The Effects of the Fungicide Myclobutanil on Soil Enzyme Activity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fungicide
2.2. Soil Sampling
2.3. Enzymatic Activity Analyses
2.4. Molecular Docking Study
2.5. Statistical Analysis
3. Results
3.1. Effects of Myclobutanil on the Activity of Enzymes Found in Soil
3.2. Molecular Docking Study Regarding the Interactions of the Enantiomers of Myclobutanil with Soil Enzymes
4. Discussion
4.1. Experimental Approach
4.2. Computational Approach
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Aktar, M.W.; Sengupta, D.; Chowdhury, A. Impact of Pesticides Use in Agriculture: Their Benefits and Hazards. Interdiscip. Toxicol. 2009, 2, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Zúñiga-Venegas, L.A.; Hyland, C.; Muñoz-Quezada, M.T.; Quirós-Alcalá, L.; Butinof, M.; Buralli, R.; Cardenas, A.; Fernandez, R.A.; Foerster, C.; Gouveia, N.; et al. Health Effects of Pesticide Exposure in Latin American and the Caribbean Populations: A Scoping Review. Environ. Health Perspect. 2022, 130, 096002. [Google Scholar] [CrossRef] [PubMed]
- Zubrod, J.P.; Bundschuh, M.; Arts, G.; Brühl, C.A.; Imfeld, G.; Knäbel, A.; Payraudeau, S.; Rasmussen, J.J.; Rohr, J.; Scharmüller, A.; et al. Fungicides: An Overlooked Pesticide Class? Environ. Sci. Technol. 2019, 53, 3347–3365. [Google Scholar] [CrossRef]
- Souders, C.L., 2nd; Perez-Rodriguez, V.; El Ahmadie, N.; Zhang, X.; Tischuk, C.; Martyniuk, C.J. Investigation Into the Sub-lethal Effects of the Triazole Fungicide Triticonazole in Zebrafish (Danio rerio) Embryos/Larvae. Environ. Toxicol. 2020, 35, 254–267. [Google Scholar] [CrossRef]
- Jørgensen, L.N.; Heick, T.M. Azole Use in Agriculture, Horticulture, and Wood Preservation—Is It Indispensable? Front. Cell. Infect. Microbiol. 2021, 11, 730297. [Google Scholar] [CrossRef]
- Börjesson, E.; Stenström, J.; Johnsson, L.; Torstensson, L. Comparison of Triticonazole Dissipation after Seed or Soil Treatment. J. Environ. Qual. 2003, 32, 1258–1261. [Google Scholar] [CrossRef]
- Jackson, C.J.; Lamb, D.C.; Manning, N.J.; Kelly, D.E.; Kelly, S.L. Mutations in Saccharomyces cerevisiae sterol C5-desaturase Conferring Resistance to the CYP51 Inhibitor Fluconazole. Biochem. Biophys. Res. Commun. 2003, 309, 999–1004. [Google Scholar] [CrossRef]
- Jaklová Dytrtová, J.; Bělonožníková, K.; Jakl, M.; Ryšlavá, H. Triazoles and Aromatase: The impact of Copper Cocktails. Environ. Pollut. 2020, 266, 115201. [Google Scholar] [CrossRef]
- Roman, D.L.; Voiculescu, D.I.; Matica, M.A.; Baerle, V.; Filimon, M.N.; Ostafe, V.; Isvoran, A. Assessment of the Effects of Triticonazole on Soil and Human Health. Molecules 2022, 27, 6554. [Google Scholar] [CrossRef]
- Voiculescu, D.I.; Roman, D.L.; Ostafe, V.; Isvoran, A. A Cheminformatics Study Regarding the Human Health Risks Assessment of the Stereoisomers of Difenoconazole. Molecules 2022, 27, 4682. [Google Scholar] [CrossRef]
- Liu, T.; Fang, K.; Liu, Y.; Zhang, X.; Han, L.; Wang, X. Enantioselective Residues and Toxicity Effects of the Chiral Triazole Fungicide Hexaconazole in Earthworms (Eisenia fetida). Environ. Pollut. 2021, 270, 116269. [Google Scholar] [CrossRef]
- Li, L.; Sun, X.; Zhao, X.; Xiong, Y.; Gao, B.; Zhang, J.; Shi, H.; Wang, M. Absolute Configuration, Enantioselective Bioactivity, and Degradation of the Novel Chiral Triazole Fungicide Mefentrifluconazole. J. Agric. Food Chem. 2021, 69, 4960–4967. [Google Scholar] [CrossRef] [PubMed]
- Xiang, Q.; Zhou, Y.; Tan, C. Enantioselective Toxic Effects of Prothioconazole Toward Scenedesmus obliquus. Molecules 2023, 28, 4774. [Google Scholar] [CrossRef] [PubMed]
