Physiological and Agronomic Characteristics of Alternative Black Barley Genotypes (Hordeum vulgare var. nigricans and H. v. var. rimpaui) under Different Hydrothermal Conditions of the Growing Seasons
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
- P—total precipitation in mm for a decade;
- Σt—sum of average daily air temperatures > 0 °C for the ten-day period.
- −
- Extremely dry or very dry—k ≤ 0.7;
- −
- Dry or quite dry—0.7 < k ≤ 1.3;
- −
- Optimal or quite moist—1.3 < k ≤ 2.0;
- −
- Humid, very humid, or extremely humid—k > 2.0.
2.2. Subject of Research and Agronomic Practice
2.3. Measurement of Physiological, Biometric, and Agronomic Features
2.3.1. Chlorophyll Fluorescence
- ABS/CSo—energy absorption by excited photosynthesizing sample (CS) at time zero (t = 0);
- TRO/CSo = φPO(ABS/CSX)—capacity of absorbed excitation energy by PSII photosynthesizing sample (CS) at time zero (t = 0);
- ETO/CSo = φEO(ABS/CSX)—electron transport of PSII of photosynthesizing sample (CS) at time zero (t = 0);
- DIO/CSo= (ABS/CSo)—(TRO/CSo)—energy amount dissipated as heat by PSII photosynthesizing sample (CS) at t = 0;
- PIabs—an indicator of the functioning of PSII in relation to absorption.
2.3.2. Leaf Area Index (LAI) and Chlorophyll Index (SPAD)
2.3.3. Biometric and Agronomic Features
2.4. Statistical Analysis
3. Results
3.1. Physiological Features
3.1.1. Chlorophyll Fluorescence
3.1.2. Leaf Area Index (LAI) and Chlorophyll Index (SPAD)
3.2. Biometric and Agronomic Features
3.3. Relationship of Physiological, Biometric, and Agronomic Features
3.4. Principal Component Analysis (PCA)
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dai, F.; Nevo, E.; Wu, D.; Comadran, J.; Zhou, M.; Qiu, L.; Chen, Z.; Beiles, A.; Chen, G.; Zhang, G. Tibet is one of the centers of domestication of cultivated barley. Proc. Natl. Acad. Sci. USA 2012, 109, 16969–16973. [Google Scholar] [CrossRef]
- Haas, M.; Schreiber, M.; Mascher, M. Domestication and crop evolution of wheat and barley: Genes, genomics, and future directions. J. Integr. Plant Biol. 2019, 61, 204–225. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nation. FAOSTAT: Crops and Livestock Products. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 1 June 2022).
- Gong, L. Barley. In Bioactive Factors and Processing Technology for Cereal Foods; Wang, J., San, B., Tsao, R., Eds.; Springer: Berlin, Germany, 2019. [Google Scholar]
- Gordeeva, E.I.; Glagoleva, A.Y.; Kukoeva, T.V.; Khlestkina, E.K.; Shoeva, O.Y. Purple-grained barley (Hordeum vulgare L.): Marker-assisted development of NILs for investigating peculiarities of the anthocyanin biosynthesis regulatory network. BMC Plant Biol. 2019, 19, 49–57. [Google Scholar] [CrossRef]
- Strygina, K.V.; Börner, A.; Khlestkina, E.K. Identification and characterization of regulatory network components for anthocyanin synthesis in barley aleurone. BMC Plant Biol. 2017, 17, 184. [Google Scholar] [CrossRef]
