Effect of Using Ensilaged Corn Wet Distillers’ Grains Plus Solubles (WDGS) as a Partial Replacement for Concentrated Feed for Wet Lot Fed Fatteners during Fattening on Growth Performance, Carcass Characteristics and Pork Quality
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Housing
2.2. Feed Diets
2.3. Sampling Conditions
2.4. Chemical Analyses
Nutritional Value
2.5. Fatty Acid Composition
2.6. Oxidative Status and Lipid Peroxidation
2.7. Pork Quality
2.8. Statistical Analysis
3. Results
3.1. Animal Performance and Slaughter Performance
3.2. Chemical Analyses
Nutritional Value
3.3. Fatty Acid Profile
3.4. Oxidative Status of Meat
3.5. Meat Quality
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gunn, P.J.; Buckmaster, D.R.; Lemenager, R.P.; Van Emon, M.L.; Claeys, M.C.; Lake, S.L. Preservation characteristics of modified wet distillers grains with solubles stored with marginal-quality feedstuffs in laboratory-scale mini silos. Prof. Anim. Sci. 2013, 29, 671–676. [Google Scholar] [CrossRef]
- Harding, J.L.; Cornelius, J.E.; Rolfe, K.M.; Shreck, A.L.; Erickson, G.E.; Klopfenstein, T.J. Effect of Storage Method on Nutrient Composition and Dry Matter Loss of Wet Distillers Grains. Neb. Beef Cattle Rep. 2012, 670, 58–60. [Google Scholar]
- Shad, Z.M.; Venkitasamy, C.; Wen, Z. Corn distillers dried grains with solubles: Production, properties, and potential uses. Cereal Chem. 2021, 98, 999–1019. [Google Scholar] [CrossRef]
- Bremer, V.R.; Watson, A.K.; Liska, A.J.; Erickson, G.E.; Cassman, K.G.; Hanford, K.J.; Klopfenstein, T.J. Effect of distillers grains moisture and inclusion level in livestock diets on greenhouse gas emissions in the corn-ethanol-livestock life cycle. Prof. Anim. Sci. 2011, 27, 449–455. [Google Scholar] [CrossRef]
- Klopfenstein, T.J.; Erickson, G.E.; Berger, L.L. Maize is a critically important source of food, feed, energy and forage in the USA. Field Crop. Res. 2013, 153, 5–11. [Google Scholar] [CrossRef]
- Nuttelman, B.L.; Griffin, W.A.; Benton, J.R.; Erickson, G.E.; Klopfenstein, T.J. Comparing Dry, Wet, or Modified Distillers Grains Plus Solubles on Feedlot Cattle Performance. In Nebraska Beef Cattle Report 2011; University of Nebraska-Lincoln: Lincoln, NE, USA, 2011; pp. 50–52. [Google Scholar]
- Lehman, R.M.; Rosentrater, K.A. Aerobic stability of distillers wet grains as influenced by temperature. J. Sci. Food Agric. 2012, 93, 398–503. [Google Scholar] [CrossRef]
- Baidoo, S.K.; Jendza, J.; Yang, X.; Anil, L. Liquid Feeding of Ethanol Industry Co-Products on Growth Performance of Wean-to-Finish Pigs. University of Minnesota. Minnesota Extension Service. 2013 Retrieved from the University of Minnesota Digital Conservancy. Available online: https://hdl.handle.net/11299/204365 (accessed on 25 June 2023).
