Spatial-Temporal Differentiation of Soil Biochemical Parameters and Their Relationship with Nitrogen Resources during the Vegetation Period of Selected Crops
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Object
2.2. Climate
2.3. Soil Sampling
2.4. Enzymatic Activity
2.5. Nitrogen
2.6. Phosphorus
2.7. Yield
2.8. Statistics
3. Results
3.1. Spatial–Temporal Variability of Soil Biochemical Activity
3.2. Spatial–Temporal Variability of Soil Physicochemical Parameters
3.3. Spatial Variability of Yield
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- European Commission. Committee and the Committee of the Regions Eu Biodiversity Strategy for 2030 Bringing Nature Back into Our Lives; European Commission: Brussels, Belgium, 2020. [Google Scholar]
- Grzyb, A.; Wolna-Maruwka, A.; Niewiadomska, A. Environmental Factors Affecting the Mineralization of Crop Residues. Agronomy 2020, 10, 1951. [Google Scholar] [CrossRef]
- Grzebisz, W.; Łukowiak, R. Nitrogen Gap Amelioration Is a Core for Sustainable Intensification of Agriculture—A Concept. Agronomy 2021, 11, 419. [Google Scholar] [CrossRef]
- Tian, L.; Zhao, L.; Wu, X.; Fang, H.; Zhao, Y.; Hu, G.; Yue, G.; Sheng, Y.; Wu, J.; Chen, J.; et al. Soil Moisture and Texture Primarily Control the Soil Nutrient Stoichiometry across the Tibetan Grassland. Sci. Total Environ. 2018, 622–623, 192–202. [Google Scholar] [CrossRef]
- Wang, F.; Xue, K.; Fu, W. Effects of Soil Nitrogen and Phosphorus Contents on Ecological Stoichiometry of Wheat Leaf. Chin. J. Eco-Agric. 2019, 27, 60–71. [Google Scholar] [CrossRef]
- Zhang, H.; Ru, H.; Jiao, F.; Xue, C.; Guo, M. C, N, P, K Stoichiometric Characteristic of Leaves, Root and Soil in Different Abandoned Years in Loess Plateau. Huan Jing Ke Xue 2016, 37, 1128–1138. [Google Scholar] [PubMed]
- Rivas-Ubach, A.; Sardans, J.; Pérez-Trujillo, M.; Estiarte, M.; Peñuelas, J. Strong Relationship between Elemental Stoichiometry and Metabolome in Plants. Proc. Natl. Acad. Sci. USA 2012, 109, 4181–4186. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, L.; Peng, Y.; Ding, J.; Li, F.; Yang, G.; Kou, D.; Liu, L.; Fang, K.; Zhang, B.; et al. Linking Microbial C:N:P Stoichiometry to Microbial Community and Abiotic Factors along a 3500-km Grassland Transect on the Tibetan Plateau. Glob. Ecol. Biogeogr. 2016, 25, 1416–1427. [Google Scholar] [CrossRef]
- Piotrowska-Długosz, A.; Długosz, J. Spatio-Temporal Variability of Soil Beta-Glucosidase Activity at the Arable Field Scale. Pol. J. Soil Sci. 2017, 50, 107. [Google Scholar] [CrossRef]
- Długosz, J.; Piotrowska-Długosz, A. Spatial Variability of Soil Nitrogen Forms and the Activity of N-Cycle Enzymes. Plant Soil Environ. 2016, 62, 502–507. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, L.; Tian, Y.; Wu, X.; Yang, J.; Luo, Y.; Li, H.; Awasthi, M.K.; Zhao, Z. Temporal and Spatial Variation of Soil Microorganisms and Nutrient under White Clover Cover. Soil Tillage Res. 2020, 202, 104666. [Google Scholar] [CrossRef]
- Martínez-Casasnovas, J.A.; Martín-Montero, A.; Auxiliadora Casterad, M. Mapping Multi-Year Cropping Patterns in Small Irrigation Districts from Time-Series Analysis of Landsat TM Images. Eur. J. Agron. 2005, 23, 159–169. [Google Scholar] [CrossRef]
- Watson, S.J.; Luck, G.W.; Spooner, P.G.; Watson, D.M. Land-Use Change: Incorporating the Frequency, Sequence, Time Span, and Magnitude of Changes into Ecological Research. Front. Ecol. Environ. 2014, 12, 241–249. [Google Scholar] [CrossRef]
- Larsen, K.S.; Michelsen, A.; Jonasson, S.; Beier, C.; Grogan, P. Nitrogen Uptake During Fall, Winter and Spring Differs Among Plant Functional Groups in a Subarctic Heath Ecosystem. Ecosystems 2012, 15, 927–939. [Google Scholar] [CrossRef]
