Physiological and Biochemical Parameters of Field Bean (Vicia faba var. minor) Seeds Stored for 33 Years
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material
2.2. Methods
2.2.1. Seed Quality
2.2.2. Isolation of Total Phenols
2.2.3. Determination of Total Phenols, Non-Tannin Phenolics and Tannins
2.2.4. Determination of Polyamines in Seed Coats and Whole Seeds
2.2.5. Determination of Catalase Activity
2.2.6. Determination of Guaiacol Peroxidase Activity
2.2.7. Determination of Superoxide Dismutase Activity
2.2.8. Statistical Analysis
3. Results and Discussion
3.1. Seed Quality
3.2. The Contents of Phenolic Compounds
3.3. The Contents of Biogenic Polyamines
3.4. Enzyme Activity
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- FAO (The State of Food and Agriculture). Migration, Agriculture and Rural Development; FAO: Rome, Italy, 2018; Available online: https://www.fao.org/documents/card/en/c/I9549EN (accessed on 2 May 2023).
- Worldometers. 2023. Available online: https://www.worldometers.info/world-population/ (accessed on 2 May 2023).
- Ritchie, H. After Millennia of Agricultural Expansion, the World Has Passed ‘Peak Agricultural Land’. 2022. Available online: https://ourworldindata.org/peak-agriculture-land (accessed on 10 August 2023).
- FAO. Draft Genebank Standards for Plant Genetic Resources for Food and Agriculture; FAO: Rome, Italy, 2013; Available online: http://www.fao.org/3/mf804e/mf804e.pdf (accessed on 4 May 2023).
- Sano, N.; Rajjou, L.; North, H.M.; Debeaujon, I.; Marion-Poll, A.; Seo, M. Staying alive: Molecular aspects of seed longevity. Plant Cell Physiol. 2016, 57, 660–674. [Google Scholar] [CrossRef] [PubMed]
- Ratajczak, E.; Małecka, A.; Ciereszko, I.; Staszak, A.M. Mitochondria are important determinants of the aging of seeds. Int. J. Mol. Sci. 2019, 20, 1568. [Google Scholar] [CrossRef] [PubMed]
- Kibinza, S.; Bazin, J.; Bailly, C.; Farrant, J.M.; Corbineau, F.; El-Maarouf-Bouteau, H. Catalase is a key enzyme in seed recovery from ageing during priming. Plant Sci. 2011, 181, 309–315. [Google Scholar] [CrossRef] [PubMed]
- Kurek, K.; Plitta-Michalak, B.; Ratajczak, E. Reactive oxygen species as potential drivers of the seed aging process. Plants 2019, 8, 174. [Google Scholar] [CrossRef]
- Zhang, M.; Li, B.; Wan, Z.; Chen, X.; Liu, C.; Liu, C.; Zhou, Y. Exogenous spermidine promotes germination of aged sorghum seeds by mediating sugar metabolism. Plants 2022, 11, 2853. [Google Scholar] [CrossRef]
- Piotrowicz-Cieślak, A.I.; Krupka, M.; Michalczyk, D.J.; Smyk, B.; Grajek, H.; Podyma, W.; Głowacka, K. Physiological characteristics of field bean seeds (Vicia faba var. minor) subjected to 30 years of storage. Agriculture 2020, 10, 545. [Google Scholar] [CrossRef]
- Rehmani, M.S.; Aziz, U.; Xian, B.; Shu, K. Seed dormancy and longevity: A mutual dependence or a trade-off? Plant Cell Physiol. 2022, 63, 1029–1037. [Google Scholar] [CrossRef]
- Zhou, W.; Chen, F.; Luo, X.; Dai, Y.; Yang, Y.; Zheng, C.; Yang, W.; Shu, K. A matter of life and death: Molecular, physiological, and environmental regulation of seed longevity. Plant Cell Environ. 2020, 43, 293–302. [Google Scholar] [CrossRef]
- Shirley, B.W. Flavonoid biosynthesis: ‘New’ functions for an ‘old’ pathway. Trends Plant Sci. 1996, 1, 377–382. [Google Scholar] [CrossRef]
- Debeaujon, I.; Léonkloosterziel, K.M.; Koornneef, M. Influence of the testa on seed dormancy, germination, and longevity in Arabidopsis. Plant Physiol. 2000, 122, 403–414. [Google Scholar] [CrossRef]