- Andersen, I.L.; Ocepek, M.; Thingnes, S.L.; Newberry, R.C. Welfare and performance of finishing pigs on commercial farms: Associations with group size, floor space per pig and feed type. Appl. Anim. Behav. Sci. 2023, 265, 105979. [Google Scholar] [CrossRef]
- Missotten, J.A.; Michiels, J.; Degroote, J.; De Smet, S. Fermented liquid feed for pigs: An ancient technique for the future. J. Anim. Sci. Biotechnol. 2015, 6, 4. [Google Scholar] [CrossRef]
- Salami, S.A.; O’Grady, M.N.; Luciano, G.; Priolo, A.; Mcgee, M.; Moloney, A.P.; Kerry, J.P. Fatty acid composition, shelf-life and eating quality of beef from steers fed corn or wheat dried distillers’ grains with solubles in a concentrate supplement to grass silage. Meat Sci. 2021, 173, 108381. [Google Scholar] [CrossRef]
- Sun, X.; Tiffany, D.G.; Urriola, P.E.; Shurson, B.H. Nutrition upgrading of corn-ethanol co-product by fungal fermentation: Amino acids enrichment and anti-nutritional factors degradation. Food Bioprod. Process. 2021, 130, 1–13. [Google Scholar] [CrossRef]
- Harris, E.K.; Mellencamp, M.A.; Johnston, L.J.; Cox, R.B.; Shurson, G.C. Effectiveness of different corn dried distillers grains with solubles feeding strategies and increasing the time intervals between the second Improvest dose and slaughter of immunologically castrated pigs on belly and pork fat quality. Meat Sci. 2018, 135, 62–73. [Google Scholar] [CrossRef] [PubMed]
- Pouzo, L.B.; Ceconi, I.; Davies, P.; Méndez, D.; Ortiz Miranda, S.G.; Testa, M.L.; Pavan, E. Animal performance and meat quality characteristics from feedlot-finished steers fed increasing levels of wet distillers grain. Meat Sci. 2023, 204, 109214. [Google Scholar] [CrossRef]
- Salim, H.M.; Kruk, Z.A.; Lee, B.D. Nutritive value of corn distillers dried grains with solubles as an ingredient of poultry diets: A review. World’s Poult. Sci. J. 2010, 66, 411–432. [Google Scholar] [CrossRef]
- Yanchi, T. Chemical Analysis and Potential Application of Corn Bio-Ethanol Co-Products. Master’s Theses, National University of Singapore, Singapore, 2015; pp. 17–26. [Google Scholar]
- Hastad, C.W.; Nelssen, J.L.; Goodband, R.D.; Tokach, M.D.; Dritz, S.S.; DeRouchey, J.M. Adding dried distillers grains to swine diets affects feed preference. J. Anim. Sci. 2005, 83, 149–159. [Google Scholar] [CrossRef]
- Thacker, P.A. Effects of Supplementary Threonine, Canola Oil or Enzyme on Nutrient Digestibility, Performance and Carcass Traits of Growing-finishing Pigs Fed Diets Containing Wheat Distillers Grains with Solubles. Asian-Australas. J. Anim. Sci. 2009, 22, 1676–1685. [Google Scholar] [CrossRef]
- Friman, J.; Mjöfors, K.; Salomon, E.; Presto Åkerfeldt, M. Feeding silage to fattening pigs—Effects on nitrogen utilization and ammonia losses from fresh manure. Acta Agric. Scandinavica. Sect. A Anim. Sci. 2023, 72, 1–12. [Google Scholar] [CrossRef]
- Zanin, E.; Horst, E.H.; Dario, J.G.N.; Krzezanovski, C.K.B.; Ruiz, C.; Fregonesi, J.A.; Silva, C.A.; Bumbieris Junior, V.H. Performance and feed preference of weaned piglets fed with corn grain silage subjected to different rehydration sources. Arq. Bras. Med. Vet. Zootec. 2023, 75, 485–499. [Google Scholar] [CrossRef]
- Magklaras, G.; Skoufos, I.; Bonos, E.; Tsinas, A.; Zacharis, C.; Giavasis, I.; Petrotos, K.; Fotou, K.; Nikolaou, K.; Vasilopoulou, K.; et al. Innovative Use of Olive, Winery and Cheese Waste By-Products as Novel Ingredients in Weaned Pigs Nutrition. Vet. Sci. 2023, 10, 397. [Google Scholar] [CrossRef] [PubMed]
- European Parliament and the Council of the European Union. Directive 2010/63/EU of the European Parliament and of the Council of 22 September 2010 on the protection of animals used for scientific purposes. Off. J. Eur. Union 2010, 276, 33–79. [Google Scholar]
- Rozporządzenie Ministra Rolnictwa i Rozwoju Wsi z dnia 15 Lutego 2010 r. w Sprawie Wymagań i Sposobu Postępowania Przy Utrzymywaniu Gatunków Zwierząt Gospodarskich, dla Których Normy ochrony Zostały Określone w Przepisach Unii Europejskiej, Rozporządzenie nr Dziennik Ustaw 2010 nr 56 poz. 344 (2011) (Poland). Available online: https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20100560344 (accessed on 30 August 2023).