- Cui, N.; Xu, H.; Yao, S.; He, Y.; Zhang, H.; Yu, Y. Chiral Triazole Fungicide Tebuconazole: Enantioselective Bioaccumulation, Bioactivity, Acute Toxicity, and Dissipation in Soils. Environ. Sci. Pollut. Res. 2018, 25, 25468–25475. [Google Scholar] [CrossRef] [PubMed]
- Smith, S.W. Chiral Toxicology: It’s the Same Thing…Only Different. Toxicol. Sci. 2009, 110, 4–30. [Google Scholar] [CrossRef]
- Garrison, A.W.; Avants, J.K.; Jones, W.J. Microbial Transformation of Triadimefon to Triadimenol in Soils: Selective Production Rates of Triadimenol Stereoisomers Affect Exposure and Risk. Environ. Sci. Technol. 2011, 45, 2186–2193. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Gao, B.; Wen, Y.; Zhang, Z.; Chen, R.; He, Z.; Kaziem, A.E.; Shi, H.; Wang, M. Stereoselective Bioactivity, Toxicity and Degradation of the Chiral Triazole Fungicide Bitertanol. Pest Manag. Sci. 2020, 76, 343–349. [Google Scholar] [CrossRef]
- Yang, X.; Gong, R.; Chu, Y.; Liu, S.; Xiang, D.; Li, C. Mechanistic Insights into Stereospecific Antifungal Activity of Chiral Fungicide Prothioconazole against Fusarium oxysporum F. sp. cubense. Int. J. Mol. Sci. 2022, 23, 2352. [Google Scholar] [CrossRef]
- Roman, D.L.; Voiculescu, D.I.; Ostafe, V.; Ciorsac, A.; Isvoran, A. A Review of the Toxicity of Triazole Fungicides Approved to be Used in European Union to the Soil and Aqueous Environment. Ovidius Univ. Ann. Chem. 2022, 33, 113–120. [Google Scholar] [CrossRef]
- Myclobutanil Approval. Available online: http://sitem.herts.ac.uk/aeru/ppdb/en/Reports/478.htm (accessed on 19 June 2023).
- Soler-Rodríguez, F.; Oropesa Jiménez, A.L. Myclobutanil. In Encyclopedia of Toxicology, 3rd ed.; Wexler, P., Ed.; Academic Press: Oxford, UK, 2014; pp. 420–423. [Google Scholar]
- Dong, Z.; Cui, K.; Liang, J.; Guan, S.; Fang, L.; Ding, R.; Wang, J.; Li, T.; Zhao, S.; Wang, Z. The Widespread Presence of Triazole Fungicides in Greenhouse Soils in Shandong Province, China: A systematic Study on Human Health and Ecological Risk Assessments. Environ. Pollut. 2023, 328, 121637. [Google Scholar] [CrossRef]
- Smiley, P.C.; King, K.W.; Fausey, N.R. Annual and Seasonal Differences in Pesticide Mixtures Within Channelized Agricultural Headwater Streams in Central Ohio. Agric. Ecosyst. Environ. 2014, 193, 83–95. [Google Scholar] [CrossRef]
- Zhao, P.; Lei, S.; Xing, M.; Xiong, S.; Guo, X. Simultaneous Enantioselective Determination of Six Pesticides in Aqueous Environmental Samples by Chiral Liquid Chromatography with Tandem Mass Spectrometry. J. Sep. Sci. 2018, 41, 1287–1297. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Dong, F.; Wang, X.; Zheng, Y. The Dissipation Rates of Myclobutanil and Residue Analysis in Wheat and Soil Using Gas Chromatography-ion Trap Mass Spectrometry. Int. J. Environ. Anal. Chem. 2009, 89, 957–967. [Google Scholar] [CrossRef]
- Han, B.; Chen, L.; Peng, L. Degradation of Four Fungicides in Tropical Soils from Hainan, China. J. Food Agric. Environ. 2009, 7, 197–200. [Google Scholar]
- Wang, X.; Li, Y.; Xu, G.; Sun, H.; Xu, J.; Zheng, X.; Wang, F. Dissipation and Residues of Myclobutanil in Tobacco and Soil Under Field Conditions. Bull. Environ. Contam. Toxicol. 2012, 88, 759–763. [Google Scholar] [CrossRef]
- FAO. Pesticide Residues in Food, Joint FAO/WHO Meeting on Pesticide Residues; FAO and WHO: Rome, Italy, 2014. Available online: https://www.fao.org/fileadmin/templates/agphome/documents/Pests_Pesticides/JMPR/Report2014/JMPR_2014_Full_Report.pdf (accessed on 10 July 2023).
