Effects of Five–Year Inorganic and Organic Fertilization on Soil Phosphorus Availability and Phosphorus Resupply for Plant P Uptake during Maize Growth
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description and Fertilizer Treatments
2.2. Soil and Plant Sample Collection
2.3. Sample Analysis
2.4. Extraction of the Chemical Fractions of Inorganic P in Soils
2.5. DGT Deployment, Theory Calculation and DIFS Model
2.6. Statistical Analyses
3. Results
3.1. Maize Plant P and Soil Labile P during the fifth Maize Season after Five–Year Fertilization
3.2. Changes in Soil P Fractions during the Fifth Maize Season after Five–Year Fertilization
3.3. Relationships among the Soil Properties, P Fractions and Olsen–P
3.4. Soil P Resupply Capacity during the Fifth Maize Season after Five–Year Fertilization
3.5. PLS–PM among the Soil Properties, P Supply Pools, P Resupply and Plant P Uptake
4. Discussion
4.1. The Soil P Fractions and P Availability to Plants after Fertilization
4.2. The Dynamic P Resupply to Plants after Fertilization
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Cordell, D.; Drangert, J.O.; White, S. The story of phosphorus: Global food security and food for thought. Glob. Environ. Chang. 2009, 19, 292–305. [Google Scholar] [CrossRef]
- Jin, Z.W.; Chen, C.; Chen, X.M.; Jiang, F.; Hopkins, I.; Zhang, X.L.; Han, Z.Q.; Billy, G.; Benavides, J. Soil acidity, available phosphorus content, and optimal biochar and nitrogen fertilizer application rates: A five–year field trial in upland red soil, china. Field Crop. Res. 2019, 232, 77–87. [Google Scholar] [CrossRef]
- Wang, Y.Z.; Chen, X.; Whalen, J.K.; Cao, Y.H.; Quan, Z.; Lu, C.Y.; Shi, Y. Kinetics of inorganic and organic phosphorus release influenced by low molecular weight organic acids in calcareous, neutral and acidic soils. J. Plant Nutr. Soil Sci. 2015, 178, 555–566. [Google Scholar] [CrossRef]
- Zhao, F.Y.; Zhang, Y.Y.; Dijkstra, F.A.; Li, Z.J.; Zhang, Y.Q.; Zhang, T.S.; Lu, Y.Q.; Shi, J.W.; Yang, L.J. Effects of amendments on phosphorous status in soils with different phosphorous levels. Catena 2019, 172, 97–103. [Google Scholar] [CrossRef]
- Mackay, J.E.; Macdonald, L.M.; Smernik, R.J.; Cavagnaro, T.R. Organic amendments as phosphorus fertilisers: Chemical analyses, biological processes and plant p uptake. Soil. Biol. Biochem. 2017, 107, 50–59. [Google Scholar] [CrossRef]
- Abdala, D.B.; da Silva, I.R.; Vergutz, L.; Sparks, D.L. Long–term manure application effects on phosphorus speciation, kinetics and distribution in highly weathered agricultural soils. Chemosphere 2015, 119, 504–514. [Google Scholar] [CrossRef]
- Pradhan, S.N.; Ghosh, A.K.; Seema; Ram, S.; Pal, Y.; Pradhan, C. Changes in degree of phosphorus saturation and risk of p loss upon twelve years of manuring and reduced tillage. Geoderma 2021, 404, 115277. [Google Scholar] [CrossRef]
- Six, L.; Smolders, E.; Merckx, R. The performance of dgt versus conventional soil phosphorus tests in tropical soils—Maize and rice responses to p application. Plant Soil 2012, 366, 49–66. [Google Scholar] [CrossRef]