- Shoeva, O.Y.; Mock, H.-P.; Kukoeva, T.V.; Börner, A.; Khlestkina, E.K. Regulation of the Flavonoid Biosynthesis Pathway Genes in Purple and Black Grains of Hordeum vulgare. PLoS ONE 2016, 11, e0163782. [Google Scholar] [CrossRef] [PubMed]
- Özberk, F.; Ozberk, I.; Bayhan, M.; Odabaşıoğlu, C. Black Barley Marketing Prices and Profitability vs. White from 2005 to 2015 in South-East Anatolia. Transylv. Rev. 2015, XXIV, 1–10. [Google Scholar]
- Idehen, E.; Tang, Y.; Sang, S. Bioactive phytochemicals in barley. J. Food Drug Anal. 2017, 25, 148–161. [Google Scholar] [CrossRef] [PubMed]
- Sakellariou, M.; Mylona, P.V. New Uses for Traditional Crops: The Case of Barley Biofortification. Agronomy 2020, 10, 1964. [Google Scholar] [CrossRef]
- Horvat, D.; Šimić, G.; Drezner, G.; Lalić, A.; Ledencan, T.; Tucak, M.; Plavšić, H.; Andrić, L.; Zdunić, Z. Phenolic acid profiles and antioxidants activity of major cereal crops. Antioxidants 2020, 9, 527. [Google Scholar] [CrossRef]
- Panizo-Casado, M.; Déniz-Expósito, P.; Rodríguez-Galdón, B.; Afonso-Morales, D.; Ríos-Mesa, D.; Díaz-Romero, C.; Rodríguez-Rodríguez, E.M. The chemical composition of barley grain (Hordeum vulgare L.) landraces from the Canary Islands. J. Food Sci. 2020, 85, 1725–1734. [Google Scholar] [CrossRef]
- Kim, M.J.; Hyun, J.N.; Kim, J.A.E.; Park, J.C.; Kim, M.Y.; Kim, J.G.; Lee, S.J.; Chun, S.C.; Chung, I.M. Relationship between Phenolic Compounds, Anthocyanins Content and Antioxidant Activity in Colored Barley Germplasm. J. Agric. Food Chem. 2007, 55, 4802–4809. [Google Scholar] [CrossRef]
- Abdel-Aal, E.S.M.; Choo, T.M.; Dhillon, S.; Rabalski, I. Free and bound phenolic acids and total phenolics in black, blue, and yellow barley and their contribution to free radical scavenging capacity. Cereal Chem. 2012, 89, 198–204. [Google Scholar] [CrossRef]
- Yang, X.J.; Dang, B.; Fan, M.T. Free and bound phenolic compound content and antioxidant activity of different cultivated blue highland barley varieties from the Qinghai-Tibet Plateau. Molecules 2018, 23, 879. [Google Scholar] [CrossRef] [PubMed]
- Nowak, R.; Szczepanek, M.; Kobus-Cisowska, J.; Stuper-Szablewska, K.; Dziedziński, M.; Błaszczyk, K. Profile of phenolic compounds and antioxidant activity of organically and conventionally grown black-grain barley genotypes treated with biostimulant. PLoS ONE 2023, 18, e0288428. [Google Scholar] [CrossRef] [PubMed]
- Nowak, R.; Szczepanek, M.; Błaszczyk, K.; Kobus-Cisowska, J.; Przybylska-Balcerek, A.; Stuper-Szablewska, K.; Pobereżny, J.; Hassanpouraghdam, M.B.; Rasouli, F. Impact of the Farming System and Amino-Acid Biostimulants on the Content of Carotenoids, Fatty Acids, and Polyphenols in Alternative and Common Barley Genotypes. Agronomy 2023, 13, 1852. [Google Scholar] [CrossRef]
- Sánchez-Reinoso, A.D.; Ligarreto-Moreno, G.A.; Restrepo-Díaz, H. Chlorophyll α Fluorescence Parameters as an Indicator to Identify Drought Susceptibility in Common Bush Bean. Agronomy 2019, 9, 526. [Google Scholar] [CrossRef]