- Official Methods of Analysis of AOAC International, 19th ed.; AOAC International: Gaithersburg, MD, USA, 2012.
- PN-EN ISO 12966-1:2015-01; Animal and Vegetable Fats and Oils—Gas Chromatography of Fatty Acid Methyl esters—Part 1: Guidelines on Modern Gas Chromatography of Fatty Acid Methyl Esters. British Standards Institution: London, UK, 2014; Technical Committee ISO/TC 34/SC 11.
- PN-EN ISO 12966-2:2017-05 pkt. 5.2; Animal and Vegetable Fats and Oils—Gas Chromatography of Fatty Acid Methyl Esters—Part 2: Preparation of Methyl esters of Fatty Acids. British Standards Institution: London, UK, 2017; Technical Committee ISO/TC 34/SC 11.
- PN-EN ISO 12966-4:2015-07; Animal and Vegetable Fats and Oils—Gas Chromatography of Fatty Acid Methyl Esters—Part 4: Determination by Capillary Gas Chromatography. British Standards Institution: London, UK, 2015; Technical Committee ISO/TC 34/SC 11.
- Ulbricht, T.L.V.; Southgate, D.A.T. Coronary heart disease seven dietary factors. Lancet 1991, 33, 985–992. [Google Scholar] [CrossRef]
- Fernández, M.; Ordóñez, J.A.; Cambero, I.; Santos, C.; Pin, C.; de la Hoz, L. Fatty acid compositions of selected varieties of Spanish ham related to their nutritional implications. Food Chem. 2007, 101, 107–112. [Google Scholar] [CrossRef]
- Mordenti, A.; Martelli, G.; Brogna, N.; Nannoni, E.; Vignola, G.; Zaghini, G.; Sardi, L. Effects of a soybean-free diet supplied to Italian heavy pigs on fattening performance, and meat and dry-cured ham quality. Ital. J. Anim. Sci. 2012, 80, 459–465. [Google Scholar] [CrossRef]
- Honikel, K.O. Reference methods for the assessment of physical characteristics of meat. Meat Sci. 1998, 49, 447–457. [Google Scholar] [CrossRef]
- Grau, R.; Hamm, R. Eine einfache Methode zur Bestimmung der Wasserbindung in Fleisch. Fleischwirtschaft 1952, 4, 295–297. [Google Scholar] [CrossRef]
- Pohja, N.S.; Ninivaara, F.P. Die Estimmung der Wasserbindung des Fleisches mittels der Konstandruckmethods. Fleischwirtschaft 1957, 9, 193–195. [Google Scholar]
- Jurczak, M.E. Ocena jakości mięsa surowego. In Towaroznawstwo Produktów Zwierzęcych; Janda, E., Szczepńska, L., Eds.; Ocena Jakości mięsa Wydawnictwo SGGW: Warsaw, Poland, 2004; pp. 116–117. [Google Scholar]
- Anderson, J.L.; Schingoethe, D.J.; Kalscheur, K.F.; Hippen, A.R. Evaluation of dried and wet distillers grains included at two concentrations in the diets of lactating dairy cows. J. Dairy Sci. 2006, 89, 3133–3142. [Google Scholar] [CrossRef]
- Thacker, P.A. Nutrient digestibility, performance and carcass traits of growing-finishing pigs fed diets containing dried wheat distillers grains with solubles. Can. J. Anim. Sci. 2011, 86, 527–529. [Google Scholar] [CrossRef]
- Widmer, M.R.; McGinnis, L.M.; Wulf, D.M.; Stein, H.H. Effects of feeding distillers dried grains with solubles, high-protein distillers dried grains, and corn germ to growing-finishing pigs on pig performance, carcass quality, and the palatability of pork. J. Anim. Sci. 2008, 86, 1819–1831. [Google Scholar] [CrossRef]
- Świątkiewicz, M.; Olszewska, A.; Grela, E.R.; Tyra, M. The Effect of Replacement of Soybean Meal with Corn Dried Distillers Grains with Solubles (cDDGS) and Differentiation of Dietary Fat Sources on Pig Meat Quality and Fatty Acid Profile. Animals 2021, 11, 1277. [Google Scholar] [CrossRef]
- Pritchard, R.; Loe, E.; Milton, T. Relationship Between Fat Content and NE values for Some Ethanol Byproducts. South Dak. Beef Rep. 2012, 6, 29–35. Available online: https://openprairie.sdstate.edu/sd_beefreport_2012/6 (accessed on 24 June 2023).
