Application of a Quality-Specific Environmental Risk Index for the Location of Hives in Areas with Different Pollution Impacts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Quality Level of Surface Water Bodies
2.2. Quality Level of Land Use
2.3. Level of Air Pollution
2.4. Potential Hazard Level of Soil
2.5. Statistical Verification of Consistency
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, Y.; Sun, K.; Li, L.; Lei, Y.; Wu, S.; Jiang, Y.; Mi, Y. The Impacts of Economic Level and Air Pollution on Public Health at the Micro and Macro Level. J. Clean. Prod. 2022, 366, 132932. [Google Scholar] [CrossRef]
- Wang, X.; Wang, L.; Zhang, Q.; Liang, T.; Li, J.; Bruun Hansen, H.C.; Shaheen, S.M.; Antoniadis, V.; Bolan, N.; Rinklebe, J. Integrated Assessment of the Impact of Land Use Types on Soil Pollution by Potentially Toxic Elements and the Associated Ecological and Human Health Risk. Environ. Pollut. 2022, 299, 118911. [Google Scholar] [CrossRef] [PubMed]
- Kilburn, K.H. Effects of Diesel Exhaust on Neurobehavioral and Pulmonary Functions. Arch. Environ. Health 2000, 55, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Babadjouni, R.M.; Hodis, D.M.; Radwanski, R.; Durazo, R.; Patel, A.; Liu, Q.; Mack, W.J. Clinical Effects of Air Pollution on the Central Nervous System; a Review. J. Clin. Neurosci. 2017, 43, 16–24. [Google Scholar] [CrossRef] [PubMed]
- Delgado, R.C.; de Santana, R.O.; Gelsleichter, Y.A.; Pereira, M.G. Degradation of South American Biomes: What to Expect for the Future? Environ. Impact Assess. Rev. 2022, 96, 106815. [Google Scholar] [CrossRef]
- Abram, N.J.; Henley, B.J.; Gupta, A.S.; Lippmann, T.J.R.; Clarke, H.; Dowdy, A.J.; Sharples, J.J.; Nolan, R.H.; Zhang, T.; Wooster, M.J.; et al. Connections of Climate Change and Variability to Large and Extreme Forest Fires in Southeast Australia. Commun. Earth Environ. 2021, 2, 8. [Google Scholar] [CrossRef]
- Yuan, Q.; Wang, P.; Wang, X.; Hu, B.; Liu, S.; Ma, J. Abundant Microbial Communities Act as More Sensitive Bio-Indicators for Ecological Evaluation of Copper Mine Contamination than Rare Taxa in River Sediments. Environ. Pollut. 2022, 305, 119310. [Google Scholar] [CrossRef]
- Saad, D.; Chauke, P.; Cukrowska, E.; Richards, H.; Nikiema, J.; Chimuka, L.; Tutu, H. First Biomonitoring of Microplastic Pollution in the Vaal River Using Carp Fish (Cyprinus Carpio) “as a Bio-Indicator”. Sci. Total Environ. 2022, 836, 155623. [Google Scholar] [CrossRef]
- Warner, N.A.; Sagerup, K.; Kristoffersen, S.; Herzke, D.; Gabrielsen, G.W.; Jenssen, B.M. Snow Buntings (Plectrophenax Nivealis) as Bio-Indicators for Exposure Differences to Legacy and Emerging Persistent Organic Pollutants from the Arctic Terrestrial Environment on Svalbard. Sci. Total Environ. 2019, 667, 638–647. [Google Scholar] [CrossRef]
- Widhiono, I.; Pandhani, R.D.; Darsono; Riwidiharso, E.; Santoso, S.; Prayoga, L. Ant (Hymenoptera: Formicidae) Diversity as Bioindicator of Agroecosystem Health in Northern Slope of Mount Slamet, Central Java, Indonesia. Biodiversitas 2017, 18, 1475–1480. [Google Scholar] [CrossRef]
- Reyes-Novelo, E.; Melendez Ramirez, V.; Delfin Gonzalez, H.; Ayala, R. Wild bees (hymenoptera: Apoidea) as bioindicators in the neotropics. Trop. Subtrop. Agroecosyst. 2009, 10, 1–13. [Google Scholar]
- Aldgini, H.M.M.; Abdullah Al-Abbadi, A.; Abu-Nameh, E.S.M.; Alghazeer, R.O. Determination of Metals as Bio Indicators in Some Selected Bee Pollen Samples from Jordan. Saudi J. Biol. Sci. 2019, 26, 1418–1422. [Google Scholar] [CrossRef] [PubMed]
- Kalbande, D.M.; Dhadse, S.N.; Chaudhari, P.R.; Wate, S.R. Biomonitoring of Heavy Metals by Pollen in Urban Environment. Environ. Monit. Assess. 2008, 138, 233–238. [Google Scholar] [CrossRef] [PubMed]