- Di Filippo, P.; Pomata, D.; Riccardi, C.; Buiarelli, F.; De Gennaro, M.; Console, C.; Laurendi, V.; Puri, D. Determination of Pesticides in the Respirable Fraction of Airborne Particulate Matter by High-performance Liquid Chromatography–Tandem Mass Spectrometry. Anal. Lett. 2018, 51, 600–612. [Google Scholar] [CrossRef]
- Kovacova, J.; Kocourek, V.; Kohoutkova, J.; Lansky, M.; Hajslova, J. Production of Apple-based Baby Food: Changes in Pesticide Residues. Food Addit. Contam. Part A 2014, 31, 1089–1099. [Google Scholar] [CrossRef]
- Freeman, S.; Kaufman-Shriqui, V.; Berman, T.; Varsano, R.; Shahar, D.R.; Manor, O. Children’s Diets, Pesticide Uptake, and Implications for Risk Assessment: An Israeli Case Study. Food Chem. Toxicol. 2016, 87, 88–96. [Google Scholar] [CrossRef]
- Lewis, K.A.; Tzilivakis, J.; Warner, D.J.; Green, A. An International Database for Pesticide Risk Assessments and Management. Hum. Ecol. Risk Assess. Int. J. 2016, 22, 1050–1064. [Google Scholar] [CrossRef]
- Zhang, D.; Wu, Y.; Zhang, X.; Zhu, Y. Persistence of Myclobutanil and Its Impact on Soil Microbial Biomass C and Dehydrogenase Enzyme Activity in Tea Orchard Soils. Eurasian J. Soil Sci. 2017, 6, 106–113. [Google Scholar] [CrossRef]
- Marín-Benito, J.M.; Herrero-Hernández, E.; Andrades, M.S.; Sánchez-Martín, M.J.; Rodríguez-Cruz, M.S. Effect of Different Organic Amendments on the Dissipation of Linuron, Diazinon and Myclobutanil in an Agricultural Soil Incubated for Different Time Periods. Sci. Total Environ. 2014, 476–477, 611–621. [Google Scholar] [CrossRef]
- Myclobutanil Isomers. Available online: http://sitem.herts.ac.uk/aeru/iupac/Reports/478.htm (accessed on 2 June 2023).
- Sun, M.; Liu, D.; Qiu, X.; Zhou, Q.; Shen, Z.; Wang, P.; Zhou, Z. Acute Toxicity, Bioactivity, and Enantioselective Behavior with Tissue Distribution in Rabbits of Myclobutanil Enantiomers. Chirality 2014, 26, 784–789. [Google Scholar] [CrossRef]
- Li, Y.; Dong, F.; Liu, X.; Xu, J.; Han, Y.; Zheng, Y. Enantioselectivity in Tebuconazole and Myclobutanil Non-target Toxicity and Degradation in Soils. Chemosphere 2015, 122, 145–153. [Google Scholar] [CrossRef]
- Dong, F.; Cheng, L.; Liu, X.; Xu, J.; Li, J.; Li, Y.; Kong, Z.; Jian, Q.; Zheng, Y. Enantioselective Analysis of Triazole Fungicide Myclobutanil in Cucumber and Soil under Different Application Modes by Chiral Liquid Chromatography/Tandem Mass Spectrometry. J. Agric. Food Chem. 2012, 60, 1929–1936. [Google Scholar] [CrossRef]
- Arunrat, N.; Sereenonchai, S.; Sansupa, C.; Kongsurakan, P.; Hatano, R. Effect of Rice Straw and Stubble Burning on Soil Physicochemical Properties and Bacterial Communities in Central Thailand. Biology 2023, 12, 501. [Google Scholar] [CrossRef] [PubMed]
- Furtak, K.; Gałązka, A. Enzymatic Activity as a Popular Parameter Used to Determine the Quality of the Soil Environment. Pol. J. Agron. 2019, 37, 22–30. [Google Scholar] [CrossRef]
- Brzezińska, M.; Włodarczyk, T. Enzymes of Intracellular Redox Trasformations (Oxidoreductases). Acta Agroph. 2005, 3, 11–26. [Google Scholar]
- Roman, D.L.; Voiculescu, D.I.; Filip, M.; Ostafe, V.; Isvoran, A. Effects of Triazole Fungicides on Soil Microbiota and on the Activities of Enzymes Found in Soil: A Review. Agriculture 2021, 11, 893. [Google Scholar] [CrossRef]