- Pourcel, L.; Routaboul, J.M.; Kerhoas, L.; Caboche, M.; Lepiniec, L.; Debeaujon, I. TRANSPARENT TESTA10 gene encodes a laccase-like enzyme involved in oxidative polymerization of flavonoids. Plant Cell 2005, 17, 2966–2980. [Google Scholar] [CrossRef]
- Takahashi, T.; Kakehi, J. Polyamines: Ubiquitous polycations with unique roles in growth and stress responses. Ann. Bot. 2010, 105, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Gevrekci, A.Ö. The roles of polyamines in microorganisms. World J. Microbiol. Biotechnol. 2017, 33, 204. [Google Scholar] [CrossRef] [PubMed]
- Jastrząb, R.; Łomozik, L.; Tylkowski, B. Complexes of biogenic amines in their role in living systems. Phys. Sci. Rev. 2016, 1, 20160003. [Google Scholar] [CrossRef]
- Ganem, B. New Chemistry of Naturally Occurring Polyamines. Acc. Chem. Res. 1982, 15, 290–298. [Google Scholar] [CrossRef]
- Goel, A.; Sheoran, I.S. Lipid peroxidation and peroxide-scavenging enzymes in cotton seeds under natural ageing. Biol. Plant. 2003, 46, 429–434. [Google Scholar] [CrossRef]
- Basra, A.S.; Singh, B.; Malik, C.P. Priming-induced changes in polyamine levels in relation to vigor of aged onion seeds. Bot. Bull. Acad. Sin. 1994, 35, 19–23. [Google Scholar]
- Khan, H.A.; Ziaf, K.; Amjad, M.; Iqbal, Q. Polyamines improves germination and early seedling growth of hot pepper. Chil. J. Agric. Res. 2012, 72, 429–433. [Google Scholar] [CrossRef]
- Zhang, X.; Shen, Y.; Mu, K.; Cai, W.; Zhao, Y.; Shen, H.; Wang, X.; Ma, H. Phenylalanine ammonia lyase gmpal1.1 promotes seed vigor under high-temperature and -humidity stress and enhances seed germination under salt and drought stress in transgenic arabidopsis. Plants 2022, 11, 3239. [Google Scholar] [CrossRef]
- Quantification of Tannins in Tree Foliage. Available online: https://www.osti.gov/etdeweb/servlets/purl/20286070 (accessed on 11 September 2023).
- Orzoł, A.; Piotrowicz-Cieślak, A.I. Levofloxacin is phytotoxic and modifies the protein profile of lupin seedlings. Environ. Sci. Pollut. Res. 2017, 24, 22226–22240. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Robertson, L.D.; El-Sherbeeny, M. Distribution of discretely scored descriptors in a pure line faba bean (Vicia faba L.) germplasm collection. Euphytica 1991, 57, 83–92. [Google Scholar] [CrossRef]
- Nasar-Abbas, S.M.; Siddique, K.H.M.; Plummer, J.A.; White, P.F.; Harris, D.; Dods, K.; D’antuono, M. Faba bean (Vicia faba L.) seeds darken rapidly and phenolic content falls when stored at higher temperature, moisture and light intensity. LWT-Food Sci. Tech. 2009, 42, 1703–1711. [Google Scholar] [CrossRef]
- Bassard, J.E.; Ullmann, P.; Bernier, F.; Werck-Reichhart, D. Phenolamides: Bridging polyamines to the phenolic metabolism. Phytochemistry 2010, 71, 1808–1824. [Google Scholar] [CrossRef]
- Navakoudis, E.; Kotzabasis, K. Polyamines: A bioenergetic smart switch for plant protection and development. J. Plant Physiol. 2022, 270, 153618. [Google Scholar] [CrossRef]
- Farooq, M.; Basra, S.M.A.; Rehman, H.; Hussain, M. Seed priming with polyamines improves the germination and early seedling growth in fine rice. J. New Seeds 2008, 9, 145–155. [Google Scholar] [CrossRef]
- Dobiesz, M.; Piotrowicz-Cieślak, A.I.; Michalczyk, D.J. Physiological and biochemical parameters of lupin seed subjected to 29 years of storage. Crop. Sci. 2017, 57, 2149–2159. [Google Scholar] [CrossRef]
- Minois, N.; Carmona-Gutierrez, D.; Madeo, F. Polyamines in aging and disease. Aging 2011, 3, 716–732. [Google Scholar] [CrossRef]
