Evaluation of the Use of a Material with Struvite from a Wastewater Treatment Plant as N Fertilizer in Acid and Basic Agricultural Soils
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Laboratory Soil Incubations
- -
- S1: basic soil control samples; 50 g of S1 soil.
- -
- S2: acid soil control samples; 50 g of S2 soil.
- -
- S1 + St1_d1: a mixture of the basic soil (50 g of S1) and the uncontrolled material with struvite with half the N recommended for the fertilization of corn (1 g of St1).
- -
- S1 + St1_d2: a mixture of the basic soil (50 g of S1) and the uncontrolled material with struvite with the N recommended for the fertilization of corn (2 g of St1).
- -
- S2 + St1_d1: a mixture of the acid soil (50 g of S2) and the uncontrolled material with struvite with half the N recommended for the fertilization of corn (1 g of St1).
- -
- S2 + St1_d2: a mixture of the basic soil (50 g of S2) and the uncontrolled material with struvite with the N recommended for the fertilization of corn (2 g of St1).
- -
- S1 + St2_d1: a mixture of the basic soil (50 g of S1) and the controlled material with struvite with half the N recommended for the fertilization of corn (1 g of St2).
- -
- S1 + St2_d2: a mixture of the basic soil (50 g of S1) and the controlled material with struvite with the N recommended for the fertilization of corn (2 g of St2).
- -
- S2 + St2_d1: a mixture of the acid soil (50 g of S2) and the controlled material with struvite with half the N recommended for the fertilization of corn (1 g of St2).
- -
- S2 + St2_d2: a mixture of the basic soil (50 g of S2) and the controlled material with struvite with the N recommended for the fertilization of corn (2 g of St2).
2.3. Analysis of the Samples
3. Results and Discussion
3.1. pH and Electrical Conductivity Values
3.2. Ammonium and Nitrate Values
3.3. Carbonate Content Values
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gu, C.; Zhou, Q.; Cusick, R.D.; Margenot, A.J. Evaluating Agronomic Soil Phosphorus Tests for Soils Amended with Struvite. Geoderma 2021, 399, 115093. [Google Scholar] [CrossRef]
- Achilleos, P.; Roberts, K.R.; Williams, I.D. Struvite Precipitation within Wastewater Treatment: A Problem or a Circular Economy Opportunity? Heliyon 2022, 8, e09862. [Google Scholar] [CrossRef] [PubMed]
- Muhmood, A.; Lu, J.; Dong, R.; Wu, S. Formation of Struvite from Agricultural Wastewaters and Its Reuse on Farmlands: Status and Hindrances to Closing the Nutrient Loop. J. Environ. Manag. 2019, 230, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Spanoghe, J.; Grunert, O.; Wambacq, E.; Sakarika, M.; Papini, G.; Alloul, A.; Spiller, M.; Derycke, V.; Stragier, L.; Verstraete, H.; et al. Storage, Fertilization and Cost Properties Highlight the Potential of Dried Microbial Biomass as Organic Fertilizer. Microb. Biotechnol. 2020, 13, 1377–1389. [Google Scholar] [CrossRef]