- Faseela, P.; Sinisha, A.K.; Brestič, M.; Puthur, J.T. Chlorophyll a fluorescence parameters as indicators of a particular abiotic stress in rice. Photosynthetica 2019, 57, 108–115. [Google Scholar] [CrossRef]
- Roostaeia, M.; Mohammadi, S.A.; Amri, A.; Majidi, E.; Nachit, M.; Haghparast, R. Chlorophyll Fluorescence Parameters and Drought Tolerance in a Mapping Population of Winter Bread Wheat in the Highlands of Iran. Russ. J. Plant Physiol. 2011, 58, 351–358. [Google Scholar] [CrossRef]
- Singh, H.; Kumar, D.; Soni, V. Performance of chlorophyll a fuorescence parameters in Lemna minor under heavy metal stress induced by various concentration of copper. Sci. Rep. 2022, 12, 10620. [Google Scholar] [CrossRef]
- Roháček, K. Chlorophyll fluorescence parameters: The definitions, photosynthetic meaning, and mutual relationships. Photosynthetica 2002, 40, 13–29. [Google Scholar] [CrossRef]
- He, L.; Yu, L.; Li, B.; Du, N.; Guo, S. The effect of exogenous calcium on cucumber fruit quality, photosynthesis, chlorophyll fluorescence, and fast chlorophyll fluorescence during the fruiting period under hypoxic stress. BMC Plant Biol. 2018, 18, 180. [Google Scholar] [CrossRef]
- Luo, H.; Merope, T.; Zhang, Y.; Zhang, W. Combining gas exchange and chlorophyll a fluorescence measurements to analyze the photosynthetic activity of drip-irrigated cotton under different soil water deficits. J. Integr. Agric. 2016, 15, 1256–1266. [Google Scholar] [CrossRef]
- Zhang, R.; Yang, P.; Liu, S.; Wang, C.; Liu, J. Evaluation of the Methods for Estimating Leaf Chlorophyll Content with SPAD Chlorophyll Meters. Remote Sens. 2022, 14, 5144. [Google Scholar] [CrossRef]
- Nyi, N.; Sridokchan, W.; Chai-arree, W.; Srinives, P. Nondestructive measurement of photosynthetic pigments and nitrogen status in Jatropha (Jatropha curcas L.) by chlorophyll meter. Phillipp. Agric. Sci. 2012, 95, 83–89. [Google Scholar]
- Fang, H.; Baret, F.; Plummer, S.; Schaepman-Strub, G. An overview of global leaf area index (LAI): Methods, products, validation, and applications. Rev. Geophys. 2019, 57, 739–799. [Google Scholar] [CrossRef]
- Gozdowski, D.; Mądry, W.; Wyszyński, Z.; Kalinowska-Zdun, M. Characteristics and empirical comparison of simple and complex path analysis in grain yield determination by yield—Related traits. Part II. Example on spring barley. Biul. Inst. Hod. I Aklim. Roślin 2008, 249, 125–132. [Google Scholar]
- Selyaninov, G.T. On the agricultural estimation of climate. Tr. Po Sel’skokhozyaistvennoi Meteorol. 1928, 20, 165–177. [Google Scholar]
- Kuklik, M.; Baryła, R.; Czarnecki, Z.; Bochniak, A. Warunki hydrotermiczne w centralnej części rejonu kanału Wieprz-Krzna w 50-leciu (1966–2015). Ann. UMCS Sect. E Agric. 2016, LXXI, 1–12. [Google Scholar]