- Cassman, K.G.; Dobermann, A.; Walters, D.T. Agroecosystems, Nitrogen-Use Efficiency, and Nitrogen Management. AMBIO J. Hum. Environ. 2002, 31, 132–140. [Google Scholar] [CrossRef] [PubMed]
- Erisman, J.W.; Bleeker, A.; Galloway, J.; Sutton, M.S. Reduced Nitrogen in Ecology and the Environment. Environ. Pollut. 2007, 150, 140–149. [Google Scholar] [CrossRef] [PubMed]
- Łukowiak, R.; Grzebisz, W.; Ceglarek, J.; Podolski, A.; Kaźmierowski, C.; Piekarczyk, J. Spatial Variability of Yield and Nitrogen Indicators—A Crop Rotation Approach. Agronomy 2020, 10, 1959. [Google Scholar] [CrossRef]
- Vasu, D.; Singh, S.K.; Sahu, N.; Tiwary, P.; Chandran, P.; Duraisami, V.P.; Ramamurthy, V.; Lalitha, M.; Kalaiselvi, B. Assessment of Spatial Variability of Soil Properties Using Geospatial Techniques for Farm Level Nutrient Management. Soil Tillage Res. 2017, 169, 25–34. [Google Scholar] [CrossRef]
- St. Luce, M.; Whalen, J.K.; Ziadi, N.; Zebarth, B.J. Nitrogen Dynamics and Indices to Predict Soil Nitrogen Supply in Humid Temperate Soils. Adv. Agron. 2011, 112, 55–102. [Google Scholar]
- Tian, L.; Dell, E.; Shi, W. Chemical Composition of Dissolved Organic Matter in Agroecosystems: Correlations with Soil Enzyme Activity and Carbon and Nitrogen Mineralization. Appl. Soil Ecol. 2010, 46, 426–435. [Google Scholar] [CrossRef]
- Chavarría, D.N.; Verdenelli, R.A.; Serri, D.L.; Restovich, S.B.; Andriulo, A.E.; Meriles, J.M.; Vargas-Gil, S. Effect of Cover Crops on Microbial Community Structure and Related Enzyme Activities and Macronutrient Availability. Eur. J. Soil Biol. 2016, 76, 74–82. [Google Scholar] [CrossRef]
- Delgado-Baquerizo, M. Obscure Soil Microbes and Where to Find Them. ISME J. 2019, 13, 2120–2124. [Google Scholar] [CrossRef]
- Sinsabaugh, R.L.; Lauber, C.L.; Weintraub, M.N.; Ahmed, B.; Allison, S.D.; Crenshaw, C.; Contosta, A.R.; Cusack, D.; Frey, S.; Gallo, M.E.; et al. Stoichiometry of Soil Enzyme Activity at Global Scale. Ecol. Lett. 2008, 11, 1252–1264. [Google Scholar] [CrossRef] [PubMed]
- Cusack, D.F.; Silver, W.L.; Torn, M.S.; Burton, S.D.; Firestone, M.K. Changes in Microbial Community Characteristics and Soil Organic Matter with Nitrogen Additions in Two Tropical Forests. Ecology 2011, 92, 621–632. [Google Scholar] [CrossRef] [PubMed]
- Averill, C.; Waring, B. Nitrogen Limitation of Decomposition and Decay: How Can It Occur? Glob. Chang. Biol. 2018, 24, 1417–1427. [Google Scholar] [CrossRef] [PubMed]
- Dai, Z.; Su, W.; Chen, H.; Barberán, A.; Zhao, H.; Yu, M.; Yu, L.; Brookes, P.C.; Schadt, C.W.; Chang, S.X.; et al. Long-term Nitrogen Fertilization Decreases Bacterial Diversity and Favors the Growth of Actinobacteria and Proteobacteria in Agro-ecosystems across the Globe. Glob. Chang. Biol. 2018, 24, 3452–3461. [Google Scholar] [CrossRef]
- Koch, O.; Tscherko, D.; Kandeler, E. Temperature Sensitivity of Microbial Respiration, Nitrogen Mineralization, and Potential Soil Enzyme Activities in Organic Alpine Soils. Glob. Biogeochem. Cycles 2007, 21. [Google Scholar] [CrossRef]
- Ghazali, M.F.; Wikantika, K.; Harto, A.B.; Kondoh, A. Generating Soil Salinity, Soil Moisture, Soil PH from Satellite Imagery and Its Analysis. Inf. Process. Agric. 2020, 7, 294–306. [Google Scholar] [CrossRef]
- Slessarev, E.W.; Lin, Y.; Bingham, N.L.; Johnson, J.E.; Dai, Y.; Schimel, J.P.; Chadwick, O.A. Water Balance Creates a Threshold in Soil PH at the Global Scale. Nature 2016, 540, 567–569. [Google Scholar] [CrossRef]