- Bogdanov, S. Contaminants of Bee Products. Apidologie 2006, 37, 1–18. [Google Scholar] [CrossRef]
- Girotti, S.; Ghini, S.; Maiolini, E.; Bolelli, L.; Ferri, E.N. Trace Analysis of Pollutants by Use of Honeybees, Immunoassays, and Chemiluminescence Detection. Anal. Bioanal. Chem. 2013, 405, 555–571. [Google Scholar] [CrossRef]
- Girotti, S.; Ghini, S.; Ferri, E.; Bolelli, L.; Colombo, R.; Serra, G.; Porrini, C.; Sangiorgi, S. Bioindicators and Biomonitoring: Honeybees and Hive Products as Pollution Impact Assessment Tools for the Mediterranean Area. Euro-Mediterr. J. Environ. Integr. 2020, 5, 62. [Google Scholar] [CrossRef]
- Abou-Shaara, H.F.; Al-Ghamdi, A.A.; Mohamed, A.A. A Suitability Map for Keeping Honey Bees under Harsh Environmental Conditions Using Geographical Information System. World Appl. Sci. J. 2013, 22, 1099–1105. [Google Scholar] [CrossRef]
- Marnasidis, S.; Kantartzis, A.; Malesios, C.; Hatjina, F.; Arabatzis, G.; Verikouki, E. Mapping Priority Areas for Apiculture Development with the Use of Geographical Information Systems. Agriculture 2021, 11, 182. [Google Scholar] [CrossRef]
- De Vivo, B. Monitoraggio Geochimico-Ambientale Dei Suoli Della Regione Campania: Progetto Campania Trasparente; Aracne: Roma, Italy, 2021; ISBN 9788825540369. [Google Scholar]
- Villacreses, G.; Martínez-Gómez, J.; Jijón, D.; Cordovez, M. Geolocation of Photovoltaic Farms Using Geographic Information Systems (GIS) with Multiple-Criteria Decision-Making (MCDM) Methods: Case of the Ecuadorian Energy Regulation. Energy Rep. 2022, 8, 3526–3548. [Google Scholar] [CrossRef]
- Alkaradaghi, K.; Ali, S.S.; Al-Ansari, N.; Laue, J. Combining GIS Applications and Analytic Hierarchy Process Method for Landfill Siting in Sulaimaniyah, Iraq. In Recent Advances in Environmental Science from the Euro-Mediterranean and Surrounding Regions (2nd Edition) Proceedings of 2nd Euro-Mediterranean Conference for Environmental Integration (EMCEI-2), Tunisia 2019; Springer International Publishing: Berlin/Heidelberg, Germany, 2021; pp. 1811–1815. [Google Scholar]
- Gongora-Salazar, P.; Obadha, M.; Rocks, S.; Fahr, P.; Rivero-Arias, O.; Tsiachristas, A. The Use of Multi-Criteria Decision Analysis (MCDA) to Support Decision-Making in Healthcare: An Updated Systematic Literature Review. Value Health 2022, in press. [Google Scholar] [CrossRef]
- Ganji, K.; Gharechelou, S.; Ahmadi, A.; Johnson, B.A. Riverine Flood Vulnerability Assessment and Zoning Using Geospatial Data and MCDA Method in Aq’Qala. Int. J. Disaster Risk Reduct. 2022, 82, 103345. [Google Scholar] [CrossRef]
- Fernandes, A.C.P.; Terêncio, D.P.S.; Pacheco, F.A.L.; Fernandes, L.F.S. A Combined GIS-MCDA Approach to Prioritize Stream Water Quality Interventions, Based on the Contamination Risk and Intervention Complexity. Sci. Total Environ. 2021, 798, 149322. [Google Scholar] [CrossRef] [PubMed]
- Ustaoglu, E.; Sisman, S.; Aydınoglu, A.C. Determining Agricultural Suitable Land in Peri-Urban Geography Using GIS and Multi Criteria Decision Analysis (MCDA) Techniques. Ecol. Modell. 2021, 455, 109610. [Google Scholar] [CrossRef]
- Khazaee Fadafan, F.; Soffianian, A.; Pourmanafi, S.; Morgan, M. Assessing Ecotourism in a Mountainous Landscape Using GIS—MCDA Approaches. Appl. Geogr. 2022, 147, 102743. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, X.; Li, R.; Wang, X.; Cheng, J.; Yang, Q.; Kong, H. AHP-GIS and MaxEnt for Delineation of Potential Distribution of Arabica Coffee Plantation under Future Climate in Yunnan, China. Ecol. Indic. 2021, 132, 108339. [Google Scholar] [CrossRef]
- Kucuker, D.M.; Cedano Giraldo, D. Assessment of Soil Erosion Risk Using an Integrated Approach of GIS and Analytic Hierarchy Process (AHP) in Erzurum, Turkiye. Ecol. Inform. 2022, 71, 101788. [Google Scholar] [CrossRef]