- Robles-Aguilar, A.A.; Grunert, O.; Hernandez-Sanabria, E.; Mysara, M.; Meers, E.; Boon, N.; Jablonowski, N.D. Effect of Applying Struvite and Organic N as Recovered Fertilizers on the Rhizosphere Dynamics and Cultivation of Lupine (Lupinus Angustifolius). Front. Plant Sci. 2020, 11, 572741. [Google Scholar] [CrossRef]
- Muys, M.; Phukan, R.; Brader, G.; Samad, A.; Moretti, M.; Haiden, B.; Pluchon, S.; Roest, K.; Vlaeminck, S.E.; Spiller, M. A Systematic Comparison of Commercially Produced Struvite: Quantities, Qualities and Soil-Maize Phosphorus Availability. Sci. Total Environ. 2021, 756, 143726. [Google Scholar] [CrossRef]
- Arcas-Pilz, V.; Rufí-Salís, M.; Parada, F.; Petit-Boix, A.; Gabarrell, X.; Villalba, G. Recovered Phosphorus for a More Resilient Urban Agriculture: Assessment of the Fertilizer Potential of Struvite in Hydroponics. Sci. Total Environ. 2021, 799, 149424. [Google Scholar] [CrossRef]
- Ackerman, J.N.; Zvomuya, F.; Cicek, N.; Flaten, D. Evaluation of Manure-Derived Struvite as a Phosphorus Source for Canola. Can. J. Plant Sci. 2013, 93, 419–424. [Google Scholar] [CrossRef]
- González Ponce, R.; López-de-Sá, E.G.; Plaza, C. Lettuce Response to Phosphorus Fertilization with Struvite Recovered from Municipal Wastewater. HortScience 2009, 44, 426–430. [Google Scholar] [CrossRef]
- Bach, I.M.; Essich, L.; Bauerle, A.; Müller, T. Efficiency of Phosphorus Fertilizers Derived from Recycled Biogas Digestate as Applied to Maize and Ryegrass in Soils with Different PH. Agriculture 2022, 12, 325. [Google Scholar] [CrossRef]
- Carreras-Sempere, M.; Caceres, R.; Viñas, M.; Biel, C. Use of Recovered Struvite and Ammonium Nitrate in Fertigation in Tomato (Lycopersicum Esculentum) Production for Boosting Circular and Sustainable Horticulture. Agriculture 2021, 11, 1063. [Google Scholar] [CrossRef]
- Jama-Rodzeńska, A.; Chochura, P.; Gałka, B.; Szuba-Trznadel, A.; Svecnjak, Z.; Latkovic, D. Effect of Various Rates of p from Alternative and Traditional Sources on Butterhead Lettuce (Lactuca Sativa l.) Grown on Peat Substrate. Agriculture 2021, 11, 1279. [Google Scholar] [CrossRef]
- Johnston, A.E.; Richards, I.R. Effectiveness of Different Precipitated Phosphates as Phosphorus Sources for Plants. Soil Use Manag. 2003, 19, 45–49. [Google Scholar] [CrossRef]
- Gell, K.; De Ruijter, F.J.; Kuntke, P.; de Graaff, M.; Smit, A.L. Safety and Effectiveness of Struvite from Black Water and Urine as a Phosphorus Fertilizer. J. Agric. Sci. 2011, 3, 67–80. [Google Scholar] [CrossRef]
- Antonini, S.; Arias, M.A.; Eichert, T.; Clemens, J. Greenhouse Evaluation and Environmental Impact Assessment of Different Urine-Derived Struvite Fertilizers as Phosphorus Sources for Plants. Chemosphere 2012, 89, 1202–1210. [Google Scholar] [CrossRef]
- Liu, Y.H.; Rahman, M.M.; Kwag, J.H.; Kim, J.H.; Ra, C.S. Eco-Friendly Production of Maize Using Struvite Recovered from Swine Wastewater as a Sustainable Fertilizer Source. Asian-Australas. J. Anim. Sci. 2011, 24, 1699–1705. [Google Scholar] [CrossRef]