- Acosta-Martínez, V.; Waldrip, H.M. Soil Enzyme Activities as Affected by Manure Types, Application Rates, and Management Practices. In Applied Manure and Nutrient Chemistry for Sustainable Agriculture and Environment; Springer: Dordrecht, The Netherlands, 2014; pp. 99–122. [Google Scholar]
- Al-Omran, A.M.; Al-Wabel, M.I.; El-Maghraby, S.E.; Nadeem, M.E.; Al-Sharani, S. Spatial Variability for Some Properties of the Wastewater Irrigated Soils. J. Saudi Soc. Agric. Sci. 2013, 12, 167–175. [Google Scholar] [CrossRef]
- Saiz-Rubio, V.; Rovira-Más, F. From Smart Farming towards Agriculture 5.0: A Review on Crop Data Management. Agronomy 2020, 10, 207. [Google Scholar] [CrossRef]
- Mocek, A.; Drzymała, S.; Maszner, P. Geneza Analiza i Klasyfikacja Gleb; Wydawnictwo Akademii Rolniczej im. Augusta Cieszkowskiego: Poznań, Polska, 2006. [Google Scholar]
- Alef, K.; Nannipieri, P. (Eds.) Methods in Applied Soil Microbiology and Biochemistry; Academic Press: London, UK, 1995; ISBN 0125138407. [Google Scholar]
- Ladd, J.N.; Butler, J.H.A. Short-Term Assays of Soil Proteolytic Enzyme Activities Using Proteins and Dipeptide Derivatives as Substrates. Soil. Biol. Biochem. 1972, 4, 19–30. [Google Scholar] [CrossRef]
- Zantua, M.I.; Bremner, J.M. Comparison of Methods of Assaying Urease Activity in Soils. Soil. Biol. Biochem. 1975, 7, 291–295. [Google Scholar] [CrossRef]
- Lityński, T. Analiza Chemiczno-Rolnicza: Przewodnik Metodyczny Do analizy Gleby i Nawozów; Gorlach, E., Jurkowska, H., Eds.; Państ. Wydaw. Naukowe: Warszawa, Poland, 1976. [Google Scholar]
- Mehlich, A. Mehlich 3 Soil Test Extractant: A Modification of Mehlich 2 Extractant. Commun. Soil Sci. Plant Anal. 1984, 15, 1409–1416. [Google Scholar] [CrossRef]
- Dai, J.; Bean, B.; Brown, B.; Bruening, W.; Edwards, J.; Flowers, M.; Karow, R.; Lee, C.; Morgan, G.; Ottman, M.; et al. Harvest Index and Straw Yield of Five Classes of Wheat. Biomass Bioenergy 2016, 85, 223–227. [Google Scholar] [CrossRef]
- Jangid, K.; Williams, M.A.; Franzluebbers, A.J.; Schmidt, T.M.; Coleman, D.C.; Whitman, W.B. Land-Use History Has a Stronger Impact on Soil Microbial Community Composition than Aboveground Vegetation and Soil Properties. Soil Biol. Biochem. 2011, 43, 2184–2193. [Google Scholar] [CrossRef]
- Pausch, J.; Kuzyakov, Y. Photoassimilate Allocation and Dynamics of Hotspots in Roots Visualized by 14C Phosphor Imaging. J. Plant Nutr. Soil Sci. 2011, 174, 12–19. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, H.; Wang, R.; Wu, C. Interactions between Dicyandiamide and Periphytic Biofilms in Paddy Soils and Subsequent Effects on Nitrogen Cycling. Sci. Total Environ. 2020, 718, 137417. [Google Scholar] [CrossRef]
- Galloway, A.F.; Akhtar, J.; Marcus, S.E.; Fletcher, N.; Field, K.; Knox, P. Cereal Root Exudates Contain Highly Structurally Complex Polysaccharides with Soil-binding Properties. Plant J. 2020, 103, 1666–1678. [Google Scholar] [CrossRef]
- Hinsinger, P.; Plassard, C.; Jaillard, B. Rhizosphere: A New Frontier for Soil Biogeochemistry. J. Geochem. Explor. 2006, 88, 210–213. [Google Scholar] [CrossRef]
- Lugtenberg, B.J.J.; Bloemberg, G.V. Life in the Rhizosphere. In Pseudomonas; Springer: Boston, MA, USA, 2004; pp. 403–430. [Google Scholar]
- Ouahmane, L.; Thioulouse, J.; Hafidi, M.; Prin, Y.; Ducousso, M.; Galiana, A.; Plenchette, C.; Kisa, M.; Duponnois, R. Soil Functional Diversity and P Solubilization from Rock Phosphate after Inoculation with Native or Allochtonous Arbuscular Mycorrhizal Fungi. Ecol. Manag. 2007, 241, 200–208. [Google Scholar] [CrossRef]
- Chaparro, J.M.; Badri, D.V.; Vivanco, J.M. Rhizosphere Microbiome Assemblage Is Affected by Plant Development. ISME J. 2014, 8, 790–803. [Google Scholar] [CrossRef]