- Wilson, H.C.; Bremer, V.R.; Erickson, G.E.; Carr, T.P.; Hanford, K.J.; Watson, A.K.; Klopfenstein, T.J.; MacDonald, J.C. Digestion characteristics and prediction of digestible energy and total digestible nutrients in beef cattle finishing diets containing traditional and by-product lipid sources. Appl. Anim. Sci. 2021, 37, 377–387. [Google Scholar] [CrossRef]
- Sońta, M.; Rekiel, A.; Więcek, J.; Batorska, M.; Puppel, K. Alternative Protein Sources vs. GM Soybean Meal as Feedstuff for Pigs-Meat Quality and Health-Promoting Indicators. Animals 2021, 11, 177. [Google Scholar] [CrossRef]
- Alagón, G.; Arce, O.; Serrano, P.; Ródenas, L.; Martínez-Paredes, E.; Cervera, C.; Pascual, J.J.; Pascual, M. Effect of feeding diets containing barley, wheat and corn distillers dried grains with solubles on carcass traits and meat quality in growing rabbits. Meat Sci. 2015, 101, 56–62. [Google Scholar] [CrossRef] [PubMed]
- Rael, L.T.; Thomas, G.W.; Craun, M.L.; Curtis, C.G.; Bar-Or, R.; Bar-Or, D. Lipid Peroxidation and the Thiobarbituric Acid Assay: Standardization of the Assay When Using Saturated and Unsaturated Fatty Acids. J. Biochem. Mol. Biol. 2004, 37, 749–752. [Google Scholar] [CrossRef] [PubMed]
- Martin, G. Evidence-Based Challenges to the Continued Recommendation and Use of Peroxidatively-Susceptible Polyunsaturated Fatty Acid-Rich Culinary Oils for High-Temperature Frying Practises: Experimental Revelations Focused on Toxic Aldehydic Lipid Oxidation Products. Front. Nutr. 2022, 8, 711640. [Google Scholar] [CrossRef]
- Kong, B.; Zhang, H.; Xiong, Y.L. Antioxidant activity of spice extracts in a liposome system and in cooked pork patties and the possible mode of action. Meat Sci. 2010, 85, 772–778. [Google Scholar] [CrossRef]
- Aguilar Diaz De Leon, J.; Borges, C.R. Evaluation of Oxidative Stress in Biological Samples Using the Thiobarbituric Acid Reactive Substances Assay. J. Vis. Exp. 2020, 159, e61122. [Google Scholar] [CrossRef]
- Papastergiadis, A.; Mubiru, E.; Van Langenhove, H.; De Meulenaer, B. Malondialdehyde measurement in oxidized foods: Evaluation of the spectrophotometric thiobarbituric acid reactive substances (TBARS) test in various foods. J. Agric. Food Chem. 2012, 60, 9589–9594. [Google Scholar] [CrossRef]
- Ke, S. Effect of pH and Salts on Tenderness and Water-Holding Capacity of Muscle Foods. AAI3215890. Ph.D. Thesis, University of Massachusetts Amherst, Amherst, MA, USA, 2006; pp. 60–71. [Google Scholar]