- Plaza, C.; Sanz, R.; Clemente, C.; Fernández, J.M.; González, R.; Polo, A.; Colmenarejo, M.F. Greenhouse Evaluation of Struvite and Sludges from Municipal Wastewater Treatment Works as Phosphorus Sources for Plants. J. Agric. Food Chem. 2007, 55, 8206–8212. [Google Scholar] [CrossRef]
- Nongqwenga, N.; Muchaonyerwa, P.; Hughes, J.; Odindo, A. Possible Use of Struvite as an Alternative Phosphate Fertilizer. J. Soil Sci. Plant Nutr. 2017, 17, 581–593. [Google Scholar] [CrossRef]
- Kern, J.; Heinzmann, B.; Markus, B.; Kaufmann, A.C.; Soethe, N.; Engels, C. Recycling and Assessment of Struvite Phosphorus from Sewage Sludge. Agric. Eng. Int. CIGR J. 2008, 10, 13. [Google Scholar]
- Li, B.; Boiarkina, I.; Yu, W.; Huang, H.M.; Munir, T.; Wang, G.Q.; Young, B.R. Phosphorous Recovery through Struvite Crystallization: Challenges for Future Design. Sci. Total Environ. 2019, 648, 1244–1256. [Google Scholar] [CrossRef]
- Bhuiyan, M.I.H.; Mavinic, D.S.; Beckie, R.D. A Solubility and Thermodynamic Study of Struvite. Environ. Technol. 2007, 28, 1015–1026. [Google Scholar] [CrossRef] [PubMed]
- Degryse, F.; Baird, R.; da Silva, R.C.; McLaughlin, M.J. Dissolution Rate and Agronomic Effectiveness of Struvite Fertilizers—Effect of Soil PH, Granulation and Base Excess. Plant Soil 2017, 410, 139–152. [Google Scholar] [CrossRef]
- Wang, L.; Ye, C.; Gao, B.; Wang, X.; Li, Y.; Ding, K.; Li, H.; Ren, K.; Chen, S.; Wang, W.; et al. Applying Struvite as a N-Fertilizer to Mitigate N2O Emissions in Agriculture: Feasibility and Mechanism. J. Environ. Manag. 2023, 330, 117143. [Google Scholar] [CrossRef]
- Halvorson, A.D.; Reule, C.A.; Follett, R.F. Nitrogen Fertilization Effects on Soil Carbon and Nitrogen in a Dryland Cropping System. Soil Sci. Soc. Am. J. 1999, 63, 912–917. [Google Scholar] [CrossRef]
- Cassman, K.G.; Dobermann, A.; Walters, D.T.; Yang, H. Meeting Cereal Demand While Protecting Natural Resources and Improving Environmental Quality. Annu. Rev. Environ. Resour. 2003, 28, 315–358. [Google Scholar] [CrossRef]
- Ma, R.; Zou, J.; Han, Z.; Yu, K.; Wu, S.; Li, Z.; Liu, S.; Niu, S.; Horwath, W.R.; Zhu-Barker, X. Global Soil-Derived Ammonia Emissions from Agricultural Nitrogen Fertilizer Application: A Refinement Based on Regional and Crop-Specific Emission Factors. Glob. Chang. Biol. 2021, 27, 855–867. [Google Scholar] [CrossRef]
- FAO-UNESCO. World Fertilizer Outlook and Trends to 2022, World Fertilizer Trends and Outlook to 2022; Food and Agriculture Organization of the United Nations: Rome, Italy, 2019. [Google Scholar]
- Zhang, X.; Guo, J.; Vogt, R.D.; Mulder, J.; Wang, Y.; Qian, C.; Wang, J.; Zhang, X. Soil Acidification as an Additional Driver to Organic Carbon Accumulation in Major Chinese Croplands. Geoderma 2020, 366, 114234. [Google Scholar] [CrossRef]
- Masclaux-Daubresse, C.; Daniel-Vedele, F.; Dechorgnat, J.; Chardon, F.; Gaufichon, L.; Suzuki, A. Nitrogen Uptake, Assimilation and Remobilization in Plants: Challenges for Sustainable and Productive Agriculture. Ann. Bot. 2010, 105, 1141–1157. [Google Scholar] [CrossRef]