- Ahmad, P.; Sarwat, M.; Sharma, S. Reactive oxygen species, antioxidants and signaling in plants. J. Plant Biol. 2008, 51, 167–173. [Google Scholar] [CrossRef]
- Mittal, S.; Kumari, N.; Sharma, V. Differential response of salt stress on Brassica juncea: Photosynthetic performance, pigment, proline, D1 and antioxidant enzymes. Plant Physiol. Biochem. 2012, 54, 17–26. [Google Scholar] [CrossRef]
- Rai, A.C.; Singh, M.; Shah, K. Effect of water withdrawal on formation of free radical, proline accumulation and activities of antioxidant enzymes in ZAT12-transformed transgenic tomato plants. Plant Physiol. Biochem. 2012, 61, 108–114. [Google Scholar] [CrossRef]
- Parkhey, S.; Naithani, S.C.; Keshav, K. ROS production and lipid catabolism in desiccating Shorea robusta seeds during aging. Plant Physiol. Biochem. 2012, 57, 261–267. [Google Scholar] [CrossRef]
- Oliveira, J.T.A.; Andrade, N.C.; Martins-Miranda, A.S. Differential expression of antioxidant enzymes and PR-proteins in compatible and incompatible interactions of cowpea (Vigna unguiculata) and the root-knot nematode Meloidogyne Incogn. Plant Physiol. Biochem. 2012, 51, 145–152. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Zhang, Y.; Sun, J.; Meng, J.; Tao, J. Deterioration of orthodox seeds during ageing: Influencing factors, physiological alterations and the role of reactive oxygen species. Plant Physiol. Biochem. 2021, 158, 475–485. [Google Scholar] [CrossRef] [PubMed]
- Abdelaal, K.; Attia, K.A.; Niedbała, G.; Wojciechowski, T.; Hafez, Y.; Alamery, S.; Alateeq, T.K.; Arafa, S.A. Mitigation of drought damages by exogenous chitosan and yeast extract with modulating the photosynthetic pigments, antioxidant defense system and improving the productivity of garlic plants. Horticulturae 2021, 7, 510. [Google Scholar] [CrossRef]
- AlKahtani, M.D.F.; Hafez, Y.M.; Attia, K.; Rashwan, E.; Husnain, L.A.; AlGwaiz, H.I.M.; Abdelaal, K.A.A. Evaluation of silicon and proline application on the oxidative machinery in drought-stressed sugar beet. Antioxidants 2021, 10, 398. [Google Scholar] [CrossRef]
- Margas, M.; Piotrowicz-Cieślak, A.I.; Michalczyk, D.J.; Głowacka, K. A strong impact of soil tetracycline on physiology and biochemistry of pea seedlings. Scientifica 2019, 2019, 3164706. [Google Scholar] [CrossRef]
- Dempsey, D.A.; Vlot, A.C.; Wildermuth, M.C.; Klessig, D.F. Salicylic acid biosynthesis and metabolism. Arab. Book 2011, 9, e0156. [Google Scholar] [CrossRef]
- Amarowicz, R.; Troszynska, A.; Barylko-Piekielna, N.; Shahidi, F. Polyphenolic extracts from legume seeds: Correlations between total antioxidant activity, total phenolics content, tannins content and astringency. J. Food Lipids. 2004, 11, 278–286. [Google Scholar] [CrossRef]
- Troszynska, A.; Ciska, E. Phenolic compounds of seed coats of white and coloured varieties of pea (Pisum sativum L.) and their total antioxidant activity. Czech J. Food Sci. 2002, 20, 15–22. [Google Scholar] [CrossRef]
- Hagerman, A.E.; Riedl, K.M.; Jones, G.A.; Sovik, K.N.; Ritchard, N.T.; Hartzfeld, P.W.; Riechel, T.L. High molecular weight plant polyphenolics (tannins) as biological antioxidants. J. Agric. Food Chem. 1998, 46, 1887–1892. [Google Scholar] [CrossRef] [PubMed]
- Jayakodi, M.; Golicz, A.A.; Kreplak, J.; Fechete, L.I.; Angra, D.; Bednář, P.; Bornhofen, E.; Zhang, H.; Boussageon, R.; Kaur, S.; et al. The giant diploid faba genome unlocks variation in a global protein crop. Nature 2023, 615, 652–659. [Google Scholar] [CrossRef] [PubMed]
- Hr-Strzelce. 2023. Available online: https://hr-strzelce.pl/uprawa-bobiku/ (accessed on 17 September 2023). (In Polish).