- Zoccali, P.; Malacrinò, A.; Campolo, O.; Laudani, F.; Algeri, G.M.; Giunti, G.; Strano, C.P.; Benelli, G.; Palmeri, V. A Novel GIS-Based Approach to Assess Beekeeping Suitability of Mediterranean Lands. Saudi J. Biol. Sci. 2017, 24, 1045–1050. [Google Scholar] [CrossRef]
- Hasson, F.; Keeney, S.; McKenna, H. Research Guidelines for the Delphi Survey Technique. J. Adv. Nurs. 2000, 32, 1008–1015. [Google Scholar] [CrossRef]
- Chen, J.; Yang, S.; Li, H.; Zhang, B.; Lv, J. Research on Geographical Environment Unit Division Based on the Method of Natural Breaks (Jenks). In Proceedings of the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences—ISPRS Archives, Beijing, China, 5–6 December 2013; Volume 40, pp. 47–50. [Google Scholar]
- Saaty, T.L. Decision Making with the Analytic Hierarchy Process. Sci. Iran. 2002, 9, 215–229. [Google Scholar] [CrossRef]
- ARPAC—Direzione Tecnica UOC Reti di Monitoraggio e CEMEC Piano di Monitoraggio dei Fiumi Della Campania. 2017. Available online: https://www.arpacampania.it/documents/20182/bcfd4d25-db88-4781-a8b3-4d7d33130024?download=true&_jsfBridgeRedirect=true (accessed on 9 January 2023).
- Savenets, M.; Dvoretska, I.; Nadtochii, L.; Zhemera, N. Comparison of TROPOMI NO2, CO, HCHO, and SO2 Data against Ground-level Measurements in Close Proximity to Large Anthropogenic Emission Sources in the Example of Ukraine. Meteorol. Appl. 2022, 29, e2108. [Google Scholar] [CrossRef]
- Bodah, B.W.; Neckel, A.; Stolfo Maculan, L.; Milanes, C.B.; Korcelski, C.; Ramírez, O.; Mendez-Espinosa, J.F.; Bodah, E.T.; Oliveira, M.L.S. Sentinel-5P TROPOMI Satellite Application for NO2 and CO Studies Aiming at Environmental Valuation. J. Clean. Prod. 2022, 357, 131960. [Google Scholar] [CrossRef]
- Goovaerts, P. Geostatistics for Natural Reources Evaluation; Oxford University Press on Demand: Oxford, UK, 1997; ISBN 0195115384. [Google Scholar]
- Liu, F.; Zou, S.C.; Li, Q. Deriving Priorities from Pairwise Comparison Matrices with a Novel Consistency Index. Appl. Math. Comput. 2020, 374, 125059. [Google Scholar] [CrossRef]
- Brusseau, M.L.; Matthias, A.D.; Comrie, A.C.; Musil, S.A. Atmospheric Pollution. In Environmental and Pollution Science, 3rd ed.; Academic Press: Cambridge, MA, USA, 2019; pp. 293–309. [Google Scholar] [CrossRef]
Value | Definition | Explanation |
---|---|---|
1 | Equal importance | Two criteria contribute equally to an objective. |
3 | Moderate importance | The experience or judgment of a specialist slightly favors one variable over the other. |
5 | Strong importance | The experience or judgment of a specialist strongly favors one variable over the other. |
7 | Very strong or proven importance | One criterion is greatly favored over the other; the effect is demonstrable. |
9 | Extremely important | The evidence favors a criterion as highly as possible. |
2, 4, 6, 8 | Intermediate values between scale values (when a compromise is required). |
Land Use | Water Bodies | Soil Hazard | Air | |
---|---|---|---|---|
Land Use | 1 | 4 | 4 | 3 |
Water Bodies | 1/4 | 1 | 3 | 4 |
Soil Hazard | 1/4 | 1/3 | 1 | 1 |
Air | 1/3 | 1/4 | 1 | 1 |
Ecological | Ecological Score | Chemical | Chemical Score |
---|---|---|---|
Dry River/N.A. | 1 | Dry River/N.A. | 1 |
Excellent | 2 | Good | 5 |
Good | 4 | Bad | 10 |
Average | 6 | ||
Poor | 8 | ||
Very Poor | 10 |
Impact | Score | Description |
---|---|---|
Lowest | 1 | 3112—Woods with a prevalence of deciduous oaks (turkey oak and/or downy oak); 3113—Mixed woods mainly with mesophilous and mesothermophilous broad-leaved trees; 3115—Predominantly beech woods; 3122—Forests mainly of montane and oro-Mediterranean pines (black pine and larch, Scots pine, loricate pine); 3124—Woods with a prevalence of larch and/or stone pine; 3125—Woods and plantations predominantly of non-native conifers (Douglasia, insigne pine, white pine); 3131—Mixed woods with a prevalence of deciduous trees; 331—Beaches, dunes, sands; 332—Bare rocks; 333—Areas with sparse vegetation; 334—Areas covered by fires. |
