The Effect of Mycorrhiza Fungi and Various Mineral Fertilizer Levels on the Growth, Yield, and Nutritional Value of Sweet Pepper (Capsicum annuum L.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site, Growing Conditions, and Experimental Design
- (A)
- Mycorrhization:
- WM—control without mycorrhizal fungi;
- MS—mycorrhizal fungi applied to the root zone in the seedling substrate;
- MP—mycorrhizal fungi applied to the root zone during planting of seedlings into pots.
- (B)
- Top dressing doses:
- DP—basic dose per pot of 3.6 g N, 1.8 g P2O5, 5.4 g K2O, 0.2 g MgO and 6.0 g SO3;
- DP50—50% of the basic dose;
- DP25—25% of the basic dose.
2.2. Fruit Harvest and Measurements
- –
- Plant height (cm);
- –
- Mass of the aboveground part and mass of the root system (g);
- –
- Diameter of the stem at the base (mm).
2.3. Laboratory Analyses
- –
- Dry matter content by the Polish Standard (PN-EN 12145) gravimetric method [40].The seeds were removed from sweet pepper fruits; then, the shredded fruits were pre-dried. For this purpose, 50 g of each sample was prepared and dried at 60 °C to reach the humidity level of 8–10%. The samples were air-cooled for 1 h and weighed to an accuracy of 0.01 g. Then, 5 g of a sample was collected from the air-dried ground material and placed in a container with a lid. The samples were dried at 105 °C until the absolute difference between the dry matter values at two successive weight measurements was no more than 0.01%.
- –
- Protein content by the classical Kjeldahl method using a conversion factor of 6.25, according to the AOAC procedure [41].
- –
- Dried and ground sweet pepper fruit samples of 0.5 g were subjected to wet mineralization in concentrated H2SO4 using a catalyst. The obtained mineralizate was distilled in a Kjeltec System 1026 Distilling Unit (Tecator AB, Höganäs, Sweden). Then, the distillate was titrated with 0.1 N HCl until its colour changed from green to pink-purple. The protein content in the sample was calculated according to the formula:where pc—protein content in the test sample (g·100 g−1 of dry matter); A—the amount of 0.1N HCl solution used for titration of the tested sample; B—the amount of 0.1N HCl solution used to titrate the blank sample; C—normal concentration of HCl = 0.1; Ms—mass of the tested sample (g); 1.4—the amount of nitrogen that corresponds to 1 cm3 0.1 N HCl; and 6.25—conversion factor of nitrogen content in vegetables into protein content. Then, the protein content in the dry matter was converted to the protein content in the fresh matter of the pepper fruits.
- –
- The content of total sugars and monosaccharides (g·100 g−1 of fresh matter) by the standard Luff–Schoorl method [42].
- –
- L-ascorbic acid content.The determination was carried out according to Tillmans’ method [43], which consists of the reduction of dyed 2.6-dichloroindophenol (2.6 DPIP) to a colourless leuco-compound by an acid solution of ascorbic acid. The fruit samples were homogenised; 10 g of the homogenate was weighed; and a 2% solution of oxalic acid was added to obtain a volume of 100 cm3. The samples were transferred to a dark place for 15 min and then filtered. Then, 10 cm3 of the filtrate was sampled and titrated with a solution of 2,6-dichloroindophenol until a slightly pink colour, persisting for about 10 s, was observed. The L-ascorbic acid content (AA, mg·100 g−1 of fresh matter) was calculated according to the formula:
- –
- Total polyphenol content using Folin–Ciocalteu reagent [44].Twenty-five grams of fresh sweet pepper was extracted with methanol (80%) and defatted with petroleum ether. The solution (0.2 mL) was mixed with 6.8 mL of deionized water and 0.5 mL of 50% Folin–Ciocalteu reagent. After incubation for 3 min, 2.0 mL of 20% sodium carbonate (Na2CO3) was added, and water was added to the final volume of 10 mL. The absorbance of the dark blue product was measured at 725 nm (Lambda 25 spectrophotometer, PerkinElmer, Inc., Waltham, MA, USA). Gallic acid (Sigma-Aldrich) was used as the standard.
- –
- Total acidity determined on the basis of citric acid by titration [45].After malaxation, 25 g of sweet pepper fruits was added to 100 cm3 of distilled water and heated to a boil. Then, the solution was cooled, the amount of distilled water was topped up to 250 cm3 and left for 15 min. After filtration, 10 cm3 of clear solution was measured, 2–3 drops of phenolphthalein were added, and 0.1 M was titrated with NaOH solution until it turned pink. Total acidity (Ta, g·100 g−1 of fresh matter) was calculated according to the formula:
- –
- The content of macro- and micronutrients: phosphorus, potassium, calcium, magnesium, sodium, iron, copper, zinc, and manganese (mg·100 g−1 of dry matter).The content was determined by inductively coupled plasma optical emission spectrometry (ICP-OES), using the PerkinElmer Optima 8300 emission spectrometer (PerkinElmer, Inc., Waltham, MA, USA); the samples were subjected to microwave mineralization in 68% nitric acid (63.01 g·mol−1) before the determination of the chemical element content. The content of macro- and microelements determined in dry matter was converted into the content in the fresh weight of the fruit and then converted into the amount of accumulated elements in the yield of pepper fruits harvested from an area of 1 m2 according to the formula:
2.4. Statistical Analysis
- –
- The yield parameters and the quality of the sweet pepper;
- –
- The amount of macro- and micronutrients accumulated in the fruit yield per m2;
- –
- The selected elements of the nutritional value of the sweet pepper and the growth parameters of the plants and the value of the SPAD index were evaluated by calculating Pearson’s correlation coefficients [46].