- Xu, D.; Wang, Y.; Jiao, N.; Qiu, K.; Zhang, X.; Wang, L.; Wang, L.; Yin, J. The coordination of dietary valine and isoleucine on water holding capacity, pH value and protein solubility of fresh meat in finishing pigs. Meat Sci. 2020, 163, 108074. [Google Scholar] [CrossRef]
- Cornet, S.H.V.; Snel, S.J.E.; Lesschen, J.; van der Goot, A.J.; van der Sman, R.G.M. Enhancing the water holding capacity of model meat analogues through marinade composition. J. Food Eng. 2021, 290, 110283. [Google Scholar] [CrossRef]
- Oswell, N.J.; Gilstrap, O.P.; Pegg, R.B. Variation in the terminology and methodologies applied to the analysis of water holding capacity in meat research. Meat Sci. 2021, 178, 108510. [Google Scholar] [CrossRef] [PubMed]
- Tomasevic, I.; Djekic, I.; Font-i-Furnols, M.; Terjung, M.; Lorenzo, J.M. Recent advances in meat color research. Curr. Opin. Food Sci. 2021, 41, 81–87. [Google Scholar] [CrossRef]
- Jacob, R.H.; Thomson, K.L. The importance of chill rate when characterising colour change of lamb meat during retail display. Meat Sci. 2012, 90, 478–484. [Google Scholar] [CrossRef] [PubMed]
Item | Experimental Groups | ||
---|---|---|---|
Control | WDGS 10% | WDGS 15% | |
% DM Diet | |||
Barley | 20.5 | 20.5 | 22.5 |
Triticale | 10 | 10 | 10 |
Rye | 50 | 45 | 40 |
Rapeseed meal | 5 | 5 | 5 |
Soybean meal (>46 CP) | 11 | 7 | 5 |
Corn WDGS | - | 10 | 15 |
Plant oil | 1.0 | - | - |
Premix * | 2.5 | 2.5 | 2.5 |
Nutritional value of 1 kg DM diet | |||
Metabolic Energy (MJ) | 14.50 | 14.40 | 14.40 |
Crude Protein (%) | 19.31 | 19.19 | 19.20 |
Crude Fat (%) | 2.61 | 2.76 | 2.84 |
Crude Fiber (%) | 5.70 | 5.35 | 5.79 |
Crude Ash (%) | 4.30 | 5.00 | 5.30 |
Item | Experimental Groups | SEM | p-Value | ||
---|---|---|---|---|---|
Control | WDGS 10% | WDGS 15% | |||
ADG of first stage of fattening period [g] | 1218 ab ± 94.0 | 1292 b ± 108.3 | 1127 a ± 156.8 | 26.238 | 0.0302 |
ADG of second stage of fattening period [g] | 1312 ± 142.1 | 1401 ± 127.3 | 1454 ± 122.0 | 26.777 | 0.0854 |
ADG of the entire fattening period [g] | 1260± 108.7 | 1341 ± 104,3 | 1275 ± 97.8 | 20.371 | 0.2322 |
Item | Experimental Groups | SEM | p-Value | ||
---|---|---|---|---|---|
Control | WDGS 10% | WDGS 15% | |||
Final body weight [kg] | 135.1 ± 8.2 | 138.5 ± 12.9 | 132.0 ± 12.1 | 2.1283 | 0.5897 |
Hot carcass weight [kg] | 102.6 ± 6.6 | 104.8 ± 11.1 | 99.6 ± 10.1 | 1.7861 | 0.6358 |
Dressing percentage [%] | 75.9 ± 0.9 | 75.6 ± 1.6 | 75.4 ± 1.7 | 0.2738 | 0.6653 |