- Nawara, S.; Van Dael, T.; Merckx, R.; Amery, F.; Elsen, A.; Odeurs, W.; Vandendriessche, H.; Mcgrath, S.; Roisin, C.; Jouany, C.; et al. A comparison of soil tests for available phosphorus in long–term field experiments in europe. Eur. J. Soil Sci. 2017, 68, 873–885. [Google Scholar] [CrossRef] [Green Version]
- Crews, T.E. The supply of phosphorus from native, inorganic phosphorus pools in continuously cultivated mexican agroecosystems. Agric. Ecosyst. Environ. 1996, 57, 197–208. [Google Scholar] [CrossRef]
- Nobile, C.M.; Bravin, M.N.; Becquer, T.; Paillat, J.M. Phosphorus sorption and availability in an andosol after a decade of organic or mineral fertilizer applications: Importance of ph and organic carbon modifications in soil as compared to phosphorus accumulation. Chemosphere 2020, 239, 124709. [Google Scholar] [CrossRef]
- Zhang, Y.; Gao, W.; Luan, H.; Tang, J.; Li, R.; Li, M.; Zhang, H.; Huang, S. Long–term organic substitution management affects soil phosphorus speciation and reduces leaching in greenhouse vegetable production. J. Clean. Prod. 2021, 327, 129464. [Google Scholar] [CrossRef]
- Wei, L.; Chen, S.; Cui, J.; Ping, H.; Yuan, C.; Chen, Q. A meta–analysis of arable soil phosphorus pools response to manure application as influenced by manure types, soil properties, and climate. J. Environ. Manag. 2022, 313, 115006. [Google Scholar] [CrossRef]
- Iqbal, S.M. Effect of Crop Residue Qualities on Decomposition Rates, Soil Phosphorus Dynamics and Plant Phosphorus Uptake; The University of Adelaide: Adelaide, Australia, 2009. [Google Scholar]
- Jalali, M.; Ranjbar, F. Rates of decomposition and phosphorus release from organic residues related to residue composition. J. Plant Nutr. Soil Sci. 2009, 172, 353–359. [Google Scholar] [CrossRef]
- Alamgir, M.; McNeill, A.; Tang, C.X.; Marschner, P. Changes in soil p pools during legume residue decomposition. Soil. Biol. Biochem. 2012, 49, 70–77. [Google Scholar] [CrossRef]
- Garg, S.; Bahl, G.S. Phosphorus availability to maize as influenced by organic manures and fertilizer p associated phosphatase activity in soils. Bioresour. Technol. 2008, 99, 5773–5777. [Google Scholar] [CrossRef]
- Noack, S.R.; McBeath, T.M.; McLaughlin, M.J.; Smernik, R.J.; Armstrong, R.D. Management of crop residues affects the transfer of phosphorus to plant and soil pools: Results from a dual–labelling experiment. Soil. Biol. Biochem. 2014, 71, 31–39. [Google Scholar] [CrossRef]
- Moody, P.W.; Aitken, R.L.; Compton, B.L.; Hunt, S. Soil phosphorus parameters affecting phosphorus availability to, and fertilizer requirements of, maize (zea mays). Soil Res. 1988, 26, 611–622. [Google Scholar] [CrossRef]
- Ehlert, P.; Morel, C.; Fotyma, M.; Destain, J.P. Potential role of phosphate buffering capacity of soils in fertilizer management strategies fitted to environmental goals. J. Plant Nutr. Soil Sci. 2003, 166, 409–415. [Google Scholar] [CrossRef]