3. Results
3.1. Yield and Biometric Parameters of Sweet Pepper Fruits
3.2. Chlorophyll Content (SPAD Index) and Biometric Characteristics of Sweet Pepper Plants
3.3. The Amount of Macro- and Micronutrients Accumulated in the Yield of Sweet Pepper
3.4. Dry Matter, Protein, Sugars, L-Ascorbic Acid, and Polyphenols Content and Total Acidity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Buczkowska, H.B.; Sałata, A. Inoculation with Arbuscular Mycorrhizal Fungi (AMF) and Plant Irrigation with Yield–Forming Factors in Organic Sweet Pepper (Capsicum annuum L.) cultivation. Acta Sci. Pol. Hortorum Cultus 2020, 19, 125–138. [Google Scholar] [CrossRef]
- Baum, C.; El-Tohamy, W.; Gruda, N. Increasing the Productivity and Productquality of Vegetable Crops Using Arbuscular Mycorrhizal Fungi: A review. Sci. Hortic. 2015, 187, 131–141. [Google Scholar] [CrossRef]
- Castillo, C.G.; Ortiz, C.A.; Borie, F.R.; Rubio, R.E. Response of Chili Pepper (Capsicum annuum L.) cv. ‘Cacho de Cabra’ to the Inoculation with Arbuscular Mycorrhizal Fungi—Respuesta de Ají (Capsicum annuu m L.) cv. ‘Cacho de Cabra’ a la Inoculación con Hongos Micorrícicos Arbusculares. Inf. Tecnol. 2009, 20, 3–14, In Spanish. [Google Scholar] [CrossRef]
- Castillo, R.C.; Sotomayor, S.L.; Ortiz, O.C.; Leonelli, C.G.; Borie, B.F.; Rubio, H.R. Effect of Arbucula Myrrhizal Fungi on an Ecological Crop of Chili Peppers (Capsicum annuum L.). Chil. J. Agric. Res. 2009, 69, 79–87. [Google Scholar] [CrossRef]
- Fasusi, O.A.; Cruz, C.; Babalola, O.O. Agricultural Sustainability: Microbial Biofertilizers in Rhizosphere Management. Agriculture 2021, 11, 163. [Google Scholar] [CrossRef]
- Brundrett, M. Diversity and Classification of Mycorrhizal Associations. Biol. Rev. 2004, 79, 473–495. [Google Scholar] [CrossRef]
- Dubova, L.; Alsina, I.; Liepina, L.; Dūma, M. Effects of Mycorrhizal Fungi Glomus Mosseae on the Field Formation of Tomatoes. Genet. Plant Physiol. 2014, 4, 225–231. [Google Scholar]
- Selvakumar, G.; Yi, P.H.; Lee, S.E.; Shagol, C.C.; Han, S.G.; Sa, T.; Chung, B.N. Effects of Long-Term Subcultured Arbuscular Mycorrhizal Fungi on Red Pepper Plant Growth and Soil Glomalin Content. Mycobiology 2018, 46, 122–128. [Google Scholar] [CrossRef]
- Odoh, C.K.; Eze, C.N.; Obi, C.J.; Anyah, F.; Egbe, K.; Unah, U.V.; Akpi, U.K.; Adobu, U.S. Fungal Biofertilizers for Sustainable Agricultural Productivity. In Agriculturally Important Fungi for Sustainable Agriculture. Fungal Biology; Yadav, A., Mishra, S., Kour, D., Yadav, N., Kumar, A., Eds.; Springer: Cham, Switzerland, 2020; Volume 1, pp. 199–225. [Google Scholar] [CrossRef]
- Pereira, J.A.P.; Vieira, I.J.C.; Freitas, M.S.M.; Prins, C.L.; Martins, M.A.; Rodrigues, R. Effects of Arbuscular Mycorrhizal Fungi on Capsicum spp. J. Agric. Sci. 2016, 154, 828–849. [Google Scholar] [CrossRef]
- Duc, N.H.; Mayer, Z.; Pek, Z.; Helyes, L.; Posta, K. Combined Inoculation of Arbuscular Mycorrhizal Fungi, Pseudomonas fluorescens and Trichoderma spp. for Enhancing Defense Enzymes and Yield of Three Pepper Cultivars. Appl. Ecol. Environ. Res. 2017, 15, 1815–1829. [Google Scholar] [CrossRef]
- Hawkins, H.J.; Johansen, A.; George, E. Uptake and Transport of Organic and Inorganic Nitrogen by Arbuscular Mycorrhizal Fungi. Plant Soil 2000, 226, 275–285. [Google Scholar] [CrossRef]
- Smith, F.W.; Mudge, S.R.; Rae, A.L.; Glassop, D. Phosphate Transport in Plants. Plant Soil 2003, 248, 71–83. [Google Scholar] [CrossRef]
- Bucher, M. Functional Biology of Plant Phosphate Uptake AT Root and Mycorrhiza Interfaces. New Phytol. 2007, 173, 11–26. [Google Scholar] [CrossRef] [PubMed]
- Szczałba, M.; Kopta, T.; Gąstoł, M.; Sękara, A. Comprehensive Insight into Arbuscular Mycorrhizal Fungi, Trichoderma spp. and Plant Multilevel Interactions with Emphasis on Biostimulation of Horticultural Crops. J. Appl. Microbiol. 2019, 127, 630–647. [Google Scholar] [CrossRef] [Green Version]
- Gnekow, M.A.; Marschner, H. Role of VA-mycorrhiza in Growth and Mineral Nutrition of Apple (Malus pumila var. domestica) Rootstock Cuttings. Plant Soil 1989, 119, 285–293. [Google Scholar] [CrossRef]
- Ortas, I. Do Maize and Pepper Plants Depend on Mycorrhizae in Terms of Phosphorus and Zinc Uptake? J. Plant Nutr. 2012, 35, 1639–1656. [Google Scholar] [CrossRef]
- Begum, N.; Qin, C.; Ahanger, M.A.; Raza, S.; Khan, M.I.; Ashraf, M.; Nadeem, A.; Zhang, L. Role of Arbuscular Mycorrhizal Fungi in Plant Growth Regulation: Implications in Abiotic Stress Tolerance. Review article. Front. Plant Sci. 2019, 10, 1068. [Google Scholar] [CrossRef] [Green Version]
- Głuszek, S.; Sas-Paszt, L.; Sumorok, B.; Derkowska, E. The Influence of Mycorrhiza on Growth and Yielding of Cultivated Fruit Crops. Post. Nauk. Roln. 2008, 6, 11–22. (In Polish) [Google Scholar]
- Lekberg, Y.; Koide, R.T. Is plant Performance Limited by Abundance of Arbuscular Mycorrhizal Fungi? A Meta-Analysis of Studies Published Between 1988 and 2003. New Phytol. 2005, 168, 189–204. [Google Scholar] [CrossRef]
- Gosling, P.; Hodge, P.; Goodlass, G.; Bending, G.D. Arbuscular Mycorrhizal Fungi and Organic Farming. Agric. Ecosyst. Environ. 2006, 113, 17–35. [Google Scholar] [CrossRef]
- Candido, V.; Campanelli, G.; D’Addabbo, T.; Castronuovo, D.; Renco, M.; Camele, I. Growth and Field Promoting Effect of Artificial Mycorrhization Combined with Different Fertiliser Rates on Field-Grown Tomato. Ital. J. Agron. 2013, 8, 22. [Google Scholar] [CrossRef] [Green Version]
- Borowy, A.; Kapłan, M.; Rulak, M. The Impact of Mycorrhizal Inoculation on the Growth and Yield of Stake Tomato Under Field Cultivation. Ann. Univ. Mariae Curie-Skłodowska EEE Hortic. 2015, 25, 1–10. [Google Scholar]
- Dechassa, N.; Schenk, M.K.; Claassen, N.; Steingrobe, B. Phosphorus Efficiency of Cabbage (Brassica oleraceae L. var. capitata), Carrot (Daucus carota L.), and Potato (Solanum tuberosum L.). Plant Soil 2003, 250, 215–224. [Google Scholar] [CrossRef]
- Jamiołkowska, A.; Michałek, W. Effect of Mycorrhiza Inoculation of Pepper Seedlings (Capsicum annuum L.) on the Growth and Protection against Fusarium oxysporum infection. Acta Sci. Pol. Hortorum Cultus 2019, 18, 161–169. [Google Scholar] [CrossRef]
- Kapoulas, N.; Zoran, S.I.; Koukounaras, A.; Ipsilan, I. Aplication of Arbuscular Mycorrhizal Inoculum in Greenhouse Soil with Mature Induced Salinity for Organic Pepper Prodaction. Acta Sci. Pol. Hortorum Cultus. 2019, 18, 129–139. [Google Scholar] [CrossRef]
- Boonlue, S.; Surapat, W.; Pukahuta, C.; Suwanarit, P.; Suwanarit, A.; Morinaga, T. Diversity and Efficiency of arbuscular Mycorrhizal Fungi in Soils from Organic Chili (Capsicum frutescens) Farms. Mycoscience 2012, 53, 10–16. [Google Scholar] [CrossRef]
- Zayed, M.S.; Hassanein, M.K.K.; Esa, N.H.; Abdallah, M.M.F. Productivity of Pepper Crop (Capsicum annuum L.) as Affected by Organic Fertilizer Soil Solarization, and Endomycorrhizae. Ann. Agric. Sci. 2013, 2, 131–137. [Google Scholar] [CrossRef] [Green Version]
- Salvioli, A.; Zouari, I.; Chalot, M.; Bonfante, P. The Arbuscular Mycorrhizal Status has an Impact on the Transcriptome Profile and Amino Acid Composition of Tomato Fruit. BMC Plant Biol. 2012, 27, 12–44. [Google Scholar] [CrossRef] [Green Version]
- Thilagar, G.; Bagyaraj, D.J. Influence of Different Arbuscular Mycorrhizal Fungi on Growth and Yield of Chilly. Proc. Natl. Acad. Sci. India B Biol. Sci. 2015, 85, 71–75. [Google Scholar] [CrossRef]
- FAOSTAT Several Statistics. Available online: https://www.fao.org/faostat/en/#home (accessed on 18 August 2022).