- Zhang, X.; Dippold, M.A.; Kuzyakov, Y.; Razavi, B.S. Spatial Pattern of Enzyme Activities Depends on Root Exudate Composition. Soil Biol. Biochem. 2019, 133, 83–93. [Google Scholar] [CrossRef]
- Blagodatskaya, E.; Kuzyakov, Y. Active Microorganisms in Soil: Critical Review of Estimation Criteria and Approaches. Soil Biol. Biochem. 2013, 67, 192–211. [Google Scholar] [CrossRef]
- Hernández, D.L.; Hobbie, S.E. The Effects of Substrate Composition, Quantity, and Diversity on Microbial Activity. Plant Soil 2010, 335, 397–411. [Google Scholar] [CrossRef]
- Dotaniya, M.L.; Kushwah, S.K.; Rajendiran, S.; Coumar, M.V.; Kundu, S.; Subba Rao, A. Rhizosphere Effect of Kharif Crops on Phosphatases and Dehydrogenase Activities in a Typic Haplustert. Natl. Acad. Sci. Lett. 2014, 37, 103–106. [Google Scholar] [CrossRef]
- Hupe, A.; Schulz, H.; Bruns, C.; Haase, T.; Heß, J.; Joergensen, R.G.; Wichern, F. Even Flow? Changes of Carbon and Nitrogen Release from Pea Roots over Time. Plant Soil 2018, 431, 143–157. [Google Scholar] [CrossRef]
- Piotrowska-Długosz, A.; Siwik-Ziomek, A.; Długosz, J.; Gozdowski, D. Spatio-Temporal Variability of Soil Sulfur Content and Arylsulfatase Activity at a Conventionally Managed Arable Field. Geoderma 2017, 295, 107–118. [Google Scholar] [CrossRef]
- Siczek, A.; Frąc, M.; Kalembasa, S.; Kalembasa, D. Soil Microbial Activity of Faba Bean (Vicia faba L.) and Wheat (Triticum aestivum L.) Rhizosphere during Growing Season. Appl. Soil Ecol. 2018, 130, 34–39. [Google Scholar] [CrossRef]
- Richardson, A.E.; Simpson, R.J. Soil Microorganisms Mediating Phosphorus Availability Update on Microbial Phosphorus. Plant Physiol. 2011, 156, 989–996. [Google Scholar] [CrossRef]
- Margalef, O.; Sardans, J.; Fernández-Martínez, M.; Molowny-Horas, R.; Janssens, I.A.; Ciais, P.; Goll, D.; Richter, A.; Obersteiner, M.; Asensio, D.; et al. Global Patterns of Phosphatase Activity in Natural Soils. Sci. Rep. 2017, 7, 1337. [Google Scholar] [CrossRef]
- Heflik, M.; Kandziora, M.; Nadgórska-Socha, A.; Ciepal, R. Acid Phosphatase Activity in Plants Grown in Heavy Metals Contaminated Sites. Environ. Prot. Nat. Resour. 2007, 32, 151–154. [Google Scholar]
- Turner, S.; Schippers, A.; Meyer-Stüve, S.; Guggenberger, G.; Gentsch, N.; Dohrmann, R.; Condron, L.M.; Eger, A.; Almond, P.C.; Peltzer, D.A.; et al. Mineralogical Impact on Long-Term Patterns of Soil Nitrogen and Phosphorus Enzyme Activities. Soil Biol. Biochem. 2014, 68, 31–43. [Google Scholar] [CrossRef]
- Pang, X.; Ning, W.; Qing, L.; Bao, W. The Relation among Soil Microorganism, Enzyme Activity and Soil Nutrients under Subalpine Coniferous Forest in Western Sichuan. Acta Ecol. Sin. 2009, 29, 286–292. [Google Scholar] [CrossRef]
- Štursová, M.; Baldrian, P. Effects of Soil Properties and Management on the Activity of Soil Organic Matter Transforming Enzymes and the Quantification of Soil-Bound and Free Activity. Plant Soil 2011, 338, 99–110. [Google Scholar] [CrossRef]
- Wallenstein, M.D.; Mcmaoth, S.K.; Schmiel, J.P. Seasonal Variation in Enzyme Activities and Temperature Sensitivities in Arctic Tundra Soils. Glob. Chang. Biol. 2009, 15, 1631–1639. [Google Scholar] [CrossRef]
- Piotrowska-Długosz, A.; Wilczewski, E. Soil Phosphatase Activity and Phosphorus Content as Influenced by Catch Crops Cultivated as Green Manure. Pol. J. Environ. Stud. 2014, 23, 157–165. [Google Scholar]
- Acosta-Martínez, V.; Acosta-Mercado, D.; Sotomayor-Ramírez, D.; Cruz-Rodríguez, L. Microbial Communities and Enzymatic Activities under Different Management in Semiarid Soils. Appl. Soil Ecol. 2008, 38, 249–260. [Google Scholar] [CrossRef]