Very low | 2 | 3212—Natural grassland with trees and shrubs; 3231—Sclerophyllous vegetation; 3232—Low scrub and garrigue; 324—Transitional woodland shrub; 3241—Young stands after cutting (and/or clear cuts). |
Low | 3 | 131—Mineral extraction sites; 3111—Woods with a prevalence of holm oak and/or cork oak; 3114—Predominantly chestnut woods; 3132—Mixed woods with a prevalence of conifers; 3211—Natural grassland prevailingly without trees and shrubs; 323—Sclerophyllous vegetation; 411—Inland marshes; 421—Salt marshes; 511—Water courses; 512—Water bodies; 521—Coastal lagoons; 523—Sea and ocean. |
Quite low | 4 | 3117—Woods and plantations mainly of non-native broad-leaved trees (robinia, eucalyptus, ailanthus, etc.); 3121—Woods mainly of Mediterranean pines (stone pine, maritime pine) and cypress trees. |
Medium | 5 | 241—Annual crops associated with permanent crops; 242—Complex cultivation patterns; 3116—Broad-leaved forests with a prevalence of hygrophilous species (forests with a prevalence of willows and/or poplars and/or alders, etc.). |
High | 6 | 141—Green urban areas; 224—Other permanent crops; 231—Pastures; 243—Land principally occupied by agriculture, with significant areas of natural vegetation. |
Quite high | 7 | 112—Discontinuous urban fabric; 123—Port areas; 124—Airports; 133—Construction sites; 142—Sport and leisure facilities; 244—Agro-forestry areas. |
Very high | 8 | 111—Continuous urban fabric; 221—Vineyards; 223—Olive groves. |
Highest | 9 | 121—Industrial or commercial units; 1211—Industrial areas; 122—Road and rail networks and associated land; 132—Dump sites; 2111—Arable land predominantly without dispersed (line and point) vegetation; 2112—Arable land with scattered (line and point) vegetation; 212—Permanently irrigated land; 222—Fruit trees and berry plantations. |
minimum | 0.0000814 | 0.0006046 | 0.0002453 | 0.0310240 |
maximum | 0.0001271 | 0.0048747 | 0.0006101 | 0.0515890 |
average | 0.0001042 | 0.0027396 | 0.0004277 | 0.0413065 |
N | 3 | 4 | 5 | 6 | 7 | 8 |
---|---|---|---|---|---|---|
RI | 0.58 | 0.9 | 1.12 | 1.24 | 1.32 | 1.41 |
Risk Level | Number of Apiaries |
---|---|
Lower risk | 18.5% |
Low risk | 36.8% |
Medium risk | 26.8% |
High risk | 14.0% |
Higher risk | 3.9% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Signorelli, D.; D’Auria, L.J.; Di Stasio, A.; Gallo, A.; Siciliano, A.; Esposito, M.; De Felice, A.; Rofrano, G. Application of a Quality-Specific Environmental Risk Index for the Location of Hives in Areas with Different Pollution Impacts. Agriculture 2023, 13, 998. https://doi.org/10.3390/agriculture13050998
Signorelli D, D’Auria LJ, Di Stasio A, Gallo A, Siciliano A, Esposito M, De Felice A, Rofrano G. Application of a Quality-Specific Environmental Risk Index for the Location of Hives in Areas with Different Pollution Impacts. Agriculture. 2023; 13(5):998. https://doi.org/10.3390/agriculture13050998
Chicago/Turabian StyleSignorelli, Daniel, Luigi Jacopo D’Auria, Antonio Di Stasio, Alfonso Gallo, Augusto Siciliano, Mauro Esposito, Alessandra De Felice, and Giuseppe Rofrano. 2023. "Application of a Quality-Specific Environmental Risk Index for the Location of Hives in Areas with Different Pollution Impacts" Agriculture 13, no. 5: 998. https://doi.org/10.3390/agriculture13050998
APA StyleSignorelli, D., D’Auria, L. J., Di Stasio, A., Gallo, A., Siciliano, A., Esposito, M., De Felice, A., & Rofrano, G. (2023). Application of a Quality-Specific Environmental Risk Index for the Location of Hives in Areas with Different Pollution Impacts. Agriculture, 13(5), 998. https://doi.org/10.3390/agriculture13050998