- Khandaker, M.M.; Rohani, F.; Dalorima, T.; Mat, N. Effects of Different Organic Fertilizers on Growth, Yield and Quality of Capsicum annuum L. var. Kulai (Red Chilli Kulai). Biosci. Biotech. Res. Asia 2017, 14, 185–192. [Google Scholar] [CrossRef]
- Olatunji, T.L.; Afolayan, A.J. Comparison of Nutritional, Antioxidant Vitamins and Capsaicin Contents in Capsicum annuum and C. frutescens. Int. J. Veg. Sci. 2000, 26, 190–207. [Google Scholar] [CrossRef]
- Abdelaal, K.A.; EL-Maghraby, L.M.; Elansary, H.; Hafez, Y.M.; Ibrahim, E.I.; El-Banna, M.; El-Esawi, M.; Elkelish, A. Treatment of Sweet Pepper with Stress Tolerance-Inducing Compounds Alleviates Salinity Stress Oxidative Damage by Mediating the Physio-Biochemical Activities and Antioxidant Systems. Agronomy 2020, 10, 26. [Google Scholar] [CrossRef] [Green Version]
- Topuz, A.; Ozdemir, F. Assessment of Carotenoids, Capsaicinoids and Ascorbic Acid Composition of Some Selected Pepper Cultivars (Capsicum annuum L.) Grown in Turkey. J. Food Compos. Anal. 2007, 20, 596–602. [Google Scholar] [CrossRef]
- Tartanus, M. Effect of Mycorrhizal Fungi and Supersorbents on the Growth and Yield of Peppers (Capsicum annuum L.). Ph.D. Thesis, Siedlce University of Natural Sciences and Humanities, Siedlce, Poland, 2017; p. 94. [Google Scholar]
- Dobrzańska, J.; Dobrzański, A. Peppers under Glass and Foil, 4th ed.; PWRiL: Warsaw, Poland, 2001; p. 99. ISBN 83-0901601-8. (In Polish) [Google Scholar]
- Knaflewski, M. Growing Vegetables Indoors; PWRiL: Warszawa, Poland, 2011; ISBN 978-83-09-01064-7. (In Polish) [Google Scholar]
- Commission Regulation (EC) No 1455/1999 of 1 July 1999 laying down the marketing standard for sweet peppers. Off. J. L 1999, 167, 22–26.
- PN-EN 12145; Fruit and Vegetable Juices–Determination of Total Dry Matter–Gravimetric Method with Loss of Mass on Drying. Polish Committee for Standardization: Warsaw, Poland, 2001. (In Polish)
- AOAC. Official Methods of Analysis. In Association of Official Analytical Chemists, 18th ed.; AOAC International: Gaithersburg, MA, USA, 2005. [Google Scholar]
- PN-A-75101-07:1990; Fruit and Vegetable Products–Sample Preparation and Methods of Physicochemical Analyses–Determination of Sugar Content and Non-Sugar Extract Content. Polish Committee for Standardization: Warsaw, Poland, 1990. (In Polish)
- PN-A-04019; Food Products—Determination of Vitamin C Content. Polish Committee for Standardization. Polish Committee for Standardization: Warsaw, Poland, 1998. (In Polish)
- Stratil, P.; Klejdus, B.; Kubáň, V. Determination of Total Content of Phenolic Compounds and their Antioxidant Activity in Vegetables Evaluation of Spectrophotometric Methods. J. Agric. Food Chem. 2007, 54, 607–616. [Google Scholar] [CrossRef]
- PN-90/A-75101/04/Az1; Fruit and Vegetable Preparations–Preparation of Samples and Methods of Physicochemical Research–Determination of Total Acidity. Polish Committee for Standardization: Warsaw, Poland, 2002. (In Polish)
- Trętowski, J.; Wójcik, R. Methodology of Agricultural Experiments; University of Agriculture and Education: Siedlce, Poland, 1999; p. 500. (In Polish) [Google Scholar]
- Mikiciuk, G.; Sas-Paszt, L.; Mikiciuk, M.; Derkowska, E.; Trzciński, P.; Głuszek, S.; Lisek, A.; Wera-Bryl, S.; Rudnicka, J. Mycorrhizal Frequency, Physiological Parameters, and Yield of Strawberry Plants Inoculated with Endomycorrhizal Fungi and Rhizosphere Bacteria. Mycorrhiza 2019, 29, 489–501. [Google Scholar] [CrossRef] [Green Version]
- Faisal, M.; Ahmad, T.; Srivastava, N.K. Influence of Different Levels of Glomus macrocarpum on Growth and Yield of Chilli (Capsicum annum L.). Indian J. Sci. Res. 2010, 1, 97–99. [Google Scholar]
- Marihal, A.K.; Pradeep, S.M.; Jagadeesh, K.S. Effect of Commercial Mycorrhizal Inoculant on Growth and Yield of Chilli (Capsicum annum L.) in Field Conditions. Karnataka J. Agric. Sci. 2011, 24, 589–590. [Google Scholar]
- Sharif, M.; Claassen, N. Action Mechanisms of Arbuscular Mycorrhizal Fungi in Phosphorus Uptake by Capsicum annuum L. Pedosphere 2011, 21, 502–511. [Google Scholar] [CrossRef]
- Pešaković, M.; Karaklajić-Stajić, Ž.; Milenković, S.; Mitrović, O. Biofertilizer Affecting Yield Related Characteristics of Strawberry (Fragaria × ananassa Duch.) and soil micro-organisms. Sci. Hort. 2013, 150, 238–243. [Google Scholar] [CrossRef]