- Blume, H.–P.; Brümmer, G.W.; Horn, R.; Kandeler, E.; Kögel–Knabner, I.; Kretzschmar, R.; Stahr, K.; Wilke, B.–M. Scheffer/Schachtschabel: Lehrbuch der Bodenkunde, 3rd ed.; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Weihrauch, C.; Opp, C. Ecologically relevant phosphorus pools in soils and their dynamics: The story so far. Geoderma 2018, 325, 183–194. [Google Scholar] [CrossRef]
- Van Rotterdam, A.M.D.; Bussink, D.W.; Temminghoff, E.J.M.; Van Riemsdijk, W.H. Predicting the potential of soils to supply phosphorus by integrating soil chemical processes and standard soil tests. Geoderma 2012, 189–190, 617–626. [Google Scholar] [CrossRef]
- Delgado, A.; del Campillo, M.D.; Torrent, J. Limitations of the olsen method to assess plant–available phosphorus in reclaimed marsh soils. Soil Use Manag. 2010, 26, 133–140. [Google Scholar] [CrossRef]
- Zhang, C.; Ding, S.; Xu, D.; Tang, Y.; Wong, M.H. Bioavailability assessment of phosphorus and metals in soils and sediments: A review of diffusive gradients in thin films (dgt). Environ. Monit. Assess. 2014, 186, 7367–7378. [Google Scholar] [CrossRef] [PubMed]
- Davison, W.; Zhang, H. Progress in understanding the use of diffusive gradients in thin films (dgt)—Back to basics. Environ. Chem. 2012, 9, 1–13. [Google Scholar] [CrossRef]
- Harper, M.P.; Davison, W.; Tych, W. Difs—A modelling and simulation tool for dgt induced trace metal remobilisation in sediments and soils. Environ. Model. Softw. 2000, 15, 55–66. [Google Scholar] [CrossRef]
- Menezes–Blackburn, D.; Zhang, H.; Stutter, M.; Giles, C.D.; Darch, T.; George, T.S.; Shand, C.; Lumsdon, D.; Blackwell, M.; Wearing, C.; et al. A holistic approach to understanding the desorption of phosphorus in soils. Environ. Sci. Technol. 2016, 50, 3371–3381. [Google Scholar] [CrossRef] [Green Version]
- Kalkhajeh, Y.K.; Sorensen, H.; Huang, B.; Guan, D.X.; Luo, J.; Hu, W.; Holm, P.E.; Hansen, H.C.B. Dgt technique to assess p mobilization from greenhouse vegetable soils in china: A novel approach. Sci. Total Environ. 2018, 630, 331–339. [Google Scholar] [CrossRef]
- FAO/IUSS. World Reference Base for Soil Resources; FAO: Rome, Italy, 2015. [Google Scholar]
- Komy, Z.R. Comparative–study of titrimetric and gravimetric methods for the determination of organic–carbon in soils. Int. J. Environ. Anal. Chem. 1995, 60, 41–47. [Google Scholar] [CrossRef]
- Minasny, B.; McBratney, A.B.; Wadoux, A.M.J.C.; Akoeb, E.N.; Sabrina, T. Precocious 19th century soil carbon science. Geoderma Reg. 2020, 22, e00306. [Google Scholar] [CrossRef]
- Guibal, R.; Buzier, R.; Lissalde, S.; Guibaud, G. Adaptation of diffusive gradients in thin films technique to sample organic pollutants in the environment: An overview of o–dgt passive samplers. Sci. Total Environ. 2019, 693, 133537. [Google Scholar] [CrossRef]
- Romanya, J.; Blanco–Moreno, J.M.; Sans, F.X. Phosphorus mobilization in low–p arable soils may involve soil organic c depletion. Soil Biol. Biochem. 2017, 113, 250–259. [Google Scholar] [CrossRef]
- Olsen, S.R. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate. 1954. Available online: https://agris.fao.org/agris−search/search.do?recordID=US201300436954 (accessed on 10 May 2020).