- Philippot, L.; Bru, D.; Saby, N.P.A.; Čuhel, J.; Arrouays, D.; Šimek, M.; Hallin, S. Spatial Patterns of Bacterial Taxa in Nature Reflect Ecological Traits of Deep Branches of the 16S RRNA Bacterial Tree. Environ. Microbiol. 2009, 11, 3096–3104. [Google Scholar] [CrossRef]
- Rousk, J.; Bååth, E.; Brookes, P.C.; Lauber, C.L.; Lozupone, C.; Caporaso, J.G.; Knight, R.; Fierer, N. Soil Bacterial and Fungal Communities across a PH Gradient in an Arable Soil. ISME J. 2010, 4, 1340–1351. [Google Scholar] [CrossRef] [PubMed]
- Turner, B.L. Variation in PH Optima of Hydrolytic Enzyme Activities in Tropical Rain Forest Soils. Appl. Environ. Microbiol. 2010, 76, 6485–6493. [Google Scholar] [CrossRef]
- Xu, Z.; Zhang, T.; Wang, S.; Wang, Z. Soil PH and C/N Ratio Determines Spatial Variations in Soil Microbial Communities and Enzymatic Activities of the Agricultural Ecosystems in Northeast China: Jilin Province Case. Appl. Soil. Ecol. 2020, 155, 103629. [Google Scholar] [CrossRef]
- Zheng, H.; Liu, Y.; Zhang, J.; Chen, Y.; Yang, L.; Li, H.; Wang, L. Factors Influencing Soil Enzyme Activity in China’s Forest Ecosystems. Plant Ecol. 2018, 219, 31–44. [Google Scholar] [CrossRef]
- Brennan, R.F.; Bolland, M.D.A. Comparing the Nitrogen and Potassium Requirements of Canola and Wheat for Yield and Grain Quality. J. Plant Nutr. 2009, 32, 2008–2026. [Google Scholar] [CrossRef]
- Avice, J.-C.; Etienne, P. Leaf Senescence and Nitrogen Remobilization Efficiency in Oilseed Rape (Brassica napus L.). J. Exp. Bot. 2014, 65, 3813–3824. [Google Scholar] [CrossRef] [PubMed]
- Bouchet, A.-S.; Laperche, A.; Bissuel-Belaygue, C.; Snowdon, R.; Nesi, N.; Stahl, A. Nitrogen Use Efficiency in Rapeseed. A Review. Agron. Sustain. Dev. 2016, 36, 38. [Google Scholar] [CrossRef]
- Kabala, C.; Karczewska, A.; Gałka, B.; Cuske, M.; Sowiński, J. Seasonal Dynamics of Nitrate and Ammonium Ion Concentrations in Soil Solutions Collected Using MacroRhizon Suction Cups. Environ. Monit. Assess. 2017, 189, 304. [Google Scholar] [CrossRef]
- Shafreen, M.; Vishwakarma, K.; Shrivastava, N.; Kumar, N. Physiology and Distribution of Nitrogen in Soils. In Soil Nitrogen Ecology; Springer: Berlin/Heidelberg, Germany, 2021; pp. 3–31. [Google Scholar]
- Kroes, J.; Roelsma, J. Simulation of Water and Nitrogen Flows on Field Scale; Application of the SWAP–ANIMO Model for the Müncheberg Data Set. In Modelling Water and Nutrient Dynamics in Soil–Crop Systems; Springer: Dordrecht, The Netherlands, 2007; pp. 111–128. [Google Scholar]
- Georgallas, A.; Dessureault-Rompré, J.; Zebarth, B.J.; Burton, D.L.; Drury, C.F.; Grant, C.A. Modification of the Biophysical Water Function to Predict the Change in Soil Mineral Nitrogen Concentration Resulting from Concurrent Mineralization and Denitrification. Can. J. Soil Sci. 2012, 92, 695–710. [Google Scholar] [CrossRef]
- Perego, A.; Basile, A.; Bonfante, A.; De Mascellis, R.; Terribile, F.; Brenna, S.; Acutis, M. Nitrate Leaching under Maize Cropping Systems in Po Valley (Italy). Agric. Ecosyst. Environ. 2012, 147, 57–65. [Google Scholar] [CrossRef]
- Sierra, C.A.; Trumbore, S.E.; Davidson, E.A.; Vicca, S.; Janssens, I. Sensitivity of Decomposition Rates of Soil Organic Matter with Respect to Simultaneous Changes in Temperature and Moisture. J. Adv. Model. Earth Syst. 2015, 7, 335–356. [Google Scholar] [CrossRef]
- Below, F.E. Nitrogen Metabolism and Crop Productivity. In Handbook of Plant and Crop Physiology; CRC Press: Boca Raton, FL, USA, 2001; pp. 385–406. [Google Scholar]
- Jat, H.S.; Datta, A.; Choudhary, M.; Sharma, P.C.; Dixit, B.; Jat, M.L. Soil Enzymes Activity: Effect of Climate Smart Agriculture on Rhizosphere and Bulk Soil under Cereal Based Systems of North-West India. Eur. J. Soil Biol. 2021, 103, 103292. [Google Scholar] [CrossRef]