- Sinclair, G.; Charest, C.; Dalpé, Y.; Khanizadeh, S. Influence of Colonization by Arbuscular Mycorrhizal Fungi on Three Strawberry Cultivars under Salty Conditions. Agric. Food Sci. 2014, 23, 146–158. [Google Scholar] [CrossRef] [Green Version]
- Bona, E.; Lingua, G.; Manassero, P.; Cantamessa, S.; Marsano, F.; Todeschini, V.; Copetta, A.; D’Agostino, G.; Massa, N.; Avidano, L.; et al. AM Hungi and PGP Pseudomonads Increase Flowering, Fruit Production, and Vitamin Content in Strawberry Grown at Low Nitrogen and Phosphorus Levels. Mycorrhiza 2015, 25, 181–193. [Google Scholar] [CrossRef] [PubMed]
- Derkowska, E.; Sas-Paszt, L.; Dyki, B.; Sumorok, B. Assessment of Mycorrhizal Frequency in the Roots of Fruit Plants Using Different Dyes. Adv. Microbiol. 2015, 5, 54–64. [Google Scholar] [CrossRef] [Green Version]
- Cecatto, A.P.; Ruiz, F.M.; Calvete, E.O.; Martínez, J.; Palencia, P. Mycorrhizal Inoculation Affects the Phytochemical Content in Strawberry Fruits. Acta Sci. Agron. 2016, 38, 227–237. [Google Scholar] [CrossRef] [Green Version]
- Sowik, I.; Borkowska, B.; Markiewicz, M. The Activity of Mycorrhizal Symbiosis in Suppressing Verticillium Wilt in Susceptible and Tolerant Strawberry (Fragaria x ananassa Duch.) Genotypes. Appl. Soil Ecol. 2016, 101, 152–164. [Google Scholar] [CrossRef]
- Candido, V.; Campanelli, G.; D’Addabbo, T.; Castronuovo, D.; Perniola, M.; Camele, I. Growth and Yield Promoting Effect of Artificial Mycorrhization on Field Tomato at Different Irrigation Regimes. Sci. Hort. 2015, 187, 35–43. [Google Scholar] [CrossRef]
- Sorensen, J.N.; Larsen, J.M.; Jakobsen, I. Pre-inoculation with Arbuscular Mycorrhizal Fungi Increases Early Nutrient Concentration and Growth of Field Grown Leeks Under High Productivity Conditions. Plant Soil 2008, 307, 135–147. [Google Scholar] [CrossRef]
- Sensoy, S.; Demir, S.; Türkmen, O.; Erdinc, C.; Savur, O.B. Responses of Some Different Pepper (Capsicum annuum L.) Genotypes to Inoculation with Two Different Arbuscular Mycorrhizal Fungi. Sci. Hortic. 2007, 113, 92–95. [Google Scholar] [CrossRef]
- Zhu, X.C.; Song, F.B.; Liu, S.Q.; Liu, T.D.; Zhou, X. Arbuscular Mycorrhizae Improves Photosynthesis and Water Status of Zea mays L. under Drought Stress. Plant Soil Environ. 2012, 58, 186–191. [Google Scholar] [CrossRef] [Green Version]
- Iula, G.; Miras-Moreno, B.; Lucini, L.; Trevisan, M. The Mycorrhiza-and Trichoderma-Mediated Elicitation of Secondary Metabolism and Modulation of Phytohormone Profile in Tomato Plants. Horticulturae 2021, 7, 394. [Google Scholar] [CrossRef]
- Steward, L.I.; Hamel, C.; Hogue, R.; Moutoglis, P. Response of Strawberry to Inoculation with arbuscular Mycorrhizal Fungi under Very High Soil Phosphorus Conditions. Mycorrhiza 2005, 15, 612–619. [Google Scholar] [CrossRef] [PubMed]
- Román-García, F. Concentration of Plant Development Regulators Induced by Endomycorrhizal Fungi in Two Cultivars from Chile (Capsicum annuum L.). Ph.D. Thesis, University of Colima, Colima, Mexico, 2003. (In Spanish). [Google Scholar]
- Colla, G.; Rouphael, Y.; Di Mattia, E.; El-Nakhel, C.; Cardarelli, M. Co-inoculation of Glomus intraradices and Trichoderma atrovirideacts as a Biostimulant to Promote Growth, Yield and Nutrient Uptake of Vegetable Crops. J. Sci. Food Agric. 2014, 95, 1706–1715. [Google Scholar] [CrossRef] [PubMed]
- Ortas, I.; Sari, N.; Akpinar, Ç.; Yetisir, H. Screening Mycorrhiza Species for Plant Growth, P and Zn Uptake in Pepper Seedling Grown under Greenhouse Conditions. Sci. Hortic. 2011, 128, 92–98. [Google Scholar] [CrossRef]
- Franco, A.D.; Carrillo, M.A.; Chairez, F.O.; Cabrera, O.G. Plant Nutrition and Fruit Quality of Pepper Associated with Arbuscular Mycorrhizal in Greenhouse. Rev. Mexicana Cienc. Agric. 2013, 4, 315–321. (In Spanish) [Google Scholar]
- Majkowska-Gadomska, J.; Dobrowolski, A.; Mikulewicz, E. The Effect of Mycorrhizal Inoculum on the Leaf Greenness Index and Yield of Tomato (Lycopersicon Esculentum Mill.) Plants Grown in a Heated Plastic Tunnel. Acta Agrophys. 2016, 23, 445–453. [Google Scholar]