- Elakhdar, A.; Slaski, J.; Kubo, T.; Hamwieh, A.; Hernandez-Ramirez, G.; Beattie, A.D.; Capo-Chichi, L.J.A. Genome—Wide association analysis provides insights into the genetic basis of photosynthetic responses to low-temperature stress in spring barley. Front. Plant Sci. 2023, 14, 1159016. [Google Scholar] [CrossRef]
- Watanabe, N.; Naruse, J.; Austin, B.; Morgan, C.L. Variation in thylakoid proteins and photosynthesis in Syrian landraces of barley. Euphytica 1995, 82, 213–220. [Google Scholar] [CrossRef]
- Oukarroum, A.; El Madidi, S.; Schansker, G.; Strasser, R.J. Probing the responses of barley cultivars (Hordeum vulgare L.) by chlorophyll a fluorescence OLKJIP under drought stress and re-watering. Environ. Exp. Bot. 2007, 60, 438–446. [Google Scholar] [CrossRef]
- Hasanuzzaman, M.; Shabala, L.; Brodribb, T.J.; Zhou, M.; Shabala, S. Understanding the Role of Physiological and Agronomical Traits during Drought Recovery as a Determinant of Differential Drought Stress Tolerance in Barley. Agronomy 2022, 12, 2136. [Google Scholar] [CrossRef]
- Arab, M.M.; Askari, H.; Aliniaeifard, S.; Mokhtassi-Bidgoli, A.; Estaji, A.; Sadat-Hosseini, M.; Sohrabi, S.S.; Mesgaran, M.B.; Leslie, C.A.; Brown, P.J.; et al. Natural variation in photosynthesis and water use efficiency of locally adapted Persian walnut populations under drought stress and recovery. Plant Physiol. Biochem. 2023, 201, 107859. [Google Scholar] [CrossRef]
- Eliş, S.; Yıldırım, M. Yield and quality changes in barley genotypes during high temperature stress caused by late sowing. Rom. Agric. Res. 2023, 40, 139–150. [Google Scholar] [CrossRef]
- Alqudah, A.M.; Schnurbusch, T. Barley Leaf Area and Leaf Growth Rates Are Maximized during the Pre-Anthesis Phase. Agronomy 2015, 5, 107–129. [Google Scholar] [CrossRef]
- Jia, Q.; Wang, Y.-P. Relationships between Leaf Area Index and Evapotranspiration and Crop Coefficient of Hilly Apple Orchard in the Loess Plateau. Water 2021, 13, 1957. [Google Scholar] [CrossRef]
- Liu, X.-J.; Qiang, C.; Yuan, Z.-F.; Xia, L.; Wang, X.-L.; Tian, Y.-C.; Cao, W.-X.; Yan, Z. Leaf area index based nitrogen diagnosis in irrigated lowland rice. J. Integr. Agric. 2018, 17, 111–121. [Google Scholar] [CrossRef]
- Wu, K.; Wang, S.; Song, W.; Zhang, J.; Wang, Y.; Liu, Q.; Yu, J.; Ye, Y.; Li, S.; Chen, J.; et al. Enhanced sustainable green revolution yield via nitrogen-responsive chromatin modulation in rice. Science 2020, 367, eaaz2046. [Google Scholar] [CrossRef]
- Moregan, J.A.; LeCain, D.R.; Wells, R. Semi-dwarfing genes concentrate photosynthetic machinery and affect leaf gas exchange of wheat. Crop Sci. 1990, 30, 602–608. [Google Scholar] [CrossRef]
- Ukozehasi, C.; Ober, E.S.; Griffiths, H. The Other Mechanisms by Which the Rht Genes Improve the Harvest Index of Wheat. Plants 2022, 11, 2837. [Google Scholar] [CrossRef]
- Youssefian, S.; Kirby, E.J.M.; Gale, M.D. Pleiotropic effects of the GA insensitive Rht dwarfing genes in wheat. II. Effects on leaf, stem, ear, and floret growth. Field Crops Res. 1992, 28, 191–210. [Google Scholar] [CrossRef]