- Wolf, B. A comprehensive system of leaf analyses and its use for diagnosing crop nutrient status. Commun. Soil Sci. Plant Anal. 2008, 13, 1035–1059. [Google Scholar] [CrossRef]
- Murphy, J.; Riley, J.P. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 1962, 27, 31–36. [Google Scholar] [CrossRef]
- Saiya–Cork, K.R.; Sinsabaugh, R.L.; Zak, D.R. The effects of long term nitrogen deposition on extracellular enzyme activity in an acer saccharum forest soil. Soil Biol. Biochem. 2002, 34, 1309–1315. [Google Scholar] [CrossRef]
- Jiang, B.; Gu, Y. A suggested fractionation scheme of inorganic phosphorus in calcareous soils. Fertil. Res. 1989, 20, 159–165. [Google Scholar] [CrossRef]
- Ding, S.; Xu, D.; Sun, Q.; Yin, H.; Zhang, C. Measurement of dissolved reactive phosphorus using the diffusive gradients in thin films technique with a high–capacity binding phase. Environ. Sci. Technol. 2010, 44, 8169–8174. [Google Scholar] [CrossRef]
- Van Veldhoven, P.P.; Mannaerts, G.P. Inorganic and organic phosphate measurements in the nanomolar range. Anal. Biochem. 1987, 161, 45–48. [Google Scholar] [CrossRef]
- Zhang, H.; Davison, W. Use of diffusive gradients in thin–films for studies of chemical speciation and bioavailability. Environ. Chem. 2015, 12, 85–101. [Google Scholar] [CrossRef]
- Sochaczewski, L.; Tych, W.; Davison, B.; Zhang, H. 2d dgt induced fluxes in sediments and soils (2d difs). Environ. Model. Softw. 2007, 22, 14–23. [Google Scholar] [CrossRef]
- Urrutia, O.; Guardado, I.; Erro, J.; Mandado, M.; Garcia–Mina, J.M. Theoretical chemical characterization of phosphate–metal–humic complexes and relationships with their effects on both phosphorus soil fixation and phosphorus availability for plants. J. Sci. Food Agric. 2013, 93, 293–303. [Google Scholar] [CrossRef]
- Guan, X.K.; Wei, L.; Turner, N.C.; Ma, S.C.; Yang, M.D.; Wang, T.C. Improved straw management practices promote in situ straw decomposition and nutrient release, and increase crop production. J. Clean. Prod. 2020, 250, 119514. [Google Scholar] [CrossRef]
- Huang, T.T.; Yang, N.; Lu, C.; Qin, X.L.; Siddique, K.H.M. Soil organic carbon, total nitrogen, available nutrients, and yield under different straw returning methods. Soil Tillage Res. 2021, 214, 105171. [Google Scholar] [CrossRef]
- Keller, M.; Oberson, A.; Annaheim, K.E.; Tamburini, F.; Mäder, P.; Mayer, J.; Frossard, E.; Bünemann, E.K. Phosphorus forms and enzymatic hydrolyzability of organic phosphorus in soils after 30 years of organic and conventional farming. J. Plant Nutr. Soil Sci. 2012, 175, 385–393. [Google Scholar] [CrossRef]
- Guppy, C.N.; Menzies, N.W.; Moody, P.W.; Blamey, F.P.C. Competitive sorption reactions between phosphorus and organic matter in soil: A review. Aust. J. Soil Res. 2005, 43, 189–202. [Google Scholar] [CrossRef]
- Li, J.; Xie, T.; Zhu, H.; Zhou, J.; Li, C.; Xiong, W.; Xu, L.; Wu, Y.; He, Z.; Li, X. Alkaline phosphatase activity mediates soil organic phosphorus mineralization in a subalpine forest ecosystem. Geoderma 2021, 404, 115376. [Google Scholar] [CrossRef]