Meatiness [%] | 60.5 ± 1.6 | 60.8 ± 1.8 | 60.7 ± 1.5 | 0.3030 | 0.9593 |
Length of Musculus longissimus dorsi [mm] | 66.0 ± 4.7 | 63.8 ± 7.9 | 64.9 ± 6.0 | 1.1843 | 0.7604 |
Backfat thickness [mm] | 12.0 ± 2.1 | 11.5 ± 2.7 | 11.5 ± 2.7 | 0.4721 | 0.8562 |
Item | Experimental Groups | SEM | p-Value | ||
---|---|---|---|---|---|
Control | WDGS 10% | WDGS 15% | |||
% in Meat | |||||
Dry Matter | 27.7 ± 0.9 | 27.4 ± 1.2 | 27.6 ± 0.5 | 0.1812 | 0.3289 |
Crude Protein | 22.9 ± 0.6 | 23.3 ± 0.5 | 23.0 ± 0.4 | 0.0968 | 0.2711 |
Crude Fat | 2.2 ± 0.4 | 2.2 ± 0.6 | 2.2 ± 0.1 | 0.0732 | 0.9582 |
Crude Ash | 1.1 ± 0.07 | 1.1 ± 0.08 | 1.1 ± 0.01 | 0.0122 | 0.7709 |
Specification | Experimental Groups | SEM | p-Value | ||
---|---|---|---|---|---|
Control | WDGS 10% | WDGS 15% | |||
C10:0 | 0.12 ± 0.04 | 0.10 ± 0.00 | 0.10 ± 0.01 | 0.005 | 0.3487 |
C12:0 | 0.18 ± 0.09 | 0.14 ± 0.10 | 0.12 ± 0.03 | 0.018 | 0.3009 |
C14:0 | 1.31 ± 0.12 | 1.45 ± 0.18 | 1.19 ± 0.10 | 0.040 | 0.2160 |
C16:0 | 23.81 ± 1.08 | 24.36 ± 0.85 | 23.57 ± 1.02 | 0.233 | 0.4903 |
C16:1 | 3.04 ± 0.24 | 3.17 ± 0.25 | 3.29 ± 0.13 | 0.053 | 0.1083 |
C17:0 | 0.21 ± 0.02 | 0.19 ± 0.07 | 0.23 ± 0.04 | 0.012 | 0.3038 |
C17:1 | 0.21 ± 0.03 | 0.20 ± 0.08 | 0.24 ± 0.05 | 0.013 | 0.3313 |
C18:0 | 12.19 ± 0.83 | 11.89 ± 0.69 | 11.35 ± 0.89 | 0.198 | 0.4843 |
C18:1n9c | 42.86 ± 3.05 | 43.02 ± 1.03 | 43.65 ± 1.57 | 0.465 | 0.4308 |
C18:1n7c | 3.69 ± 0.32 | 3.78 ± 0.22 | 3.83 ± 0.23 | 0.059 | 0.4233 |
C18:2n6c | 7.63 ± 1.03 | 8.29 ± 0.78 | 8.81 ± 1.04 | 0.242 | 0.1475 |
C18:3n3 | 0.30 ± 0.05 | 0.29 ± 0.04 | 0.30 ± 0.04 | 0.010 | 0.8355 |
C20:0 | 0.17 ± 0.01 | 0.15 ± 0.04 | 0.16 ± 0.02 | 0.006 | 0.3039 |
C20:1n9 | 0.73 c ± 0.01 | 0.43 b ± 0.05 | 0.64 a ± 0.03 | 0.032 | 0.0005 |
C20:2n6 | 0.27 ± 0.02 | 0.27 ± 0.03 | 0.29 ± 0.05 | 0.008 | 0.7099 |
C23:0 | 0.51 ± 0.12 | 0.52 ± 0.19 | 0.58 ± 0.25 | 0.043 | 0.7943 |
SFAs | 38.49 ± 1.78 | 38.8 ± 1.36 | 37.29 ± 1.94 | 0.410 | 0.2714 |
MUFAs | 50.54 ± 3.57 | 50.59 ± 1.12 | 51.65 ± 1.95 | 0.553 | 0.2636 |
PUFAs | 8.20 ± 1.09 | 8.85 ± 0.82 | 9.40 ± 1.08 | 0.253 | 0.1477 |
PUFAs n-3 | 0.30 ± 0.05 | 0.29 ± 0.04 | 0.30 ± 0.04 | 0.010 | 0.8355 |
PUFAs n-6 | 7.90 ± 1.04 | 8.56 ± 0.80 | 9.10 ± 1.06 | 0.247 | 0.1475 |
AI | 0.50 ab ± 0.04 | 0.51 b ± 0.01 | 0.46 a ± 0.02 | 0.007 | 0.0277 |
TI | 1.24 ± 0.09 | 1.24 ± 0.04 | 1.15 ± 0.05 | 0.017 | 0.0408 |
S/P | 0.67 ± 0.05 | 0.67 ± 0.02 | 0.62 ± 0.03 | 0.009 | 0.0408 |
DFA/OFA | 2.17 ± 0.15 | 2.15 ± 0.05 | 2.29 ± 0.08 | 0.027 | 0.0759 |