- Kim, S.; Chen, J.; Cheng, T.; Gindulyte, A.; He, J.; He, S.; Li, Q.; Shoemaker, B.A.; Thiessen, P.A.; Yu, B.; et al. PubChem 2019 Update: Improved Access to Chemical Data. Nucleic Acids Res. 2018, 47, D1102–D1109. [Google Scholar] [CrossRef]
- Imakumbili, M.L.E.; Semu, E.; Semoka, J.M.R.; Abass, A.; Mkamilo, G. Soil Nutrient Adequacy for Optimal Cassava Growth, Implications on Cyanogenic Glucoside Production: A Case of Konzo-Affected Mtwara Region, Tanzania. PLoS ONE 2019, 14, e0216708. [Google Scholar] [CrossRef]
- Schinner, F.; Ohlinger, R.; Kandeler, E.; Margesin, R. Enzymes Involved in Intracellular Metabolism. In Methods in Soil Biology, 1st ed.; Schinner, F., Ed.; Springer: Berlin/Heidelberg, Germany, 1996; p. 426. [Google Scholar]
- Alef, K.; Nannipieri, P. Enzyme activities. In Methods in Applied Soil Microbiology and Biochemistry; Alef, K., Nannipieri, P., Eds.; Academic Press: London, UK, 1995; pp. 311–373. [Google Scholar]
- Dick, R.P.; Breakwell, D.P.; Turco, R.F. Soil Enzyme Activities and Biodiversity Measurements as Integrative Microbiological Indicators. In Methods for Assessing Soil Quality; Soil Science Society of America: Madison, WI, USA, 1997; pp. 247–271. [Google Scholar]
- Drăgan-Bularda, M. Lucrări Practice de microbiologie General; Universitatea Babes Bolyai: Cluj-Napoca, Romania, 2000; pp. 175–191. [Google Scholar]
- Caraba, M.N.; Roman, D.L.; Caraba, I.V.; Isvoran, A. Assessment of the Effects of the Herbicide Aclonifen and Its Soil Metabolites on Soil and Aquatic Environments. Agriculture 2023, 13, 1226. [Google Scholar] [CrossRef]
- Filimon, M.N.; Roman, D.L.; Caraba, I.V.; Isvoran, A. Assessment of the Effect of Application of the Herbicide S-Metolachlor on the Activity of Some Enzymes Found in Soil. Agriculture 2021, 11, 469. [Google Scholar] [CrossRef]
- Filimon, M.N.; Roman, D.L.; Bordean, D.M.; Isvoran, A. Impact of the Herbicide Oxyfluorfen on the Activities of Some Enzymes Found in Soil and on the Populations of Soil Microorganisms. Agronomy 2021, 11, 1702. [Google Scholar] [CrossRef]
- Filimon, M.N.; Voia, S.O.; Vladoiu, D.L.; Isvoran, A.; Ostafe, V. Temperature Dependent Effect of Difenoconazole on Enzymatic Activity From Soil. J. Serb. Chem. Soc. 2015, 80, 1127–1137. [Google Scholar] [CrossRef]
- Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The Protein Data Bank. Nucleic Acids Res. 2000, 28, 235–242. [Google Scholar] [CrossRef]
- Gómez, S.; Navas-Yuste, S.; Payne, A.M.; Rivera, W.; López-Estepa, M.; Brangbour, C.; Fullà, D.; Juanhuix, J.; Fernández, F.J.; Vega, M.C. Peroxisomal Catalases From the Yeasts Pichia pastoris and Kluyveromyces lactis as Models for Oxidative Damage in Higher Eukaryotes. Free Radic. Biol. Med. 2019, 141, 279–290. [Google Scholar] [CrossRef]
- Korkhin, Y.; Frolow, F.; Bogin, O.; Peretz, M.; Kalb, A.J.; Burstein, Y. Crystalline Alcohol Dehydrogenases From the Mesophilic Bacterium Clostridium beijerinckii And the Ahermophilic Bacterium Thermoanaerobium brockii: Preparation, Characterization and Molecular Symmetry. Acta Crystallogr. D 1996, 52, 882–886. [Google Scholar] [CrossRef]
- Serrière, J.; Robert, X.; Perez, M.; Gouet, P.; Guillon, C. Biophysical Characterization and Crystal Structure of the Feline Immunodeficiency Virus p15 matrix protein. Retrovirology 2013, 10, 64. [Google Scholar] [CrossRef]
- Kostrewa, D.; Wyss, M.; D’Arcy, A.; van Loon, A.P. Crystal Structure of Aspergillus niger pH 2.5 Acid Phosphatase at 2. 4 A Resolution. J. Mol. Biol. 1999, 288, 965–974. [Google Scholar] [CrossRef]