- Shen, J.; Yuan, L.; Zhang, J.; Li, H.; Bai, Z.; Chen, X.; Zhang, W.; Zhang, F. Phosphorus Dynamics: From Soil to Plant. Plant Physiol. 2011, 156, 997–1005. [Google Scholar] [CrossRef] [PubMed]
- Alharbi, A. Effect Of Mulch On Soil Properties Under Organic Farming Conditions In Center Of Saudi Arabia. Mech. Agric. Conserv. Resour. 2017, 63, 161–167. [Google Scholar]
- Litke, L.; Gaile, Z.; Ruža, A. Effect of Nitrogen Fertilization on Winter Wheat Yield and Yield Quality. Agron. Res. 2018, 16, 500–509. [Google Scholar] [CrossRef]
- Assefa, Y.; Roozeboom, K.; Stamm, M. Winter Canola Yield and Survival as a Function of Environment, Genetics, and Management. Crop Sci. 2014, 54, 2303–2313. [Google Scholar] [CrossRef]
- Harker, K.N.; O’Donovan, J.T.; Turkington, T.K.; Blackshaw, R.E.; Lupwayi, N.Z.; Smith, E.G.; Klein-Gebbinck, H.; Dosdall, L.M.; Hall, L.M.; Willenborg, C.J.; et al. High-Yield No-till Canola Production on the Canadian Prairies. Can. J. Plant Sci. 2012, 92, 221–233. [Google Scholar] [CrossRef]
- Assefa, Y.; Prasad, P.V.V.; Foster, C.; Wright, Y.; Young, S.; Bradley, P.; Stamm, M.; Ciampitti, I.A. Major Management Factors Determining Spring and Winter Canola Yield in North America. Crop Sci. 2018, 58, 1–16. [Google Scholar] [CrossRef]
- Rondanini, D.P.; Gomez, N.V.; Agosti, M.B.; Miralles, D.J. Global Trends of Rapeseed Grain Yield Stability and Rapeseed-to-Wheat Yield Ratio in the Last Four Decades. Eur. J. Agron. 2012, 37, 56–65. [Google Scholar] [CrossRef]
- Béreš, J.; Bečka, D.; Tomášek, J.; Vašák, J. Effect of Autumn Nitrogen Fertilization on Winter Oilseed Rape Growth and Yield Parameters. Plant Soil. Environ. 2019, 65, 435–441. [Google Scholar] [CrossRef]
- Delin, S. Within-Field Variations in Grain Protein Content?Relationships to Yield and Soil Nitrogen and Consistency in Maps Between Years. Precis. Agric. 2004, 5, 565–577. [Google Scholar] [CrossRef]
- Weymann, W.; Böttcher, U.; Sieling, K.; Kage, H. Effects of Weather Conditions during Different Growth Phases on Yield Formation of Winter Oilseed Rape. Field Crops Res. 2015, 173, 41–48. [Google Scholar] [CrossRef]
- Basso, B.; Cammarano, D.; Grace, P.R.; Cafiero, G.; Sartori, L.; Pisante, M.; Landi, G.; De Franchi, S.; Basso, F. Criteria for Selecting Optimal Nitrogen Fertilizer Rates for Precision Agriculture. Ital. J. Agron. 2009, 4, 147. [Google Scholar] [CrossRef]
- Zhang, S.; Huffman, T.; Zhang, X.; Liu, W.; Liu, Z. Spatial Distribution of Soil Nutrient at Depth in Black Soil of Northeast China: A Case Study of Soil Available Phosphorus and Total Phosphorus. J. Soils Sediments 2014, 14, 1775–1789. [Google Scholar] [CrossRef]
- Zhao, W.; Zhang, J.; Müller, C.; Cai, Z. Effects of PH and Mineralisation on Nitrification in a Subtropical Acid Forest Soil. Soil Res. 2018, 56, 275. [Google Scholar] [CrossRef]
- Mueller, K.E.; Tilman, D.; Fornara, D.A.; Hobbie, S.E. Root Depth Distribution and the Diversity–Productivity Relationship in a Long-Term Grassland Experiment. Ecology 2013, 94, 787–793. [Google Scholar] [CrossRef]
- Nowosad, K.; Liersch, A.; Popławska, W.; Bocianowski, J. Genotype by Environment Interaction for Seed Yield in Rapeseed (Brassica napus L.) Using Additive Main Effects and Multiplicative Interaction Model. Euphytica 2016, 208, 187–194. [Google Scholar] [CrossRef]
- Ray, D.K.; Gerber, J.S.; MacDonald, G.K.; West, P.C. Climate Variation Explains a Third of Global Crop Yield Variability. Nat. Commun. 2015, 6, 5989. [Google Scholar] [CrossRef]
