11, 676. [Google Scholar] [CrossRef]
- Panwar, B.S.; Singh, J.P.; Laura, R.D. Cadmium uptake by cowpea and mungbean as affected by Cd and P application. Water Air Soil Pollut. 1999, 112, 163–169. [Google Scholar] [CrossRef]
- Li, X.; Zhou, Q.; Sun, X.; Ren, W. Effects of cadmium on uptake and translocation of nutrient elements in diferent welsh onion (Allium fistulosum L.) cultivars. Food Chem. 2016, 194, 101–110. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Mai, H.; Qiu, Q.; Zhu, Y.; Long, J.; Chen, S.; Chen, Y. The Responses of C, N, P and Stoichiometric Ratios to Biochar and Vermicompost Additions Differ from Alfalfa and a Mine Soil. Agriculture 2023, 13, 1954. https://doi.org/10.3390/agriculture13101954
Zhang Y, Mai H, Qiu Q, Zhu Y, Long J, Chen S, Chen Y. The Responses of C, N, P and Stoichiometric Ratios to Biochar and Vermicompost Additions Differ from Alfalfa and a Mine Soil. Agriculture. 2023; 13(10):1954. https://doi.org/10.3390/agriculture13101954
Chicago/Turabian StyleZhang, Yu, Huizhen Mai, Qinghong Qiu, Yinghua Zhu, Jiayi Long, Shengfu Chen, and Yuanqi Chen. 2023. "The Responses of C, N, P and Stoichiometric Ratios to Biochar and Vermicompost Additions Differ from Alfalfa and a Mine Soil" Agriculture 13, no. 10: 1954. https://doi.org/10.3390/agriculture13101954
APA StyleZhang, Y., Mai, H., Qiu, Q., Zhu, Y., Long, J., Chen, S., & Chen, Y. (2023). The Responses of C, N, P and Stoichiometric Ratios to Biochar and Vermicompost Additions Differ from Alfalfa and a Mine Soil. Agriculture, 13(10), 1954. https://doi.org/10.3390/agriculture13101954