- Jonas, S.; van Loo, B.; Hyvönen, M.; Hollfelder, F. A New Member of the Alkaline Phosphatase Superfamily with a Formylglycine Nucleophile: Structural and Kinetic Characterisation of a Phosphonate Monoester Hydrolase/Phosphodiesterase from Rhizobium leguminosarum. J. Mol. Biol. 2008, 384, 120–136. [Google Scholar] [CrossRef]
- James, M.N.G.; Sielecki, A.R.; Brayer, G.D.; Delbaere, L.T.J.; Bauer, C.A. Structures of Product and Inhibitor Complexes of Streptomyces griseus Protease A at 1.8 Å Resolution: A Model for Serine Protease Catalysis. J. Mol. Biol. 1980, 144, 43–88. [Google Scholar] [CrossRef] [PubMed]
- Benini, S.; Kosikowska, P.; Cianci, M.; Mazzei, L.; Vara, A.G.; Berlicki, Ł.; Ciurli, S. The Crystal Structure of Sporosarcina pasteurii Urease in A Complex with Citrate Provides New Hints for Inhibitor Design. J. Biol. Inorg. Chem. 2013, 18, 391–399. [Google Scholar] [CrossRef] [PubMed]
- Varadi, M.; Anyango, S.; Deshpande, M.; Nair, S.; Natassia, C.; Yordanova, G.; Yuan, D.; Stroe, O.; Wood, G.; Laydon, A. AlphaFold Protein Structure Database: Massively Expanding the Structural Coverage of Protein-sequence Space with High-accuracy Models. Nucleic Acids Res. 2022, 50, D439–D444. [Google Scholar] [CrossRef] [PubMed]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera—A Visualization System for Exploratory Research and Analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef]
- Grosdidier, A.; Zoete, V.; Michielin, O. SwissDock, A Protein-small Molecule Docking Web Service Based on EADock DSS. Nucleic Acids Res. 2011, 39, W270–W277. [Google Scholar] [CrossRef]
- Salentin, S.; Schreiber, S.; Haupt, V.J.; Adasme, M.F.; Schroeder, M. PLIP: Fully Automated Protein–ligand Interaction Profiler. Nucleic Acids Res. 2015, 43, W443–W447. [Google Scholar] [CrossRef]
- Hammer, O.; Harper, D.; Ryan, P. PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontol. Electron. 2001, 4, 1–9. [Google Scholar]
- Saha, A.; Pipariya, A.; Bhaduri, D. Enzymatic Activities and Microbial Biomass in Peanut Field Soil as Affected by the Foliar Application of Tebuconazole. Environ. Earth Sci. 2016, 75, 558. [Google Scholar] [CrossRef]
- Baćmaga, M.; Wyszkowska, J.; Kucharski, J. Response of Soil Microorganisms and Enzymes to the Foliar Application of Helicur 250 EW Fungicide on Horderum vulgare L. Chemosphere 2020, 242, 125163. [Google Scholar] [CrossRef]
- Vlădoiu, D.L.; Filimon, M.N.; Ostafe, V.; Isvoran, A. Effects Of Herbicides And Fungicides On The Soil Chitinolytic Activity. A Molecular Docking Approach. Ecol. Chem. Eng. S 2015, 22, 439–450. [Google Scholar] [CrossRef]
- Fan, L.; Tarin, M.W.K.; Zhang, Y.; Han, Y.; Rong, J.; Cai, X.; Chen, L.; Shi, C.; Zheng, Y. Patterns of Soil Microorganisms and Enzymatic Activities of Various Forest Types in Coastal Sandy Land. Glob. Ecol. Conserv. 2021, 28, e01625. [Google Scholar] [CrossRef]
- Hara, I.; Ichise, N.; Kojima, K.; Kondo, H.; Ohgiya, S.; Matsuyama, H.; Yumoto, I. Relationship Between the Size of the Bottleneck 15 Å from Iron in the Main Channel and the Reactivity of Catalase Corresponding to the Molecular Size of Substrates. Biochemistry 2007, 46, 11–22. [Google Scholar] [CrossRef] [PubMed]
- Brzezińska, M.; Włodarczyk, T.; Stępniewski, W.; Przywara, G. Soil Aeration Status and Catalase Activity. Acta Agroph. 2005, 5, 555–565. [Google Scholar]