- Bartomeus, I.; Gagic, V.; Bommarco, R. Pollinators, Pests and Soil Properties Interactively Shape Oilseed Rape Yield. Basic Appl. Ecol. 2015, 16, 737–745. [Google Scholar] [CrossRef]
- Xuan, W.; Beeckman, T.; Xu, G. Plant Nitrogen Nutrition: Sensing and Signaling. Curr. Opin. Plant Biol. 2017, 39, 57–65. [Google Scholar] [CrossRef]
- Semenov, M.A.; Jamieson, P.D.; Martre, P. Deconvoluting Nitrogen Use Efficiency in Wheat: A Simulation Study. Eur. J. Agron. 2007, 26, 283–294. [Google Scholar] [CrossRef]
- Haberle, J.; Svoboda, P.; Raimanová, I. The Effect of Post-Anthesis Water Supply on Grain Nitrogen Concentration and Grain Nitrogen Šeld of Winter Wheat. Plant Soil Environ. 2008, 54, 304–312. [Google Scholar] [CrossRef]
- Kumaraswamy, S.; Shetty, P.K. Critical Abiotic Factors Affecting Implementation of Technologicalinnovations in Rice and Wheat Production: A Review. Agric. Rev. 2016, 37, 268–278. [Google Scholar] [CrossRef]
- Ngoune Liliane, T.; Shelton Charles, M. Factors Affecting Yield of Crops. In Agronomy—Climate Change and Food Security; IntechOpen: London, UK, 2020. [Google Scholar]
- Hurtado, S.M.C.; Silva, C.A.; de Resende, Á.V.; Von Pinho, R.G.; Inácio, E.D.S.B.; Higashikawa, F.S. Spatial Variability of Soil Acidity Attributes and the Spatialization of Liming Requirement for Corn. Ciênc. Agrotecnol. 2009, 33, 1351–1359. [Google Scholar] [CrossRef]
- Engel, R.E.; Long, D.S.; Carlson, G.R. Predicting Straw Yield of Hard Red Spring Wheat. Agron. J. 2003, 95, 1454–1460. [Google Scholar] [CrossRef]
- Chen, J.; Engbersen, N.; Stefan, L.; Schmid, B.; Sun, H.; Schöb, C. Diversity Increases Yield but Reduces Harvest Index in Crop Mixtures. Nat. Plants 2021, 7, 893–898. [Google Scholar] [CrossRef]
- Kuai, J.; Sun, Y.; Zuo, Q.; Huang, H.; Liao, Q.; Wu, C.; Lu, J.; Wu, J.; Zhou, G. The Yield of Mechanically Harvested Rapeseed (Brassica napus L.) Can Be Increased by Optimum Plant Density and Row Spacing. Sci. Rep. 2015, 5, 18835. [Google Scholar] [CrossRef]
Year | 2019 | |||
Term | I | II | III | IV |
Winter wheat | 13.02 before the start of crop growth | 03.06 flowering of the crop | 09.07 harvest | 22.10 saturation of the soil sorption complex |
Year | 2020 | |||
Term | V | VI | VII | VIII |
Winter oilseed rape | 13.02 before the start of crop growth | 21.04 flowering of the crop | 07.07 harvest | 22.10 saturation of the soil sorption complex |
Parameter | Term | Variant | Interaction |
---|---|---|---|
Wheat | |||
Acid phosphatase (PAC) | 720.97 ** | 37.85 ** | 6.34 ** |
Alkaline phosphatase (PAL) | 47.13 ** | 29.09 ** | 6.38 ** |
Urease (URE) | 117.91 ** | 79.91 ** | 15.90 ** |
Protease (PROT) | 15,415.22 ** | 8.24 ** | 9.62 ** |
N-NH4 | 232.46 ** | 103.46 ** | 59.95 ** |
N-NO3 | 5960.52 ** | 190.00 ** | 86.83 ** |
Rapeseed | |||
Acid phosphatase (PAC) | 2320.83 ** | 31.41 ** | 19.20 ** |
Alkaline phosphatase (PAL) | 624.56 ** | 35.54 ** | 16.52 ** |
Urease (URE) | 37.80 *** | 34.97 *** | 13.54 *** |
Protease (PROT) | 418.24 *** | 14.66 *** | 8.37 *** |
N-NH4 | 42.609 *** | 24.77 *** | 17.39 *** |
N-NO3 | 3363.67 ** | 20.24 ** | 15.79 ** |
Sampling Point | 2019 | 2020 | Sampling Point | 2019 | 2020 |
---|---|---|---|---|---|
Term I | Term VIII | Term I | Term VIII | ||
30 | 166.82 a ± 1.07 | 143.47 ab ± 1.26 | 49 | 89.06 b ± 1.32 | 109.43 ab ± 1.13 |
31 | 173.50 a ± 1.32 | 158.70 a ± 1.02 | 50 | 76.57 b ± 1.17 | 102.67 ab ± 1.27 |
32 | 114.67 ab ± 1.11 | 81.65 b ± 0.66 | 51 | 56.71 b ± 1.28 | 72.38 b ± 1.29 |
33 | 85.51 b ± 0.79 | 88.38 b ± 1.08 | 52 | 113.44 ab ± 1.19 | 146.65 ab ± 1.19 |
34 | 138.87 ab ± 1.15 | 77.25 b ± 0.85 | 53 | 76.34 b ± 0.96 | 164.59 a ± 0.99 |