- Kiriachek, S.G.; Azevedo, L.C.B.; Peres, L.E.P.; Lambais, M.R. Regulation of Arbuscular Mycorrhizae Development—Regulação do desenvolvimento de micorrizas arbusculares. Rev. Bras. Cienc. Solo. 2009, 33, 1–16. [Google Scholar] [CrossRef]
- Javot, H.; Pumplin, N.; Harrison, M.J. Phosphate in the Arbuscular Mycorrhizal Symbiosis: Transport Properties and Regulatory Roles. Plant Cell Environ. 2007, 30, 310–322. [Google Scholar] [CrossRef]
- Allen, J.W.; Shachar-Hill, Y. Sulfur Transfer through an Arbuscular Mycorrhiza. Plant Physiol. 2008, 149, 549–560. [Google Scholar] [CrossRef] [Green Version]
- Jansa, J.; Mozafar, A.; Frossard, E. Long-distance Transport of P and Zn through the Hyphae of an Arbuscular Mycorrhizal Fungus in Symbiosis with Maize. Agronomie 2003, 23, 481–488. [Google Scholar] [CrossRef]
- Caris, C.; Hördt, W.; Hawkins, H.J.; Römheld, V.; George, E. Studies of Iron Transport by Arbuscular Mycorrhizal Hyphae from Soil to Peanut and Sorghum Plants. Mycorrhiza 1998, 8, 35–39. [Google Scholar] [CrossRef]
- Majkowska-Gadomska, J.; Dobrowolski, A.; Jadwisieńczak, K.K.; Francke, A. The Effect of Mycorrhizal Fungal Strains on the Concentrations of Phosphorus and Selected Micronutrients in Tomato Fruit (Lycopersicon esculentum Mill.). Pol. J. Environ. Stud. 2022, 31, 1193–1199. [Google Scholar] [CrossRef] [PubMed]
- Hart, M.; Ehret, D.L.; Krumbein, A.; Leung, C.; Murch, S.; Turi, C.; Franken, P. Inoculation with Arbuscular Mycorrhizal Fungi Improves the Nutritional Value of Tomatoes. Mycorrhiza 2015, 25, 359–376. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Smith, F.A.; Dickson, S.; Holloway, R.E.; Smith, S.E. Plant Growth Depressions in Arbuscular Mycorrhizal Symbioses: Not Just Caused by Carbon Drain? New Phytol. 2008, 178, 852–862. [Google Scholar] [CrossRef]
- Castellanos-Morales, V.; Villegas, J.; Wendelin, S.; Vierheilig, H.; Eder, R.; Cárdenas-Navarro, R. Root Colonisation by the Arbuscular Mycorrhizal Fungus Glomus Intraradices Alters the Quality of Strawberry Fruits (Fragaria × ananassa Duch.) at Different Nitrogen Levels. J. Sci. Food Agric. 2010, 90, 1774–1782. [Google Scholar] [CrossRef]
- Lingua, G.; Bona, E.; Manassero, P.; Marsano, F.; Todeschini, V.; Cantamessa, S.; Copetta, A.; D’Agostino, G.; Gamalero, E.; Berta, G. Arbuscular Mycorrhizal Fungi and Plant Growth-Promoting Pseudomonads Increases Anthocyanin Concentration in Strawberry Fruits (Fragaria x ananassa var. Selva) in Conditions of Reduced Fertilization. Int. J. Mol. Sci. 2013, 14, 16207–16225. [Google Scholar] [CrossRef] [PubMed]
- Abdel Latef, A.A.H.; Chaoxing, H. Effect of Arbuscular Mycorrhizal Fungi on growth, Mineral Nutrition, Antioxidant Enzymes Activity and Fruit Yield of Tomato Grown under Salinity Stress. Sci. Hortic. 2011, 127, 228–233. [Google Scholar] [CrossRef]
- Avio, L.; Sbrana, C.; Giovannetti, M.; Frassinetti, S. Arbuscular Mycorrhizal Fungi Affect Total Phenolics Content and Antioxidant Activity in Leaves of Oak Leaf Lettuce Varieties. Sci. Hortic. 2017, 224, 265–271. [Google Scholar] [CrossRef]
Mycorrhiza | Top Dressing | Total Yield (kg·m−2) | Marketable Yield (kg·m−2) | Number of Marketable Fruits (No.·m−2) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
WM | DP | 2.52 ± 0.41 | 2.27 ± 0.39 | 9.22 ± 1.55 | ||||||
DP50 | 2.38 ± 0.43 | 2.15 ± 0.38 | 8.89 ± 1.45 | |||||||
DP25 | 2.29 ± 0.36 | 2.05 ± 0.32 | 8.78 ± 1.54 | |||||||
MS | DP | 2.84 ± 0.55 | 2.57 ± 0.53 | 9.67 ± 1.95 | ||||||
DP50 | 2.61 ± 0.58 | 2.35 ± 0.52 | 9.33 ± 1.61 | |||||||
DP25 | 2.52 ± 0.50 | 2.23 ± 0.47 | 9.22 ± 1.81 | |||||||
MP | DP | 2.60 ± 0.56 | 2.36 ± 0.54 | 9.44 ± 2.17 | ||||||
DP50 | 2.49 ± 0.54 | 2.25 ± 0.47 | 8.89 ± 1.56 | |||||||
DP25 | 2.40 ± 0.45 | 2.14 ± 0.41 | 8.78 ± 1.23 | |||||||
WM | 2.40 ± 0.41 a | 2.16 ± 0.36 a | 8.96 ± 1.53 | |||||||
MS | 2.66 ± 0.56 b | 2.38 ± 0.53 b | 9.41 ± 1.73 | |||||||
MP | 2.50 ± 0.52 a | 2.25 ± 0.48 a | 9.04 ± 1.65 | |||||||
DP | 2.65 ± 0.53 b | 2.40 ± 0.51 b | 9.44 ± 1.83 | |||||||
DP50 | 2.49 ± 0.53 a | 2.25 ± 0.47 a | 9.04 ± 1.60 | |||||||
DP25 | 2.40 ± 0.45 a | 2.14 ± 0.41 a | 8.93 ± 1.56 | |||||||
Source of variation | df | F | P | HSD0.05 | F | P | HSD0.05 | F | P | HSD0.05 |
Mycorrhiza | 2 | 20.35 | <0.01 | 0.11 | 17.45 | <0.01 | 0.10 | 2.51 | >0.05 | NS |
Top dressing | 2 | 17.11 | <0.01 | 0.12 | 10.97 | <0.01 | 0.15 | 2.26 | >0.05 | NS |