- Kwabiah, A.B.; Stoskopf, N.C.; Palm, C.A.; Voroney, R.P.; Rao, M.R.; Gacheru, E. Phosphorus availability and maize response to organic and inorganic fertilizer inputs in a short term study in western kenya. Agric. Ecosyst. Environ. 2003, 95, 49–59. [Google Scholar] [CrossRef]
- Annaheim, K.E.; Doolette, A.L.; Smernik, R.J.; Mayer, J.; Oberson, A.; Frossard, E.; Bünemann, E.K. Long–term addition of organic fertilizers has little effect on soil organic phosphorus as characterized by 31p nmr spectroscopy and enzyme additions. Geoderma 2015, 257–258, 67–77. [Google Scholar] [CrossRef]
- Ahlgren, J.; Djodjic, F.; Börjesson, G.; Mattsson, L. Identification and quantification of organic phosphorus forms in soils from fertility experiments. Soil Use Manag. 2013, 29, 24–35. [Google Scholar] [CrossRef]
- Guo, F.; Yost, R.S.; Hue, N.V.; Evensen, C.I.; Silva, J.A. Changes in phosphorus fractions in soils under intensive plant growth. Soil Sci. Soc. Am. J. 2000, 64, 1681–1689. [Google Scholar] [CrossRef]
- Chen, X.; Yan, X.; Wang, M.; Cai, Y.; Weng, X.; Su, D.; Guo, J.; Wang, W.; Hou, Y.; Ye, D.; et al. Long–term excessive phosphorus fertilization alters soil phosphorus fractions in the acidic soil of pomelo orchards. Soil Tillage Res. 2022, 215, 105214. [Google Scholar] [CrossRef]
- Sun, B.; Gao, Y.; Wu, X.; Ma, H.; Zheng, C.; Wang, X.; Zhang, H.; Li, Z.; Yang, H. The relative contributions of ph, organic anions, and phosphatase to rhizosphere soil phosphorus mobilization and crop phosphorus uptake in maize/alfalfa polyculture. Plant Soil 2019, 447, 117–133. [Google Scholar] [CrossRef]
- Li, H.; Liu, J.; Li, G.; Shen, J.; Bergstrom, L.; Zhang, F. Past, present, and future use of phosphorus in chinese agriculture and its influence on phosphorus losses. Ambio 2015, 44 (Suppl. 2), S274–S285. [Google Scholar] [CrossRef] [Green Version]
- Pizzeghello, D.; Berti, A.; Nardi, S.; Morari, F. Relationship between soil test phosphorus and phosphorus release to solution in three soils after long–term mineral and manure application. Agric. Ecosyst. Environ. 2016, 233, 214–223. [Google Scholar] [CrossRef]
- Xu, Q.; Gao, L.; Peng, W.; Gao, B.; Xu, D.; Sun, K. Assessment of labile zn in reservoir riparian soils using dgt, difs, and sequential extraction. Ecotoxicol. Environ. Saf. 2018, 160, 184–190. [Google Scholar] [CrossRef]
- Hong, C.; Su, Y.; Lu, S. Phosphorus availability changes in acidic soils amended with biochar, fly ash, and lime determined by diffusive gradients in thin films (dgt) technique. Environ. Sci. Pollut. Res. 2018, 25, 30547–30556. [Google Scholar] [CrossRef]
- Heidari, S.; Reyhanitabar, A.; Oustan, S. Kinetics of phosphorus desorption from calcareous soils using dgt technique. Geoderma 2017, 305, 275–280. [Google Scholar] [CrossRef]