- Yasseen, B.T.; Al-Maamari, B.K.S. Further Evaluation of the Resistance of Black Barley to Water Stress: Preliminary Assessment for Selecting Drought Resistant Barley. J. Agron. Crop Sci. 1995, 174, 9–19. [Google Scholar] [CrossRef]
- Szczepanek, M.; Lemańczyk, G.; Nowak, R.; Graczyk, R. Response of Indian Dwarf Wheat and Persian Wheat to Sowing Density and Hydrothermal Conditions of the Growing Seasons. Agriculture 2022, 12, 205. [Google Scholar] [CrossRef]
- Pecio, A.; Wach, D. Grain yield and yield components of spring barley genotypes as the indicators of their tolerance to temporal drought stress. Pol. J. Agron. 2015, 21, 19–27. [Google Scholar]
Year | Genotype | FV/FM | FV/F0 | PIABS |
---|---|---|---|---|
Mean ± SD | Mean ± SD | Mean ± SD | ||
Subflag leaf | ||||
2021 | H. v. nigricans | 0.789 c ± 0.007 | 3.78 c ± 0.172 | 2.05 d ± 0.163 |
H. v. rimpaui | 0.789 c ± 0.013 | 3.84 c ± 0.183 | 1.93 d ± 0.266 | |
H. vulgare | 0.806 ab ± 0.014 | 4.25 ab ± 0.176 | 3.96 c ± 0.518 | |
2022 | H. v. nigricans | 0.815 a ± 0.004 | 4.42 a ± 0.118 | 5.14 b ± 0.635 |
H. v. rimpaui | 0.797 bc ± 0.013 | 3.96 c ± 0.288 | 4.04 c ± 0.714 | |
H. vulgare | 0.806 ab ± 0.009 | 4.18 b ± 0.234 | 5.82 a ± 1.28 | |
Flag leaf | ||||
2021 | H. v. nigricans | 0.835 a ± 0.015 | 4.94 a ± 0.076 | 5.10 c ± 0.583 |
H. v. rimpaui | 0.827 ab ± 0.006 | 4.79 a ± 0.188 | 5.90 bc ± 1.09 | |
H. vulgare | 0.805 cd ± 0.009 | 4.16 c ± 0.234 | 4.84 c ± 0.422 | |
2022 | H. v. nigricans | 0.808 cd ± 0.007 | 4.25 bc ± 0.220 | 6.36 b ± 1.06 |
H. v. rimpaui | 0.790 d ± 0.029 | 3.71 d ± 0.421 | 5.08 c ± 1.44 | |
H. vulgare | 0.811 bc ± 0.026 | 4.47 b ± 0.250 | 7.51 a ± 1.39 |
Year | Genotype | LAI at BBCH 35 | LAI at BBCH 57 |
---|---|---|---|
Mean ± SD | Mean ± SD | ||
2021 | H. v. nigricans | 3.49 b ± 0.733 | 3.00 b ± 0.515 |
H. v. rimpaui | 4.51 a ± 0.516 | 3.14 a ± 0.598 | |
H. vulgare | 2.50 c ± 0.539 | 2.34 c ± 0.268 | |
2022 | H. v. nigricans | 1.76 de ± 0.261 | 2.44 c ± 0.530 |
H. v. rimpaui | 2.03 d ± 0.382 | 2.55 bc ± 0.421 | |
H. vulgare | 1.46 e ± 0.253 | 2.08 c ± 0.560 |
Year | Genotype | SPAD at BBCH 12 | SPAD at BBCH 35 | SPAD at BBCH 57 |
---|---|---|---|---|
Mean ± SD | Mean ± SD | Mean ± SD | ||
2021 | H. v. nigricans | 345.9 b ± 75.6 | 310.3 c ± 7.83 | 457.4 b ± 21.76 |
H. v. rimpaui | 285.6 c ± 53.13 | 324.0 c ± 13.4 | 470.9 b ± 20.7 | |
H. vulgare | 381.4 b ± 52.4 | 404.4 b ± 13.1 | 370.8 c ± 85.1 | |
2022 | H. v. nigricans | 383.1 b ± 37.6 | 470.7 a ± 25.1 | 590.9 a ± 59.00 |
H. v. rimpaui | 352.3 b ± 46.4 | 456.7 a ± 29.4 | 571.5 a ± 47.1 | |
H. vulgare | 465.9 a ± 35.9 | 486.3 a ± 56.3 | 590.1 a ± 48.9 |
Year | Genotype | Dry Matter of Shoot | Generative Tillers | Sterile Generative Tillers |
---|---|---|---|---|
g m−2 | No Plant−1 | No m−2 | ||
2021 | H. v. nigricans | 728.2 a ± 98.5 | 2.05 bc ± 0.217 | 8.06 c ± 8.13 |