Interaction | 4 | 0.99 | >0.05 | NS | 1.32 | >0.05 | NS | 0.22 | >0.05 | NS |
Mycorrhiza | Top Dressing | Pericarp Thickness (mm) | Fruit Weight (g) | ||||
---|---|---|---|---|---|---|---|
WM | DP | 6.06 ± 0.58 | 246.5 ± 12.14 | ||||
DP50 | 6.01 ± 0.63 | 241.4 ± 15.62 | |||||
DP25 | 5.79 ± 0.56 | 235.6 ± 18.76 | |||||
MS | DP | 6.55 ± 0.62 | 266.2 ± 17.76 | ||||
DP50 | 6.33 ± 0.65 | 250.7 ± 20.11 | |||||
DP25 | 6.12 ± 0.27 | 241.6 ± 17.63 | |||||
MP | DP | 6.18 ± 0.56 | 250.2 ± 11.27 | ||||
DP50 | 5.88 ± 0.56 | 252.5 ± 12.20 | |||||
DP25 | 6.02 ± 0.49 | 243.4 ± 19.87 | |||||
WM | 5.95 ± 0.61 a | 241.2 ± 16.36 a | |||||
MS | 6.33 ± 0.57 b | 252.8 ± 20.45 b | |||||
MP | 6.03 ± 0.55 ab | 248.7 ± 15.88 ab | |||||
DP | 6.26 ± 0.62 | 254.3 ± 16.43 b | |||||
DP50 | 6.07 ± 0.60 | 248.2 ± 17.41 ab | |||||
DP25 | 5.98 ± 0.49 | 240.2 ± 19.42 a | |||||
Source of variation | df | F | P | HSD0.05 | F | P | HSD0.05 |
Mycorrhiza | 2 | 4.30 | 0.04 | 0.37 | 7.68 | <0.01 | 8.07 |
Top dressing | 2 | 1.67 | >0.05 | NS | 7.36 | <0.01 | 9.84 |
Interaction | 4 | 1.00 | >0.05 | NS | 1.82 | >0.05 | NS |
Mycorrhiza | Top Dressing | SPAD | Plant Height (cm) | Stalk Diameter (mm) | Weight of the Aerial Part (g·plant−1) | Weight of the Root System (g·plant−1) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
WM | DP | 52.7 ± 3.1 b | 71.3 ± 2.4 | 13.4 ± 1.6 | 551 ± 34 | 225 ± 19 | ||||||||||
DP50 | 52.8 ± 4.0 b | 67.0 ± 2.9 | 13.6 ± 1.3 | 520 ± 46 | 247 ± 21 | |||||||||||
DP25 | 49.1 ± 5.9 a | 64.8 ± 2.9 | 14.6 ± 1.1 | 494 ± 51 | 249 ± 21 | |||||||||||
MS | DP | 54.7 ± 3.1 b | 76.5 ± 2.0 | 14.8 ± 1.4 | 617 ± 48 | 243 ± 23 | ||||||||||
DP50 | 51.2 ± 4.4 a | 73.5 ± 3.0 | 15.2 ± 1.5 | 592 ± 34 | 264 ± 21 | |||||||||||
DP25 | 51.1 ± 5.6 a | 69.9 ± 2.2 | 15.9 ± 1.4 | 569 ± 56 | 273 ± 21 | |||||||||||
MP | DP | 52.1 ± 2.7 a | 73.5 ± 2.6 | 13.8 ± 2.1 | 581 ± 48 | 229 ± 10 | ||||||||||
DP50 | 50.3 ± 4.0 a | 69.9 ± 2.4 | 14.6 ± 1.3 | 560 ± 41 | 244 ± 19 | |||||||||||
DP25 | 51.5 ± 3.6 a | 67.5 ± 3.2 | 15.1 ± 1.8 | 522 ± 41 | 250 ± 22 | |||||||||||
WM | 51.6 ± 4.8 | 67.7 ± 3.8 a | 13.9 ± 1.4 a | 521 ± 50 a | 240 ± 23 a | |||||||||||
MS | 52.3 ± 4.8 | 73.3 ± 3.6 c | 15.3 ± 1.5 c | 593 ± 51 c | 260 ± 25 b | |||||||||||
MP | 51.3 ± 3.6 | 70.3 ± 3.7 b | 14.5 ± 1.9 b | 554 ± 50 b | 241 ± 20 a | |||||||||||
DP | 53.2 ± 3.2 | 73.7 ± 3.2 c | 14.0 ± 1.8 a | 583 ± 51 c | 233 ± 20 a | |||||||||||
DP50 | 51.4 ± 4.3 | 70.1 ± 3.9 b | 14.5 ± 1.5 b | 557 ± 50 b | 252 ± 22 b | |||||||||||
DP25 | 50.6 ± 5.2 | 67.4 ± 3.5 a | 15.2 ± 1.6 c | 528 ± 59 a | 257 ± 24 b | |||||||||||
Source of variation | df | F | P | HSD0.05 | F | P | HSD0.05 | F | P | HSD0.05 | F | P | HSD0.05 | F | P | HSD0.05 |
Mycorrhiza | 2 | 1.32 | >0.05 | NS | 47.13 | <0.01 | 1.6 | 43.15 | <0.01 | 0.4 | 96.37 | <0.01 | 14 | 28.43 | <0.01 | 8 |
Top dressing | 2 | 2.74 | >0.05 | NS | 42.56 | <0.01 | 1.8 | 20.23 | <0.01 | 0.5 | 27.17 | <0.01 | 20 | 16.32 | <0.01 | 12 |
Interaction | 4 | 4.26 | <0.01 | 2.7 | 0.85 | >0.05 | NS | 0.93 | >0.05 | NS | 0.72 | >0.05 | NS | 0.78 | >0.05 | NS |
Growth Parameters | Total Yield | Marketable Yield | Number of Marketable Fruits | Fruit Weight | Pericarp Thickness |
---|---|---|---|---|---|
Weight of the aerial part | 0.0406 | 0.0479 | −0.0577 | 0.2900 ** | 0.0718 |
Weight of the root system | 0.6326 ** | 0.6087 ** | 0.5693 ** | 0.2741 * | 0.0284 |
Plant height | −0.1886 | 0.1968 | −0.2299 * | 0.0274 | 0.3110 ** |
Stalk diameter | 0.2857 ** | 0.2750 * | 0.3504 ** | −0.1437 | 0.3863 ** |
SPAD | −0.0870 | −0.0836 | 0.1572 | 0.1155 | 0.0954 |
Mycorrhiza | Top Dressing | P | K | Ca | Mg | Na | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(g·m−2) | ||||||||||||||||
WM | DP | 681 ± 115 b | 4502 ± 832 a | 298 ± 29 b | 266 ± 47 b | 19.0 ± 2.4 a | ||||||||||
DP50 | 501 ± 97 a | 4419 ± 1688 a | 264 ± 46 a | 246 ± 57 a | 17.6 ± 5.0 a | |||||||||||
DP25 | 517 ± 76 a | 4065 ± 982 a | 260 ± 31 a | 231 ± 46 a | 18.6 ± 4.9 a | |||||||||||
MS | DP | 595 ± 99 a | 4769 ± 1289 a | 307 ± 48 ab | 275 ± 54 b | 19.0 ± 3.8 a | ||||||||||
DP50 | 638 ± 179 a | 5652 ± 1824 b | 324 ± 65 b | 282 ± 75 b | 20.6 ± 4.5 a | |||||||||||
DP25 | 570 ± 55 a | 4591 ± 1244 a | 282 ± 21 a | 254 ± 54 a | 19.9 ± 4.4 a | |||||||||||