- Pansu, M.; Gautheyrou, J. Handbook of Soil Analysis. Mineralogical, Organic and Inorganic Methods; Springer: Montpellier, France, 2006; ISBN 978-3-540-31211-6. [Google Scholar]
- Moore, M.; Reynolds, R.C. X-ray Diffraction and the Identification and Analysis of Clay Minerals, 2nd ed.; Oxford University Press: Oxford, UK, 1997. [Google Scholar]
- Sherrod, L.A.; Dunn, G.; Peterson, G.A.; Kolberg, R.L. Inorganic Carbon Analysis by Modified Pressure-Calcimeter Method. Soil Sci. Soc. Am. J. 2002, 66, 299–305. [Google Scholar] [CrossRef]
- Urbano Terrón, P. Aplicaciones Fitotécnicas; Ediciones Mundi-Prensa: Barcelona, Spain, 2000. [Google Scholar]
- Boukhalfa-Deraoui, N.; Hanifi-Mekliche, L.; Mihoub, A. Effect of Incubation Period of Phosphorus Fertilizer on Some Properties of Sandy Soil with Low Calcareous Content, Southern Algeria. Asian J. Agric. Res. 2015, 9, 123–131. [Google Scholar] [CrossRef]
- Jemila, C.; Bakiyathu Saliha, B.; Udayakumar, S. A Study on the Distribution of Inorganic P Fractions in Soils of Low and High Available Phosphorus through a Laboratory Incubation Experiment. Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 929–937. [Google Scholar] [CrossRef]
- Srinivasan, R.; Rao, K.J.; Reza, S.K.; Padua, S.; Dinesh, D.; Dharumarajan, S. Influence of Inorganic Fertilizers and Organic Amendments on Plant Nutrients and Soil Enzyme Activities under Incubation. Int. J. Bio-Resour. Stress Manag. 2016, 7, 924–932. [Google Scholar] [CrossRef]
- Warren, G.P.; Robinson, J.S.; Someus, E. Dissolution of Phosphorus from Animal Bone Char in 12 Soils. Nutr. Cycl. Agroecosyst. 2009, 84, 167–178. [Google Scholar] [CrossRef]
- Bolan, N.; Sarmah, A.K.; Bordoloi, S.; Bolan, S.; Padhye, L.P.; Van Zwieten, L.; Sooriyakumar, P.; Khan, B.A.; Ahmad, M.; Solaiman, Z.M.; et al. Soil Acidification and the Liming Potential of Biochar. Environ. Pollut. 2023, 317, 120632. [Google Scholar] [CrossRef] [PubMed]
- Hertzberger, A.J.; Cusick, R.D.; Margenot, A.J. A Review and Meta-Analysis of the Agricultural Potential of Struvite as a Phosphorus Fertilizer. Soil Sci. Soc. Am. J. 2020, 84, 653–671. [Google Scholar] [CrossRef]
- Raza, S.; Zamanian, K.; Ullah, S.; Kuzyakov, Y.; Virto, I.; Zhou, J. Inorganic Carbon Losses by Soil Acidification Jeopardize Global Efforts on Carbon Sequestration and Climate Change Mitigation. J. Clean. Prod. 2021, 315, 128036. [Google Scholar] [CrossRef]
- Porta Casanellas, J.; López-Acevedo Reguerín, M.; Poch Claret, R.M. Introducción a La Edafología Uso y Protección de Suelos, 2a ed.; Mundi-Prensa: Madrid, Spain, 2011; ISBN 978-84-8476-405-2. [Google Scholar]
- Hirsch, P.R.; Mauchline, T.H. The Importance of the Microbial N Cycle in Soil for Crop Plant Nutrition; Elsevier Ltd.: Amsterdam, The Netherlands, 2015; Volume 93, ISBN 978-0-12-802251-1. [Google Scholar]
- Bernhard, A. The Nitrogen Cycle: Processes, Players, and Human Impact. Nat. Educ. Knowl. 2010, 3, 25. [Google Scholar]
- European Commision. Final Report on Plant Protection (VII) and Fertilisers (V); European Commision: Brussels, Belgium, 2022.