- Ji, C.; Song, Z.; Tian, Z.; Feng, Z.; Fan, L.; Shou, C.; Zhao, M. Enantioselectivity in the Toxicological Effects of Chiral Pesticides: A Review. Sci. Total Environ. 2023, 857, 159656. [Google Scholar] [CrossRef] [PubMed]
Experimental Variant | C (Control) | ½ D | D | 2D |
---|---|---|---|---|
Myclobutanil dose | 0—untreated dose | 0.1 L/ha | 0.2 L/ha | 0.4 L/ha |
Enzyme | Organism | PDB ID/AF |
---|---|---|
catalase 2 | Bacillus subtilis | AF-P42234-F1 |
catalase | Komagataella pastoris | 6RJN [54] |
catalase | Rhizobium meliloti | AF-Q9X576-F1 |
dehydrogenase | Clostridium beijerinckii | 1KEV chain A [55] |
dehydrogenase | Aspergillus fumigatus | 7RK5 chain A |
dehydrogenase | Rhizobium leguminosarum | 8C54 chain A |
phosphatase | Bacillus subtilis | 4I9C chain A [56] |
phosphatase | Aspergillus niger | 1QFX [57] |
phosphatase | Rhizobium leguminosarum | 2VQR [58] |
protease A | Streptomyces griseus | 4SGA chain E [59] |
metalloprotease | Aspergillus clavatus | 7Z6T |
protease | Rhizobium leguminosarum | AF-A0A0Q7ALB8-F1 |
urease | Bacillus pasteurii | 4AC7 chain C [60] |
urease | Aspergillus fumigatus | AF-Q6A3P9-F1 |
urease | Rhizobium leguminosarum | AF-Q1MCV9-F1 |
Dose/ Time (Days) | p Values | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Control | 1/2D | D | 2D | ||||||||||||||
7 | 14 | 21 | 28 | 7 | 14 | 21 | 28 | 7 | 14 | 21 | 28 | 7 | 14 | 21 | 28 | ||
Control | 7 | 0.74 | 0.67 | 0.72 | 0.34 | 0.46 | 0.64 | 0.57 | 0.60 | 0.89 | 0.65 | 0.25 | 0.02 | 0.03 | 0.04 | <0.01 | |
14 | 0.04 | 0.93 | 0.98 | 0.20 | 0.28 | 0.89 | 0.37 | 0.84 | 0.85 | 0.90 | 0.14 | 0.01 | 0.01 | 0.02 | <0.01 | ||
21 | 0.63 | 0.11 | 0.95 | 0.17 | 0.24 | 0.96 | 0.32 | 0.91 | 0.78 | 0.98 | 0.12 | 0.01 | 0.01 | 0.02 | <0.01 | ||
28 | <0.01 | 0.35 | 0.01 | 0.19 | 0.27 | 0.91 | 0.35 | 0.86 | 0.83 | 0.93 | 0.13 | 0.01 | 0.01 | 0.02 | <0.01 | ||
1/2D | 7 | 0.42 | 0.20 | 0.75 | 0.03 | 0.83 | 0.15 | 0.70 | 0.14 | 0.27 | 0.16 | 0.85 | 0.16 | 0.25 | 0.30 | <0.01 | |
14 | 0.11 | 0.64 | 0.26 | 0.16 | 0.41 | 0.23 | 0.86 | 0.20 | 0.38 | 0.23 | 0.69 | 0.11 | 0.17 | 0.21 | <0.01 | ||
21 | 0.87 | 0.05 | 0.75 | <0.01 | 0.52 | 0.14 | 0.30 | 0.95 | 0.74 | 0.99 | 0.11 | <0.01 | 0.01 | 0.01 | <0.01 | ||
28 | <0.01 | 0.47 | 0.02 | 0.84 | 0.04 | 0.23 | 0.01 | 0.27 | 0.47 | 0.30 | 0.57 | 0.07 | 0.12 | 0.15 | <0.01 | ||
1D | 7 | 0.25 | 0.35 | 0.50 | 0.06 | 0.73 | 0.64 | 0.32 | 0.10 | 0.70 | 0.94 | 0.09 | <0.01 | 0.01 | 0.01 | <0.01 | |
14 | 0.01 | 0.68 | 0.04 | 0.60 | 0.09 | 0.38 | 0.02 | 0.75 | 0.18 | 0.76 | 0.20 | 0.01 | 0.02 | 0.03 | <0.01 | ||
21 | 0.62 | 0.11 | 0.99 | 0.01 | 0.76 | 0.26 | 0.74 | 0.02 | 0.51 | <0.05 | 0.11 | <0.01 | 0.01 | 0.01 | <0.01 | ||
28 | <0.01 | 0.14 | <0.01 | 0.58 | 0.01 | 0.05 | <0.01 | 0.45 | 0.02 | 0.28 | <0.01 | 0.23 | 0.34 | 0.39 | <0.01 | ||
2D | 7 | 0.09 | 0.68 | 0.23 | 0.18 | 0.38 | 0.95 | 0.13 | 0.26 | 0.60 | 0.41 | 0.24 | 0.06 | 0.80 | 0.72 | <0.01 | |
14 | 0.09 | 0.70 | 0.22 | 0.19 | 0.37 | 0.93 | 0.12 | 0.27 | 0.58 | 0.43 | 0.23 | 0.06 | 0.98 | 0.91 | <0.01 | ||
21 | 0.78 | 0.07 | 0.84 | 0.01 | 0.60 | 0.18 | 0.91 | 0.01 | 0.38 | 0.03 | 0.83 | <0.01 | 0.16 | 0.15 | <0.01 | ||
28 | <0.01 | 0.22 | <0.01 | 0.77 | 0.01 | 0.09 | <0.01 | 0.62 | 0.03 | 0.41 | <0.01 | 0.79 | 0.10 | 0.11 | <0.01 |
Dose/ Time (Days) | p Values | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Control | 1/2D | D | 2D | ||||||||||||||
7 | 14 | 21 | 28 | 7 | 14 | 21 | 28 | 7 | 14 | 21 | 28 | 7 | 14 | 21 | 28 | ||