- Desheva, G. The longevity of crop sees stored under long-term condition in the National Gene Bank of Bulgaria. Agriculture 2016, 62, 90–100. [Google Scholar] [CrossRef]
Storage Temperature | |||
---|---|---|---|
−14 °C | +4 °C | +20 °C | |
Water content in seeds, % | 7.1 ± 0.08 A | 6.3 ± 0.06 AB | 4.5 ± 0.46 B |
Germination, % | 91 ± 2 A | 27 ± 4 B | 0 C |
Length, mm root | 112.4 ± 9 A | 94 ± 7 A | 0 B |
stem | 28.9 ± 24 A | 0 ± 0 B | 0 B |
Seedling fresh weight, mg | 1321 ± 46 A | 1268 ± 26 A | 0 B |
Seedling dry weight, % | 11.2 ± 2.4 A | 11.3 ± 1.5 A | 0 B |
Storage Temperature | |||
---|---|---|---|
−14 °C | +4 °C | +20 °C | |
Water content in seeds, % | 7.5 ± 0.1 A | 6.1 ± 0.4 AB | 4.5 ± 0.2 B |
Germination, % | 77 ± 7 A | 50 ± 1 B | 0 C |
Length, mm root | 104.3 ± 5 A | 46.2 ± 4 B | 0 C |
Stem | 26.3 ± 8 A | 0 ± 0 B | 0 B |
Seedling fresh weight, mg | 1116 ± 27 A | 647 ± 34 A | 0 C |
Dry weight of seedlings, % | 11.0 ± 2.4 A | 11.6 ± 1.5 A | 0 B |
Storage Temperature | ||||||
---|---|---|---|---|---|---|
−14 °C | +4 °C | +20 °C | ||||
Nadwiślański | Dino | Nadwiślański | Dino | Nadwiślański | Dino | |
Total phenols, mg tannic acid × 100 mg−1 ± SD | 1.25 ± 0.017 A | 1.26 ± 0.07 A | 1.27 ± 0.02 A | 1.28 ± 0.05 A | 0.66 ± 0.05 B | 0.79 ± 0.04 B |
Non-tannin phenols, mg tannic acid × 100 mg−1 ± SD | 0.505 ±0.001 A | 0.475 ± 0.003 A | 0.495 ± 0.015 A | 0.580 ± 0.03 A | 0.211 ±0.03 B | 0.206 ± 0.03 B |
Total tannins, mg tannic acid × 100 mg−1 ± SD | 0.745 ± 0.017 A | 0.788 ± 0.080 A | 0.721 ± 0.040 A | 0.697 ±0.050 A | 0.454 ± 0.030 B | 0.589 ± 0.020 AB |
Flavan-4-ols, mg × 100 mg−1 ± SD | 0.055 ± 0.008 A | 0.047 ±0.009 A | 0.061 ±0.005 A | 0.063 ±0.009 A | 0.066 ± 0.004 A | 0.068 ± 0.008 A |
Free gallic acid, mg × 100 mg−1 ± SD | 0.045 ± 0.006 A | 0.046 ± 0.009 A | 0.049 ±0.003 A | 0.048 ±0.008 A | 0.053 ±0.005 A | 0.054 ±0.002 A |
Gallotannin, mg × 100 mg−1 ± SD | 0.039 ± 0.004 A | 0.036 ± 0.003 A | 0.041 ±0.005 A | 0.042 ±0.007 A | 0.043 ±0.004 A | 0.046 ±0.006 A |
Storage Temperature | |||
---|---|---|---|
−14 °C | +4 °C | +20 °C | |
Nadwiślański | |||
Spermine | 216 ± 12 A | 134 ± 11 B | 49 ± 9 C |
Spermidine | 257 ± 23 A | 167 ± 27 B | 27 ± 4 C |
Putrescine | 68 ± 6 A | 70 ± 18 A | 50 ± 11 B |
Cadaverine | 11 ± 2 | tr | 0 |
Dino | |||
Spermine | 324 ± 26 A | 136 ± 3 B | 97 ± 3 C |
Spermidine | 235 ± 12 A | 157 ± 4 B | 102 ± 9 C |
Putrescine | 84 ± 4 A | 85 ± 6 A | 90 ± 8 A |
Cadaverine | 31 ± 3 A | 17 ± 4 B | 0 |
Storage Temperature | |||
---|---|---|---|
−14 °C | +4 °C | +20 °C | |
Nadwiślański | |||
Spermine | 32 ± 2 A | 56 ± 5 B | 87 ± 3 C |
Spermidine | 47 ± 5 A | 63 ± 4 B | 112 ± 5 C |