MP | DP | 563 ± 111 a | 4514 ± 1564 a | 272 ± 41 a | 261 ± 59 b | 15.7 ± 3.6 a | ||||||||||
DP50 | 589 ± 169 a | 4580 ± 1956 a | 300 ± 43 a | 252 ± 58 ab | 22.6 ± 4.9 b | |||||||||||
DP25 | 597 ± 92 a | 4797 ± 1837 a | 271 ± 43 a | 240 ± 42 a | 17.8 ± 4.1 a | |||||||||||
WM | 566 ± 127 | 4329 ± 1240 a | 274 ± 40 a | 248 ± 52 a | 18.4 ± 4.3 | |||||||||||
MS | 601 ± 125 | 5004 ± 1886 b | 304 ± 56 b | 270 ± 67 b | 19.8 ± 4,3 | |||||||||||
MP | 583 ± 129 | 4630 ± 1797 ab | 281 ± 48 a | 251 ± 58 a | 18.7 ± 5.1 | |||||||||||
DP | 613 ± 119 | 4595 ± 1271 | 292 ± 42 | 268 ± 54 b | 17.9 ± 3.7 | |||||||||||
DP50 | 576 ± 163 | 4884 ± 1277 | 296 ± 54 | 260 ± 63 b | 20.3 ± 5.2 | |||||||||||
DP25 | 561 ± 83 | 4484 ± 1434 | 271 ± 34 | 241 ± 49 a | 18.8 ± 4.6 | |||||||||||
Source of variation | df | F | P | HSD0.05 | F | P | HSD0.05 | F | P | HSD0.05 | F | P | HSD0.05 | F | P | HSD0.05 |
Mycorrhiza | 2 | 0.79 | >0.05 | NS | 5.90 | 0.02 | 526 | 7.70 | <0.01 | 22 | 8.64 | <0.01 | 16 | 3.70 | >0.05 | NS |
Top dressing | 2 | 1.09 | >0.05 | NS | 0.88 | >0.05 | NS | 2.20 | >0.05 | NS | 9.73 | <0.01 | 16 | 1.73 | >0.05 | NS |
Interaction | 4 | 8.70 | <0.01 | 87 | 4.21 | 0.01 | 678 | 4.75 | <0.01 | 30 | 4.58 | <0.01 | 13 | 8.45 | <0.01 | 2.8 |
Mycorrhiza | Top Dressing | Fe | Mn | Cu | Zn | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(mg·m−2) | |||||||||||||
WM | DP | 5.75 ± 0.85 b | 2.34 ± 0.48 a | 1.12 ± 0.15 | 6.10 ± 1.47 a | ||||||||
DP50 | 5.00 ± 0.89 ab | 2.03 ± 0.58 a | 1.11 ± 0.26 | 6.30 ± 1.74 a | |||||||||
DP25 | 4.77 ± 0.83 a | 1.91 ± 0.35 a | 1.17 ± 0.39 | 5.95 ± 1.35 a | |||||||||
MS | DP | 5.53 ± 0.86 a | 2.35 ± 0.38 ab | 1.27 ± 0.23 | 7.30 ± 1.07 a | ||||||||
DP50 | 6.29 ± 1.66 b | 2.94 ± 0.34 b | 1.37 ± 0.27 | 8.46 ± 1.99 a | |||||||||
DP25 | 5.60 ± 0.72 a | 2.22 ± 0.30 a | 1.28 ± 0.21 | 8.22 ± 1.16 a | |||||||||
MP | DP | 5.39 ± 1.52 a | 2.39 ± 0.60 a | 1.16 ± 0.16 | 6.59 ± 2.13 a | ||||||||
DP50 | 5.41 ± 1.46 a | 2.33 ± 0.43 a | 1.28 ± 0.29 | 6.87 ± 2.19 a | |||||||||
DP25 | 6.10 ± 0.90 b | 2.33 ± 0.70 a | 1.23 ± 015 | 8.32 ± 2.15 b | |||||||||
WM | 5.17 ± 0.95 a | 2.09 ± 0.55 a | 1.13 ± 0.28 a | 6.12 ± 1.54 a | |||||||||
MS | 5.81 ± 1.25 b | 2.50 ± 0.78 b | 1.31 ± 0.24 b | 7.99 ± 2.01 b | |||||||||
MP | 5.63 ± 1.36 b | 2.35 ± 0.59 b | 1.22 ± 0.22 ab | 7.26 ± 2.18 b | |||||||||
DP | 5.56 ± 1.13 | 2.36 ± 0.49 | 1.18 ± 0.20 | 6.66 ± 1.69 a | |||||||||
DP50 | 5.57 ± 1.41 | 2.43 ± 0.88 | 1.26 ± 0.29 | 7.21 ± 2.20 ab | |||||||||
DP25 | 5.49 ± 0.98 | 2.15 ± 0.52 | 1.23 ± 0.27 | 7.49 ± 1.79 b | |||||||||
Source of variation | df | F | P | HSD0.05 | F | P | HSD0.05 | F | P | HSD0.05 | F | P | HSD0.05 |
Mycorrhiza | 2 | 14.64 | <0.01 | 0.32 | 18.77 | <0.01 | 0.18 | 4.25 | 0.04 | 0.16 | 23.56 | <0.01 | 0.74 |
Top dressing | 2 | 0.07 | >0.05 | NS | 1.31 | >0.05 | NS | 0.73 | >0.05 | NS | 4.30 | 0.04 | 0.77 |
Interaction | 4 | 13.46 | <0.01 | 0.56 | 2.86 | 0.04 | 0.60 | 0.88 | >0.05 | NS | 5.57 | <0.01 | 0.97 |
Growth Parameters | P | K | Ca | Mg | Na |
---|---|---|---|---|---|
Weight of the aerial part | 0.0472 | −0.1509 | 0.0848 | −0.1899 | 0.3722 ** |
Weight of the root system | 0.1366 | 0.3594 ** | 0.1939 | 0.2977 ** | 0.2006 |
Plant height | −0.0777 | −0.1257 | 0.0276 | −0.0299 | −0.2197* |
Stalk diameter | 0.2445 * | 0.4801 ** | 0.4122 ** | 0.5607 ** | −0.1746 |
SPAD | 0.0707 | 0.4801 ** | 0.0962 | 0.0791 | 0.2753 * |
Fe | Mn | Cu | Zn | ||
Weight of the aerial part | 0.1292 | −0.0401 | −0.0580 | 0.0472 | |
Weight of the root system | 0.3651 ** | 0.2107 | −0.2096 | 0.4803 ** | |
Plant height | −0.1303 | 0.0207 | 0.1715 | −0.1002 | |
Stalk diameter | 0.2440 * | 0.3866 ** | 0.3166 ** | 0.3970 ** | |
SPAD | 0.0406 | −0.0716 | 0.0262 | −0.0970 |
Mycorrhiza | Top Dressing | Dry Matter (%) | Protein (g·100 g−1 FM) | Total Sugars (g·100 g−1 FM) | Monosaccharides (g·100 g−1 FM) | L-Ascorbic Acid (mg·100 g−1 FM) | Total Acidity (g·100 g−1św.m) | Polyphenols (mg·100 g−1 FM) | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
WM | DP | 6.61 ± 0.29 ab | 1.12 ± 0.11 b | 3.47 ± 0.24 | 2.41 ± 0.05 | 122.07 ± 4.98 | 0.34 ± 0.01 | 50.99 ± 8.86 b | ||||||||||||||
DP50 | 6.94 ± 0.59 b | 1.02 ± 0.10 a | 3.43 ± 0.25 | 2.42 ± 0.07 | 119.90 ± 4.29 | 0.33 ± 0.02 | 49.90 ± 9.59 ab | |||||||||||||||