Control | 7 | 1.00 | <0.01 | <0.01 | 0.32 | 1.00 | 0.01 | 0.01 | 1.00 | 1.00 | 0.01 | 0.04 | 0.69 | 0.52 | <0.01 | <0.01 | |
14 | 0.03 | 0.01 | <0.01 | 0.87 | 1.00 | 0.08 | 0.06 | 0.98 | 1.00 | 0.05 | 0.26 | 0.99 | 0.97 | <0.01 | <0.01 | ||
21 | 0.25 | 0.34 | 1.00 | 0.52 | 0.01 | 1.00 | 1.00 | <0.01 | 0.02 | 1.00 | 0.98 | 0.20 | 0.32 | 0.99 | 1.00 | ||
28 | 0.16 | 0.47 | 0.80 | 0.32 | <0.01 | 1.00 | 1.00 | <0.01 | 0.01 | 1.00 | 0.92 | 0.10 | 0.17 | 1.00 | 1.00 | ||
1/2D | 7 | 0.53 | 0.01 | 0.08 | 0.04 | 0.79 | 0.95 | 0.91 | 0.11 | 0.93 | 0.90 | 1.00 | 1.00 | 1.00 | 0.04 | 0.20 | |
14 | 0.04 | 0.94 | 0.37 | 0.52 | 0.01 | 0.05 | 0.04 | 0.99 | 1.00 | 0.04 | 0.19 | 0.98 | 0.93 | <0.01 | <0.01 | ||
21 | 0.97 | 0.04 | 0.27 | 0.17 | 0.50 | <0.05 | 1.00 | <0.01 | 0.11 | 1.00 | 1.00 | 0.67 | 0.82 | 0.69 | 0.98 | ||
28 | 0.63 | 0.10 | 0.50 | 0.36 | 0.27 | 0.12 | 0.66 | <0.01 | 0.09 | 1.00 | 1.00 | 0.59 | 0.75 | 0.76 | 0.99 | ||
1D | 7 | 0.68 | 0.01 | 0.12 | 0.07 | 0.83 | 0.01 | 0.65 | 0.37 | 0.95 | <0.01 | 0.01 | 0.35 | 0.22 | <0.01 | <0.01 | |
14 | 0.03 | 0.91 | 0.28 | 0.41 | <0.01 | 0.85 | 0.03 | 0.08 | 0.01 | 0.08 | 0.35 | 1.00 | 0.99 | <0.01 | <0.01 | ||
21 | 0.43 | 0.18 | 0.72 | 0.54 | 0.16 | 0.21 | 0.46 | 0.76 | 0.23 | 0.15 | 1.00 | 0.57 | 0.73 | 0.78 | 0.99 | ||
28 | 0.74 | 0.08 | 0.41 | 0.29 | 0.34 | 0.09 | 0.77 | 0.88 | 0.46 | 0.06 | 0.65 | 0.95 | 0.99 | 0.32 | 0.81 | ||
2D | 7 | 0.26 | <0.01 | 0.02 | 0.01 | 0.61 | <0.01 | 0.24 | 0.11 | 0.47 | <0.01 | 0.05 | 0.14 | 1.00 | 0.01 | 0.06 | |
14 | 0.08 | 0.70 | 0.56 | 0.74 | 0.02 | 0.76 | 0.09 | 0.21 | 0.03 | 0.62 | 0.34 | 0.16 | <0.01 | 0.02 | 0.10 | ||
21 | 0.23 | <0.01 | 0.02 | 0.01 | 0.57 | <0.01 | 0.22 | 0.09 | 0.43 | <0.01 | <0.05 | 0.13 | 0.95 | <0.01 | 1.00 | ||
28 | 0.21 | <0.01 | 0.02 | 0.01 | 0.53 | <0.01 | 0.19 | 0.08 | 0.40 | <0.01 | 0.04 | 0.11 | 0.91 | <0.01 | 0.95 |
Dose/ Time (Days) | p Values | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Control | 1/2D | D | 2D | ||||||||||||||
7 | 14 | 21 | 28 | 7 | 14 | 21 | 28 | 7 | 14 | 21 | 28 | 7 | 14 | 21 | 28 | ||
Control | 7 | <0.01 | <0.01 | 0.62 | 1.00 | 0.02 | <0.01 | 0.04 | 1.00 | 0.01 | <0.01 | <0.01 | 0.40 | <0.01 | <0.01 | <0.01 | |
14 | 1.00 | 0.49 | 0.01 | 1.00 | 1.00 | 1.00 | 0.01 | 1.00 | 0.98 | 1.00 | 0.71 | 1.00 | 0.95 | 1.00 | |||
21 | 0.29 | <0.01 | 1.00 | 1.00 | 0.99 | <0.01 | 1.00 | 1.00 | 1.00 | 0.48 | 1.00 | 0.99 | 1.00 | ||||
28 | 0.89 | 0.91 | 0.18 | 0.97 | 0.88 | 0.66 | 0.03 | 0.23 | 1.00 | 0.23 | 0.02 | 0.44 | |||||
1/2D | 7 | 0.07 | <0.01 | 0.12 | 1.00 | 0.02 | <0.01 | <0.01 | 0.71 | <0.01 | <0.01 | 0.01 | |||||
14 | 0.99 | 1.00 | 0.06 | 1.00 | 0.67 | 1.00 | 0.98 | 1.00 | 0.58 | 1.00 | |||||||
21 | 0.95 | <0.01 | 1.00 | 1.00 | 1.00 | 0.32 | 1.00 | 1.00 | 1.00 | ||||||||
28 | 0.11 | 1.00 | 0.51 | 0.98 | 1.00 | 0.98 | 0.41 | 1.00 | |||||||||
1D | 7 | 0.02 | <0.01 | <0.01 | 0.71 | <0.01 | <0.01 | 0.01 | |||||||||
14 | 0.92 | 1.00 | 0.85 | 1.00 | 0.86 | 1.00 | |||||||||||
21 | 1.00 | 0.06 | 1.00 | 1.00 | 0.99 | ||||||||||||
28 | 0.39 | 1.00 | 1.00 | 1.00 | |||||||||||||
2D | 7 | 0.40 | 0.04 | 0.65 | |||||||||||||
14 | 1.00 | 1.00 | |||||||||||||||
21 | 0.97 | ||||||||||||||||
28 |
Enzyme/ | Organism | ΔG (kcal/mol) | |
---|---|---|---|
(R)-myclobutanil | (S)-myclobutanil | ||
Catalase | Bacillus subtilis | - | - |
Komagataella pastoris | −7.06 | −7.19 | |
Rhizobium meliloti | - | - | |
Dehydrogenase | Clostridium beijerinckii | −9.25 | −9.68 |