- de Soto, I.S.; Zamanian, K.; Urmeneta, H.; Enrique, A.; Virto, I. 25 Years of Continuous Sewage Sludge Application vs. Mineral Fertilizers on a Calcareous Soil Affected PH but Not Soil Carbonates. Front. Soil Sci. 2022, 2, 1–10. [Google Scholar] [CrossRef]
- Sanderman, J. Can Management Induced Changes in the Carbonate System Drive Soil Carbon Sequestration? A Review with Particular Focus on Australia. Agric. Ecosyst. Environ. 2012, 155, 70–77. [Google Scholar] [CrossRef]
- Raza, S.; Miao, N.; Wang, P.; Ju, X.; Chen, Z.; Zhou, J.; Kuzyakov, Y. Dramatic Loss of Inorganic Carbon by Nitrogen-Induced Soil Acidification in Chinese Croplands. Glob. Chang. Biol. 2020, 26, 3738–3751. [Google Scholar] [CrossRef]
- Zamanian, K.; Zarebanadkouki, M.; Kuzyakov, Y. Nitrogen Fertilization Raises CO2 Efflux from Inorganic Carbon: A Global Assessment. Glob. Chang. Biol. 2018, 24, 2810–2817. [Google Scholar] [CrossRef] [PubMed]
- Liu, E.; Zhou, J.; Yang, X.; Jin, T.; Zhao, B.; Li, L.; Wen, Y.; Soldatova, E.; Zamanian, K.; Gopalakrishnan, S.; et al. Long-Term Organic Fertilizer-Induced Carbonate Neoformation Increases Carbon Sequestration in Soil. Environ. Chem. Lett. 2023, 21, 663–671. [Google Scholar] [CrossRef]
- Tao, J.; Raza, S.; Zhao, M.; Cui, J.; Wang, P.; Sui, Y.; Zamanian, K.; Kuzyakov, Y.; Xu, M.; Chen, Z.; et al. Vulnerability and Driving Factors of Soil Inorganic Carbon Stocks in Chinese Croplands. Sci. Total Environ. 2022, 825, 154087. [Google Scholar] [CrossRef] [PubMed]
Sample | pH | EC (dS/m) | N (%) | P (P2O5, %) | C (%) | |
---|---|---|---|---|---|---|
St1 | St1 | 8.02 | 0.72 | 5.20 | 28.3 | 0.25 |
St2 | St2 | 8.46 | 1.09 | 4.15 | 15 | 0.20 |
Sample | pH | EC (dS/m) | N (%) | P Olsen (mg/kg) | C (%) | CEC (cmol+/kg) |
---|---|---|---|---|---|---|
S1 | 8.21 | 0.21 | 0.26 | 87.7 | 5.2 | 24.4 |
S2 | 6.74 | 0.06 | 0.16 | 77.5 | 1.7 | 12.1 |
Sample | Sand (%) | Silt (%) | Clay (%) | Texture | CaCO3 (%) | Field Capacity (g/g) |
S1 | 31 | 40 | 29 | Clay Loam | 21.6 | 0.32 |
S2 | 32 | 52 | 16 | Silt Loam | 0 | 0.34 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Soto, I.S.; Itarte, M.; Virto, I.; López, A.; Gómez, J.; Enrique, A. Evaluation of the Use of a Material with Struvite from a Wastewater Treatment Plant as N Fertilizer in Acid and Basic Agricultural Soils. Agriculture 2023, 13, 999. https://doi.org/10.3390/agriculture13050999
de Soto IS, Itarte M, Virto I, López A, Gómez J, Enrique A. Evaluation of the Use of a Material with Struvite from a Wastewater Treatment Plant as N Fertilizer in Acid and Basic Agricultural Soils. Agriculture. 2023; 13(5):999. https://doi.org/10.3390/agriculture13050999
Chicago/Turabian Stylede Soto, Isabel S., Miguel Itarte, Iñigo Virto, Andrea López, Jairo Gómez, and Alberto Enrique. 2023. "Evaluation of the Use of a Material with Struvite from a Wastewater Treatment Plant as N Fertilizer in Acid and Basic Agricultural Soils" Agriculture 13, no. 5: 999. https://doi.org/10.3390/agriculture13050999
APA Stylede Soto, I. S., Itarte, M., Virto, I., López, A., Gómez, J., & Enrique, A. (2023). Evaluation of the Use of a Material with Struvite from a Wastewater Treatment Plant as N Fertilizer in Acid and Basic Agricultural Soils. Agriculture, 13(5), 999. https://doi.org/10.3390/agriculture13050999