- Ernstberger, H.; Davison, W.; Zhang, H.; Tye, A.; Young, S. Measurement and dynamic modeling of trace metal mobilization in soils using dgt and difs. Environ. Sci. Technol. 2002, 36, 349–354. [Google Scholar] [CrossRef]
- Almås, Å.R.; Sævarsson, H.T.; Krogstad, T. The partitioning of p in soil determines the fluxes and deliveries of labile p in soil solution. Geoderma 2017, 306, 135–143. [Google Scholar] [CrossRef]
- Thomas, R.L.; Sheard, R.W.; Moyer, J.R. Comparison of conventional and automated procedures for nitrogen, phosphorus, and potassium analysis of plant mate-rial using a single digestion. Agron. J. 1967, 59, 240–243. [Google Scholar] [CrossRef]
- Lu, R.K. Analysis Method of Soil Agricultural Chemistry; China Agricultural Science and Technology: Beijing, China, 2000. [Google Scholar]
Property | Initial Soil | Bone Meal Fertilizer | Rape Straw | Bioorganic Fertilizer |
---|---|---|---|---|
pH | 5.46 | 7.96 | –□ | 7.47 |
Total C (g·kg−1) | 5.68 | 262 | 525 | 270 |
Total N (g·kg−1) | 1.11 | 23.70 | 10.00 | 15.20 |
Total P (g·kg−1) | 0.22 | 10.85 | 1.34 | 7.14 |
Total K (g·kg−1) | 14.60 | 24.00 | 13.90 | 61.80 |
Total Fe (g·kg−1) | – | 13.66 | 0.10 | 15.22 |
Total Al (g·kg−1) | – | 20.21 | 0.11 | 28.84 |
Total Ca (g·kg−1) | – | 73.76 | 0.83 | 60.56 |
Total Mg (g·kg−1) | – | 18.29 | 0.77 | 15.78 |
Available N (mg·kg−1) | 72.10 | – | – | – |
Available P (mg·kg−1) | 3.84 | – | – | – |
Available K (mg·kg−1) | 246.70 | – | – | – |
P Fractions | Chemical Extractants |
---|---|
1. Ca2–P | 50 mL 0.25 M NaHCO3, pH 7.5 |
2. Ca8–P | 50 mL 0.5 M CH3COONH4, pH 4.2 |
3. Al–P | 50 mL 0.5 M NH4F, pH 4.2 |
4. Fe–P | 50 mL 0.1 M NaOH |
5. O–P | 40 mL 0.3 M Na3C6H5O7 + 1 g Na2S2O4 + 10 mL NaOH |
6. Ca10–P | 50 mL 0.25 M H2SO4 |
Soil Labile P | Plant P | |||
---|---|---|---|---|
Seeding Stage | Flare–Opening Stage | |||
Content | Accumulation | Content | Accumulation | |
Olsen–P | 0.713 ** | 0.195 | 0.468 | 0.503 |
CDGT–P | 0.960 ** | 0.666 * | 0.881 ** | 0.923 ** |
Stages | Treatment | Ca2–P | Ca8–P | Al–P | Fe–P | OP |
---|---|---|---|---|---|---|
Seeding stage | CK | 2.40 ± 0.29 Ad | 0.42 ± 0.04 Ac | 9.02 ± 0.19 Ad | 71.66 ± 6.28 Ab | 81.81 ± 7.20 Ac |
NPK | 15.19 ± 1.94 Ac | 3.26 ± 0.23 Ab | 42.38 ± 3.64 Ac | 167.36 ± 11.10 Aa | 74.46 ± 4.83 Cc | |
NPKC | 20.41 ± 2.88 Ab | 6.43 ± 1.09 Aa | 52.17 ± 6.51 Ab | 184.8 ± 9.49 Aa | 142.53 ± 9.79 Aa | |
NPKS | 16.77 ± 1.12 Ac | 4.12 ± 0.18 Ab | 42.97 ± 4.46 Ac | 161.16 ± 16.57 Aa | 102.59 ± 5.99 Ab | |
NPKM | 25.10 ± 0.65 Aa | 6.69 ± 1.00 Ba | 71.69 ± 2.87 Aa | 180.35 ± 7.76 Aa | 127.51 ± 4.39 Aa | |
Flare–opening | CK | 1.18 ± 0.19 Ac | 0.60 ± 0.09 Ad | 7.80 ± 0.63 Ac | 66.81 ± 6.51 Bc | 78.3 ± 1.46 Ad |
stage | NPK | 2.80 ± 0.12 Bc | 2.21 ± 0.11 Bc | 18.77 ± 0.63 Bb | 117.11 ± 9.21 Bb | 92.04 ± 2.54 Bcd |
NPKC | 6.29 ± 0.50 Bb | 7.28 ± 0.21 Ab | 39.17 ± 2.20 Ba | 163.71 ± 9.07 Ba | 115.69 ± 4.92 Bb | |
NPKS | 1.93 ± 0.27 Bc | 1.25 ± 0.17 Bcd | 14.16 ± 0.93 Bb | 105.27 ± 1.60 Bb | 96.51 ± 7.20 Ac | |
NPKM | 9.46 ± 1.22 Ba | 9.46 ± 1.18 Aa | 40.92 ± 3.25 Ba | 177.77 ± 15.13 Aa | 134.22 ± 9.15 Aa | |