DP25 | 6.50 ± 0.47 a | 1.08 ± 0.13 ab | 3.44 ± 0.24 | 2.41 ± 0.05 | 126.46 ± 7.72 | 0.35 ± 0.01 | 43.77 ± 8.57 a | |||||||||||||||
MS | DP | 6.67 ± 0.54 ab | 1.09 ± 0.10 a | 3.46 ± 0.26 | 2.41 ± 0.04 | 123.70 ± 7.83 | 0.34 ± 0.01 | 47.37 ± 4.18 a | ||||||||||||||
DP50 | 6.94 ± 0.53 b | 1.12 ± 0.12 a | 3.45 ± 0.20 | 2.40 ± 0.05 | 123.38 ± 4.63 | 0.34 ± 0.02 | 48.50 ± 7.59 a | |||||||||||||||
DP25 | 6.57 ± 0.27 a | 1.11 ± 0.04 a | 3.33 ± 0.30 | 2.39 ± 0.07 | 121.20 ± 5.56 | 0.34 ± 0.02 | 46.75 ± 6.90 a | |||||||||||||||
MP | DP | 6.38 ± 0.33 a | 1.05 ± 0.13 a | 3.54 ± 0.20 | 2.41 ± 0.04 | 125.44 ± 6.52 | 0.35 ± 0.02 | 44.10 ± 9.50 a | ||||||||||||||
DP50 | 6.86 ± 0.48 b | 1.13 ± 0.11 a | 3.51 ± 0.21 | 2.42 ± 0.05 | 119.27 ± 8.18 | 0.33 ± 0.02 | 50.51 ± 8.26 a | |||||||||||||||
DP25 | 6.86 ± 0.31 b | 1.13 ± 0.09 a | 3.52 ± 0.21 | 2.48 ± 0.11 | 120.12 ± 8.05 | 0.34 ± 0.03 | 49.72 ± 9.63 a | |||||||||||||||
WM | 6.68 ± 0.50 | 1.07 ± 0.12 | 3.44 ± 0.25 ab | 2.41 ± 0.07 | 123 ± 6.46 | 0.34 ± 0.02 | 48.2 ± 11.74 | |||||||||||||||
MS | 6.73 ± 0.49 | 1.10 ± 0.10 | 3.42 ± 0.26 a | 2.40 ± 0.06 | 123 ± 6.26 | 0.34 ± 0.02 | 47.5 ± 6.44 | |||||||||||||||
MP | 6.70 ± 0.44 | 1.10 ± 0.12 | 3.52 ± 0.21 b | 2.44 ± 0.08 | 122 ± 7.78 | 0.34 ± 0.03 | 48.1 ± 9.59 | |||||||||||||||
DP | 6.55 ± 0.42 | 1.08 ± 0.12 | 3.50 ± 0.24 | 2.41 ± 0.06 | 124 ± 6.69 | 0.34 ± 0.02 | 47.5 ± 8.36 | |||||||||||||||
DP50 | 6.91 ± 0.54 | 1.09 ± 0.12 | 3.46 ± 0.22 | 2.41 ± 0.06 | 121 ± 6.68 | 0.33 ± 0.02 | 49.6 ± 10.07 | |||||||||||||||
DP25 | 6.65 ± 0.39 | 1.11 ± 0.10 | 3.43 ± 0.27 | 2.43 ± 0.09 | 123 ± 8.07 | 0.34 ± 0.02 | 46.8 ± 8.78 | |||||||||||||||
Source of variation | df | F | P | HSD0.05 | F | P | HSD0.05 | F | P | HSD0.05 | F | P | HSD0.05 | F | P | HSD0.05 | F | P | HSD0.05 | F | P | HSD0.05 |
Mycorrhiza | 2 | 0.14 | >0.05 | NS | 0.51 | >0.05 | NS | 6.61 | 0.01 | 0.09 | 1.60 | >0.05 | NS | 0.36 | >0.05 | NS | 0.22 | >0.05 | NS | 0.07 | >0.05 | NS |
Top dressing | 2 | 3.71 | >0.05 | NS | 0.39 | >0.05 | NS | 0.37 | >0.05 | NS | 0.33 | >0.05 | NS | 1.60 | >0.05 | NS | 1.39 | >0.05 | NS | 0.76 | >0.05 | NS |
Interaction | 4 | 3.34 | 0.03 | 0.36 | 2.88 | 0.04 | 0.11 | 2.12 | >0.05 | NS | 1.04 | >0.05 | NS | 2.41 | >0.05 | NS | 1.74 | >0.05 | NS | 3.59 | 0.02 | 6.52 |
Growth Parameters | Dry Matter | Protein | Total Sugars | Monosacchar. | L-Ascorbic Acid | Total Acidity | Polyphenols |
---|---|---|---|---|---|---|---|
Weight of the aerial part | 0.2563 * | −0.0703 | 0.1123 | −0.2006 | 0.0724 | −0.2000 | 0.3705 ** |
Weight of the root system | 0.2807 * | 0.0500 | 0.0940 | −0.1355 | −0.2450* | 0.1635 | 0.0974 |
Plant height | −0.1358 | −0.0634 | 0.2034 | −0.0126 | 0.1940 | −0.0026 | −0.1503 |
Stalk diameter | 0.3458 ** | 0.4036 ** | 0.1183 | 0.2067 | −0.0955 | 0.3663 ** | 0.4400 ** |
SPAD | 0.1815 | −0.1096 | 0.2048 | 0.1182 | 0.1792 | 0.1318 | 0.3273 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Franczuk, J.; Tartanus, M.; Rosa, R.; Zaniewicz-Bajkowska, A.; Dębski, H.; Andrejiová, A.; Dydiv, A. The Effect of Mycorrhiza Fungi and Various Mineral Fertilizer Levels on the Growth, Yield, and Nutritional Value of Sweet Pepper (Capsicum annuum L.). Agriculture 2023, 13, 857. https://doi.org/10.3390/agriculture13040857
Franczuk J, Tartanus M, Rosa R, Zaniewicz-Bajkowska A, Dębski H, Andrejiová A, Dydiv A. The Effect of Mycorrhiza Fungi and Various Mineral Fertilizer Levels on the Growth, Yield, and Nutritional Value of Sweet Pepper (Capsicum annuum L.). Agriculture. 2023; 13(4):857. https://doi.org/10.3390/agriculture13040857
Chicago/Turabian StyleFranczuk, Jolanta, Michał Tartanus, Robert Rosa, Anna Zaniewicz-Bajkowska, Henryk Dębski, Alena Andrejiová, and Andrii Dydiv. 2023. "The Effect of Mycorrhiza Fungi and Various Mineral Fertilizer Levels on the Growth, Yield, and Nutritional Value of Sweet Pepper (Capsicum annuum L.)" Agriculture 13, no. 4: 857. https://doi.org/10.3390/agriculture13040857
APA StyleFranczuk, J., Tartanus, M., Rosa, R., Zaniewicz-Bajkowska, A., Dębski, H., Andrejiová, A., & Dydiv, A. (2023). The Effect of Mycorrhiza Fungi and Various Mineral Fertilizer Levels on the Growth, Yield, and Nutritional Value of Sweet Pepper (Capsicum annuum L.). Agriculture, 13(4), 857. https://doi.org/10.3390/agriculture13040857