H. v. rimpaui | 776.8 a ± 129.5 | 2.16 ab ± 0.250 | 2.56 c ± 3.27 | |
H. vulgare | 775.2 a ± 111.0 | 2.36 a ± 0.192 | 1.75 c ± 1.57 | |
2022 | H. v. nigricans | 575.1 bc ± 79.4 | 1.68 d ± 0.208 | 103.44 a ± 46.32 |
H. v. rimpaui | 678.2 ab ± 145.9 | 1.87 cd ± 0.271 | 68.88 b ± 31.73 | |
H. vulgare | 558.0 c ± 127.4 | 1.77 d ± 0.278 | 75.63 b ± 26.75 |
Year | Genotype | Straw Yield | Harvest Index |
---|---|---|---|
t ha−1 | |||
2021 | H. v. nigricans | 5.35 b ± 0.549 | 0.510 c ± 0.028 |
H. v. rimpaui | 5.87 a ± 0.415 | 0.478 d ± 0.015 | |
H. vulgare | 4.69 c ± 0.511 | 0.591 a ± 0.028 | |
2022 | H. v. nigricans | 3.84 d ± 0.268 | 0.484 d ± 0.032 |
H. v. rimpaui | 4.22 d ± 0.357 | 0.481 d ± 0.018 | |
H. vulgare | 3.35 e ± 0.334 | 0.555 b ± 0.013 |
Traits | H. v. nigricans | H. v. rimpaui | H. vulgare | |
---|---|---|---|---|
SPAD | ||||
BBCH 35 | FV/FM | 0.902 * | 0.292 | −0. 007 |
FV/F0 | 0.884 * | 0.261 | −0. 275 | |
PIABS | 0.925 * | 0.853 * | 0.381 * | |
SPAD | ||||
BBCH 57 | FV/FM | −0.585 * | −0.620 * | 0.240 |
FV/F0 | −0.738 * | −0.752 * | 0.615 * | |
PIABS | 0.488 * | −0.314 | 0.677 * |
Traits | H. v. var. nigricans | H. v. var. rimpaui | H. vulgare |
---|---|---|---|
LAI at BBCH 35 | 0.779 * | 0.917 * | 0.737 * |
LAI at BBCH 57 | 0.469 * | 0.561 * | 0.221 |
Shoot biomass at the flowering stage (g m−2) | 0.667 * | 0.378 * | 0.711 * |
Fertile generative tillers (No m−2) | −0.248 | −0.011 | 0.364 * |
1000-grain weight (g) | 0.917 * | 0.852 * | 0.827 * |
Number of grains per spike (No spike−1) | 0.834 * | 0.722 * | 0.915 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szczepanek, M.; Nowak, R.; Błaszczyk, K. Physiological and Agronomic Characteristics of Alternative Black Barley Genotypes (Hordeum vulgare var. nigricans and H. v. var. rimpaui) under Different Hydrothermal Conditions of the Growing Seasons. Agriculture 2023, 13, 2033. https://doi.org/10.3390/agriculture13102033
Szczepanek M, Nowak R, Błaszczyk K. Physiological and Agronomic Characteristics of Alternative Black Barley Genotypes (Hordeum vulgare var. nigricans and H. v. var. rimpaui) under Different Hydrothermal Conditions of the Growing Seasons. Agriculture. 2023; 13(10):2033. https://doi.org/10.3390/agriculture13102033
Chicago/Turabian StyleSzczepanek, Małgorzata, Rafał Nowak, and Karolina Błaszczyk. 2023. "Physiological and Agronomic Characteristics of Alternative Black Barley Genotypes (Hordeum vulgare var. nigricans and H. v. var. rimpaui) under Different Hydrothermal Conditions of the Growing Seasons" Agriculture 13, no. 10: 2033. https://doi.org/10.3390/agriculture13102033
APA StyleSzczepanek, M., Nowak, R., & Błaszczyk, K. (2023). Physiological and Agronomic Characteristics of Alternative Black Barley Genotypes (Hordeum vulgare var. nigricans and H. v. var. rimpaui) under Different Hydrothermal Conditions of the Growing Seasons. Agriculture, 13(10), 2033. https://doi.org/10.3390/agriculture13102033