Mature stage | CK | 0.35 ± 0.05 Ab | 0.01 ± 0.01 Ab | 5.59 ± 0.57 Ab | 63.88 ± 2.20 Bc | 85.65 ± 2.41 Ab |
NPK | 2.14 ± 0.23 Ba | 1.13 ± 0.06 Ca | 13.78 ± 1.48 Ba | 86.99 ± 3.88 Ca | 110.89 ± 6.24 Aa | |
NPKC | 3.47 ± 0.32 Ca | 1.2 ± 0.34 Ba | 17.51 ± 0.10 Ca | 101.12 ± 6.90 Ca | 105.46 ± 10.01 Ba | |
NPKS | 2.47 ± 0.28 Ba | 1.02 ± 0.11 Ba | 18.29 ± 1.89 Ba | 99.30 ± 1.42 Ba | 113.77 ± 5.78 Aa | |
NPKM | 3.17 ± 0.43 Ca | 0.91 ± 0.04 Ca | 15.32 ± 2.52 Ca | 95.24 ± 7.17 Ba | 105.78 ± 4.43 Ba |
Stage | Treatment | R | Kd | Tc | k1 | k−1 | Rdiff | CE | CE/Csoln |
---|---|---|---|---|---|---|---|---|---|
– | – | – | cm3·g−1 | s | s−1 | s−1 | – | μg·L−1 | – |
Seeding stage | CK | 0.19 | 380 | 4418 | 2.26 × 10−4 | 2.70 × 10−7 | 3.86 × 10−2 | 53.98 | 5.01 |
NPK | 0.31 | 1080 | 1214 | 8.23 × 10−4 | 3.59 × 10−7 | 3.94 × 10−2 | 99.95 | 7.98 | |
NPKC | 0.47 | 1060 | 312 | 3.20 × 10−3 | 1.46 × 10−6 | 4.01 × 10−2 | 198.12 | 11.62 | |
NPKS | 0.47 | 970 | 290 | 3.45 × 10−3 | 1.70 × 10−6 | 3.97 × 10−2 | 145.72 | 11.85 | |
NPKM | 0.61 | 1000 | 61 | 1.64 × 10−2 | 8.01 × 10−6 | 3.97 × 10−2 | 285.56 | 15.24 | |
Flare–opening | CK | 0.11 | 390 | 17,770 | 0.56 × 10−4 | 6.59 × 10−8 | 3.86 × 10−2 | 27.59 | 2.88 |
stage | NPK | 0.15 | 591 | 9403 | 1.06 × 10−4 | 8.50 × 10−8 | 3.94 × 10−2 | 45.43 | 3.81 |
NPKC | 0.25 | 874 | 2512 | 3.51 × 10−4 | 2.00 × 10−7 | 4.01 × 10−2 | 95.95 | 6.31 | |
NPKS | 0.22 | 407 | 3473 | 3.98 × 10−4 | 2.21 × 10−7 | 3.96 × 10−2 | 75.32 | 5.51 | |
NPKM | 0.33 | 431 | 1049 | 9.52 × 10−4 | 1.08 × 10−6 | 3.97 × 10−2 | 219.15 | 8.28 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Wen, J.; Zhang, T.; Zhang, Y.; Peng, Z.; Tang, C.; Wang, Y.; Su, S.; Zhang, N.; Zeng, X. Effects of Five–Year Inorganic and Organic Fertilization on Soil Phosphorus Availability and Phosphorus Resupply for Plant P Uptake during Maize Growth. Agriculture 2023, 13, 858. https://doi.org/10.3390/agriculture13040858
Zhang J, Wen J, Zhang T, Zhang Y, Peng Z, Tang C, Wang Y, Su S, Zhang N, Zeng X. Effects of Five–Year Inorganic and Organic Fertilization on Soil Phosphorus Availability and Phosphorus Resupply for Plant P Uptake during Maize Growth. Agriculture. 2023; 13(4):858. https://doi.org/10.3390/agriculture13040858
Chicago/Turabian StyleZhang, Jingjing, Jiong Wen, Tuo Zhang, Yang Zhang, Zhi Peng, Chunchun Tang, Yanan Wang, Shiming Su, Nan Zhang, and Xibai Zeng. 2023. "Effects of Five–Year Inorganic and Organic Fertilization on Soil Phosphorus Availability and Phosphorus Resupply for Plant P Uptake during Maize Growth" Agriculture 13, no. 4: 858. https://doi.org/10.3390/agriculture13040858
APA StyleZhang, J., Wen, J., Zhang, T., Zhang, Y., Peng, Z., Tang, C., Wang, Y., Su, S., Zhang, N., & Zeng, X. (2023). Effects of Five–Year Inorganic and Organic Fertilization on Soil Phosphorus Availability and Phosphorus Resupply for Plant P Uptake during Maize Growth. Agriculture, 13(4), 858. https://doi.org/10.3390/agriculture13040858