35 | 178.64 a ± 0.84 | 66.23 b ± 1.05 | 54 | 81.70 b ± 1.39 | 150.56 a ± 1.08 |
36 | 68.29 b ± 1.20 | 86.75 b ± 0.76 | 55 | 90.42 b ± 0.99 | 76.52 b ± 1.08 |
37 | 50.62 bc ± 0.64 | 63.45 b ± 1.21 | 56 | 110.58 ab ± 0.91 | 88.26 b ± 1.26 |
38 | 66.50 b ± 0.59 | 104.48 ab ± 0.95 | 57 | 92.34 b ± 1.37 | 175.36 a ± 0.68 |
39 | 117.65 ab ± 0.90 | 115.61 ab ± 0.89 | 58 | 64.31 b ± 0.72 | 107.44 ab ± 0.71 |
40 | 100.87 b ± 1.12 | 127.66 ab ± 1.18 | 59 | 135.96 ab ± 0.46 | 69.39 b ± 1.12 |
41 | 113.80 ab ± 1.12 | 146.34 ab ± 0.84 | 60 | 134.37 ab ±1.26 | 37.53 c ± 1.25 |
42 | 145.46 ab ± 1.63 | 108.61 ab ± 1.29 | 61 | 122.60 ab ± 1.15 | 142.60 ab ± 2.22 |
43 | 61.36 b ± 0.89 | 64.52 b ± 1.35 | 62 | 153.75 a ± 1.62 | 134.65 ab ± 0.98 |
44 | 90.30 b ± 0.82 | 92.65 b ± 1.04 | 63 | 145.77 ab ± 1.10 | 125.72 ab ± 1.25 |
45 | 75.44 b ± 0.82 | 128.56 ab ± 0.70 | 64 | 191.45 a ± 1.30 | 187.48 a ± 0.95 |
46 | 67.36 b ± 0.99 | 64.27 b ± 0.84 | 65 | 169.19 a ± 1.08 | 190.54 a ± 1.30 |
47 | 71.72 b ± 1.13 | 36.63 c ± 1.27 | 66 | 170.61 a ± 1.16 | 160.65 a ± 1.44 |
48 | 39.44 c ± 0.95 | 45.50 c ± 1.02 |
Sampling Point | Harvest Index (%) | Sampling Point | Harvest Index (%) | Sampling Point | Harvest Index (%) | |||
---|---|---|---|---|---|---|---|---|
Wheat | Rapeseed | Wheat | Rapeseed | Wheat | Rapeseed | |||
30 | 46.47 b | 33.33 a | 43 | 48.51 a | 30.81 a | 55 | 47.84 ab | 33.78 a |
31 | 43.80 d | 34.81 a | 44 | 44.29 c | 33.48 a | 56 | 46.99 ab | 29.55 b |
32 | 47.56 ab | 31.63 a | 45 | 45.88 bc | 31.03 a | 57 | 45.57 bc | 32.00 a |
33 | 47.93 ab | 31.31 a | 46 | 47.70 ab | 33.02 a | 58 | 47.06 ab | 29.30 b |
34 | 48.38 a | 32.21 a | 47 | 46.95 b | 34.41 a | 59 | 47.45 ab | 32.73 a |
35 | 46.30 b | 32.12 a | 48 | 47.04 a | 33.14 a | 60 | 46.81 b | 30.12 ab |
36 | 46.64 b | 33.14 a | 49 | 45.75 bc | 31.68 a | 61 | 45.60 bc | 28.16 b |
37 | 46.72 b | 32.83 a | 50 | 47.30 ab | 30.95 a | 62 | 46.84 b | 30.77 a |
38 | 47.55 ab | 30.00 ab | 51 | 47.97 ab | 28.07 b | 63 | 46.77 b | 32.35 a |
39 | 48.08 a | 30.93 a | 52 | 47.89 ab | 32.58 a | 64 | 45.21 bc | 31.82 a |
40 | 45.88 bc | 32.24 a | 53 | 48.58 a | 28.22 b | 65 | 45.15 bc | 34.04 a |
41 | 48.14 a | 32.58 a | 54 | 46.72 b | 30.09 ab | 66 | 45.08 bc | 34.04 a |
42 | 46.43 b | 32.82 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wolna-Maruwka, A.; Grzyb, A.; Łukowiak, R.; Ceglarek, J.; Niewiadomska, A.; Kayzer, D. Spatial-Temporal Differentiation of Soil Biochemical Parameters and Their Relationship with Nitrogen Resources during the Vegetation Period of Selected Crops. Agriculture 2023, 13, 2034. https://doi.org/10.3390/agriculture13102034
Wolna-Maruwka A, Grzyb A, Łukowiak R, Ceglarek J, Niewiadomska A, Kayzer D. Spatial-Temporal Differentiation of Soil Biochemical Parameters and Their Relationship with Nitrogen Resources during the Vegetation Period of Selected Crops. Agriculture. 2023; 13(10):2034. https://doi.org/10.3390/agriculture13102034
Chicago/Turabian StyleWolna-Maruwka, Agnieszka, Aleksandra Grzyb, Remigiusz Łukowiak, Jakub Ceglarek, Alicja Niewiadomska, and Dariusz Kayzer. 2023. "Spatial-Temporal Differentiation of Soil Biochemical Parameters and Their Relationship with Nitrogen Resources during the Vegetation Period of Selected Crops" Agriculture 13, no. 10: 2034. https://doi.org/10.3390/agriculture13102034
APA StyleWolna-Maruwka, A., Grzyb, A., Łukowiak, R., Ceglarek, J., Niewiadomska, A., & Kayzer, D. (2023). Spatial-Temporal Differentiation of Soil Biochemical Parameters and Their Relationship with Nitrogen Resources during the Vegetation Period of Selected Crops. Agriculture, 13(10), 2034. https://doi.org/10.3390/agriculture13102034