Putrescine | 84 ± 4 A | 170 ± 8 B | 310 ± 7 C |
Cadaverine | tr | 8 ± 2 A | 21 ± 4 B |
Dino | |||
Spermine | 27 ± 3 A | 48 ± 3 B | 69 ± 3 C |
Spermidine | 39 ± 4 A | 64 ± 6 B | 96 ± 6 C |
Putrescine | 69 ± 4 A | 98 ± 5 B | 260 ± 5 C |
Cadaverine | 0 | 0 | 0 |
Storage Temperature | ||||||
---|---|---|---|---|---|---|
−14 °C | +4 °C | +20 °C | ||||
Nadwiślański | Dino | Nadwiślański | Dino | Nadwiślański | Dino | |
Catalase activity (µmol H2O2/min/mg protein ± SD | 2.320 ± 0.150 A | 1.730 ± 0.120 B | 2.200 ± 0.070 A | 1.780 ± 0.100 B | 1.370 ± 0.180 C | 1.350 ± 0.090 C |
Guaiacol peroxidase activity, µmol H2O2/min/mg protein ± SD) | 1.690 ± 0.207 A | 1.690 ± 0.137 A | 1.410 ± 0.260 B | 1.690 ± 0.116 A | 0.806 ±0.086 C | 0.700 ± 0.071 C |
Superoxide dismutase activity (50% inhibition = unit of SOD/mg fresh weight ±SD | 0.123 ± 0.003 A | 0.110 ± 0.014 A | 0.246 ± 0.036 B | 0.135 ± 0.033 A | 0.056 ± 0.005 C | 0.171 ± 0.038 C |
Ascorbate peroxidase 1 μmol H2O2 × min−1) | 1.3 ± 0.1 A | 1.4 ± 0.3 A | 1.8 ± 0.3 B | 1.7 ± 0.1 B | 2.4 ± 0.2 C | 2.6 ± 0.1 C |
Glutathione reductase (1 μM NADPH × min−1) | 0.01 ± 0.002 A | 0.02 ± 0.001 A | 0.006 ± 0.0001 B | 0.007 ± 0.0006 B | 0.007 ± 0.0006 B | 0.008 ± 0.0004 B |
L-phenylalanine ammonia-lyase (μmol trans-cinnamic acid × mg−1 protein × 2 h−1) | 80 ± 2.1 A | 74 ± 1.6 A | 143 ± 5.3 B | 152 ± 7.4 B | 210 ± 6.9 C | 220 ± 7.2 C |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Michalczyk, D.J.; Krupka, M.; Kamiński, J.; Wierzbicka, M.; Floryańska, S.; Kopeć, W.; Piotrowicz-Cieślak, A.I. Physiological and Biochemical Parameters of Field Bean (Vicia faba var. minor) Seeds Stored for 33 Years. Agriculture 2023, 13, 2012. https://doi.org/10.3390/agriculture13102012
Michalczyk DJ, Krupka M, Kamiński J, Wierzbicka M, Floryańska S, Kopeć W, Piotrowicz-Cieślak AI. Physiological and Biochemical Parameters of Field Bean (Vicia faba var. minor) Seeds Stored for 33 Years. Agriculture. 2023; 13(10):2012. https://doi.org/10.3390/agriculture13102012
Chicago/Turabian StyleMichalczyk, Dariusz J., Magdalena Krupka, Jan Kamiński, Marta Wierzbicka, Sonia Floryańska, Wiktor Kopeć, and Agnieszka I. Piotrowicz-Cieślak. 2023. "Physiological and Biochemical Parameters of Field Bean (Vicia faba var. minor) Seeds Stored for 33 Years" Agriculture 13, no. 10: 2012. https://doi.org/10.3390/agriculture13102012
APA StyleMichalczyk, D. J., Krupka, M., Kamiński, J., Wierzbicka, M., Floryańska, S., Kopeć, W., & Piotrowicz-Cieślak, A. I. (2023). Physiological and Biochemical Parameters of Field Bean (Vicia faba var. minor) Seeds Stored for 33 Years. Agriculture, 13(10), 2012. https://doi.org/10.3390/agriculture13102012