Aspergillus fumigatus | −8.77 | −8.49 | |
Rhizobium leguminosarum | −7.04 | −6.76 | |
Phosphatase | Bacillus subtilis | −8.04 | −8.25 |
Aspergillus niger | −5.92 | −5.57 | |
Rhizobium leguminosarum | −7.33 | −7.25 | |
Protease | Streptomyces griseus | −7.15 | −7.32 |
Aspergillus clavatus | −5.83 | −4.75 | |
Rhizobium leguminosarum | −6.80 | −7.62 |
Enzyme | Ligand/Substrate | Interacting Residues |
---|---|---|
Clostridium beijerinckii dehydrogenase | (R)-myclobutanil | ARG200, LYS340 |
(S)-myclobutanil | ILE175, ARG200, LYS340 | |
NADPH | THR38, SER39, ILE175, ALA177, VAL178, GLY179, SER199, ARG200, GLU247, ASN266, TYR267, LYS340 | |
Aspergillus fumigatus dehydrogenase | (R)-myclobutanil | PHE45, ASN200, ASN312, ARG385 |
(S)-myclobutanil | PHE45, ASN200, ASP239, LYS307, ARG385, LYS393 | |
NADPH | GLY44, PHE45, GLN74, ASP77, ASP199, ASN200, VAL238, THR242 | |
Rhizobium leguminosarum dehydrogenase | (R)-myclobutanil | ILE159, PRO161, SER189, GLN190, PHE237, VAL243, PHE394 |
(S)-myclobutanil | ILE159, LYS186, ALA219, VAL243 | |
NADPH | THR160, PRO161, LYS186, PRO187, SER240, GLU261 | |
Bacillus subtilis phosphatase | (R)-myclobutanil | TYR66, TYR153, SER186, LEU230, ARG223, ASN227 |
(S)-myclobutanil | TYR66, TYR153, GLN183, ARG223, ASN227, LEU230 | |
GLN-ARG-GLY-MET-ILE | TYR66, TYR152, TYR153, LYS155, GLN183, LEU187, ASP194, ARG223, TYR226, ASN227, SER260, GLN263, PHE266, TYR300, GLU303, ALA334, ASP335, ASP 338 | |
Aspergillus niger phosphatase | (R)-myclobutanil | VAL147, LEU312 |
(S)-myclobutanil | VAL266, PHE345, GLY346 | |
NAG | THR300, LEU432, ASN439 | |
Rhizobium leguminosarum phosphatase | (R)-myclobutanil | TYR105, PHE138, ASN141, TYR215 |
(S)-myclobutanil | TYR105, LEU125, PHE138, ASN141, TYR215 | |
Streptomyces griseus protease | (R)-myclobutanil | PHE1, PRO2, ALA3, TYR171, GLY193, THR226 |
(S)-myclobutanil | PHE1, PRO2, ALA3, TYR171, ALA192, GLY193 | |
ACE-PRO-ALA-PRO-PHE | HIS57, VAL169, ASN170, TYR171, ALA192, GLN192, PRO192, GLY193, ASP194, SER195, SER214, GLY215, GLY216 | |
Aspergillus clavatus protease | (R)-myclobutanil | LEU204, VAL274 |
(S)-myclobutanil | LEU204, VAL274 | |
Rhizobium leguminosarum protease | (R)-myclobutanil | TRP61, PHE35, ARG145 |
(S)-myclobutanil | ARG91, PHE135, ARG145 | |
(R)-myclobutanil | TYR189, LEU445, VAL448, PHE449, ARG194, | |
Komagataella pastoris catalase | (S)-myclobutanil | TYR189, ARG194, ASN204, ALA444, LEU445 |
NADPH | PRO142, HIS185, SER192, ASN204, VAL293, TRP294, HIS296, GLN455 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roman, D.L.; Matica, M.A.; Ciorsac, A.; Boros, B.V.; Isvoran, A. The Effects of the Fungicide Myclobutanil on Soil Enzyme Activity. Agriculture 2023, 13, 1956. https://doi.org/10.3390/agriculture13101956
Roman DL, Matica MA, Ciorsac A, Boros BV, Isvoran A. The Effects of the Fungicide Myclobutanil on Soil Enzyme Activity. Agriculture. 2023; 13(10):1956. https://doi.org/10.3390/agriculture13101956
Chicago/Turabian StyleRoman, Diana Larisa, Mariana Adina Matica, Alecu Ciorsac, Bianca Vanesa Boros, and Adriana Isvoran. 2023. "The Effects of the Fungicide Myclobutanil on Soil Enzyme Activity" Agriculture 13, no. 10: 1956. https://doi.org/10.3390/agriculture13101956
APA StyleRoman, D. L., Matica, M. A., Ciorsac, A., Boros, B. V., & Isvoran, A. (2023). The Effects of the Fungicide Myclobutanil on Soil Enzyme Activity. Agriculture, 13(10), 1956. https://doi.org/10.3390/agriculture13101956