Item | Experimental Groups | SEM | p-Value | ||
---|---|---|---|---|---|
Control | WDGS 10% | WDGS 15% | |||
Drip loss (%) | 4.88 ± 0.97 | 5.42 ± 1.29 | 4.86 ± 0.72 | 0.1961 | 0.4028 |
Water holding capacity (cm2/g) | 22.26 ab ± 1.73 | 20.08 a ± 2.34 | 23.42 b ± 2.28 | 0.4787 | 0.0096 |
Thermal drip loss (%) | 22.2 ± 3.65 | 21.63 ± 1.41 | 20.01 ± 4.40 | 0.6545 | 0.3796 |
L* | 51.21 ± 2.22 | 51.38 ± 1.75 | 51.96 ± 1.91 | 0.3791 | 0.3445 |
a* | 5.54 ab ± 0.94 | 5.86 b ± 0.74 | 5.03 a ± 1.09 | 0.1901 | 0.0066 |
b* | 4.04 ab ± 1.10 | 4.62 b ± 7.49 | 3.94 a ± 6.41 | 0.1860 | 0.0180 |
h* | 0.74 ± 0.21 | 0.80 ± 0.12 | 0.79 ± 0.14 | 0.0180 | 0.3839 |
C* | 6.86 ab ± 1.12 | 7.47 b ± 0.86 | 6.39 a ± 1.34 | 0.2300 | 0.0033 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roguski, M.; Łozicki, A.; Sońta, M.; Bendowski, W.; Niemiec, T.; Zglińska, K.; Zielińska-Górska, M. Effect of Using Ensilaged Corn Wet Distillers’ Grains Plus Solubles (WDGS) as a Partial Replacement for Concentrated Feed for Wet Lot Fed Fatteners during Fattening on Growth Performance, Carcass Characteristics and Pork Quality. Agriculture 2023, 13, 2017. https://doi.org/10.3390/agriculture13102017
Roguski M, Łozicki A, Sońta M, Bendowski W, Niemiec T, Zglińska K, Zielińska-Górska M. Effect of Using Ensilaged Corn Wet Distillers’ Grains Plus Solubles (WDGS) as a Partial Replacement for Concentrated Feed for Wet Lot Fed Fatteners during Fattening on Growth Performance, Carcass Characteristics and Pork Quality. Agriculture. 2023; 13(10):2017. https://doi.org/10.3390/agriculture13102017
Chicago/Turabian StyleRoguski, Mateusz, Andrzej Łozicki, Marcin Sońta, Wiktor Bendowski, Tomasz Niemiec, Klara Zglińska, and Marlena Zielińska-Górska. 2023. "Effect of Using Ensilaged Corn Wet Distillers’ Grains Plus Solubles (WDGS) as a Partial Replacement for Concentrated Feed for Wet Lot Fed Fatteners during Fattening on Growth Performance, Carcass Characteristics and Pork Quality" Agriculture 13, no. 10: 2017. https://doi.org/10.3390/agriculture13102017
APA StyleRoguski, M., Łozicki, A., Sońta, M., Bendowski, W., Niemiec, T., Zglińska, K., & Zielińska-Górska, M. (2023). Effect of Using Ensilaged Corn Wet Distillers’ Grains Plus Solubles (WDGS) as a Partial Replacement for Concentrated Feed for Wet Lot Fed Fatteners during Fattening on Growth Performance, Carcass Characteristics and Pork Quality. Agriculture, 13(10), 2017. https://doi.org/10.3390/agriculture13102017