Study on the Mechanism of Motion Interaction between Soil and a Bionic Hole-Forming Device
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experiment Material
2.2. Soil Particle Size Distribution
2.3. Soil Moisture Content and Density
2.4. Soil Firmness
2.5. Soil Stacking Angle
2.6. Discrete Element Contact Model of Soil
2.7. Stacking Angle Test
2.8. Design of Novel Bionic Hole-Forming Device
2.9. Interaction Model between Hole-Forming Device and Soil
3. Results and Discussion
3.1. Stacking Angle Test
3.2. Hole-Forming Test
4. Conclusions
- (1)
- The moisture content of the soil in the cotton field during the appropriate sowing period was 14.46%, the density was 1.37 g/cm3, and the bulk density was 1547.7 Pa. Gravel (particle diameter ˃ 1–2 mm); sand (particle diameter 0.075–1 mm); and silt (particle diameter < 0.075 mm) accounted for 34.78%, 52.12%, and 13.1%, respectively, of the particle size distribution of the soil. The natural rest angle of the soil was 39.34°.
- (2)
- Based on physical experiments and simulation experiments, the combined Hertz–Mindlin and JKR contact model was used to establish a second-order regression model for the soil accumulation angle and soil contact parameters through optimized experimental methods. The target optimization was based on the measured soil accumulation angle of 39.37°. The optimal solution was obtained when the static friction coefficient between soil and soil was 0.49, the dynamic friction coefficient between soil and soil was 0.26, the static friction coefficient between soil and steel was 0.46, and the surface energy of JKR was 0.14 J/m2.
- (3)
- A bionic hole-forming device was designed based on bionic technology using the oriental mole cricket as a prototype. A discrete element method (DEM) and multi-body dynamics (MBD) coupled algorithm was used to establish a discrete element simulation model of the hole-forming device and soil. A hole-formation experiment was carried out using an EDEM–Recurdyn joint simulation. The interaction between different structural forms of the hole-forming device and soil during the hole-formation process was analyzed. The simulation results showed that the disturbance of the soil caused by the bionic hole-forming device was small, and it did not cause soil ridges to form. Moreover, the soil resistance of the hole-forming device was the smallest, at 7.51 N.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, L.; He, X.W.; Hu, C.; Guo, W.S.; Wang, X.F.; Xing, J.F. Measurement of physical parameters of coated cotton seed and parameter calibration of discrete element. Chin. Agric. Univ. 2022, 27, 71–82. [Google Scholar]
- Wang, J.K.; Guo, K.Q.; Lu, X.M.; Fu, W.; Qi, C.S. Experiment and improvement on clamping cotton precision seeding dibbler. Chin. Soc. Agric. Mach. 2011, 42, 43–47. [Google Scholar]
- Aikins, K.A.; Ucgul, M.; Barr, J.B.; Awuah, E.; Antille, D.L.; Jensen, T.A.; Desbiolles, J.M.A. Review of discrete element method simulations of soil tillage and furrow opening. Agriculture 2023, 13, 541. [Google Scholar] [CrossRef]
- Sun, J.B.; Liu, Q.; Yang, F.Z.; Liu, Z.J.; Wang, Z. Calibration of discrete element simulation parameters of sloping soilon loess plateau and its interaction with rotary tillage components. Chin. Soc. Agric. Mach. 2022, 53, 63–73. [Google Scholar]
- Song, Z.H.; Li, H.; Yan, Y.F.; Tian, F.Y.; Li, Y.D.; Li, F.D. Calibration method of contact characteristic parameters of soil in mulberry field based on unequal-diameter particles dem theory. Chin. Soc. Agric. Mach. 2022, 53, 21–33. [Google Scholar]
- Zeng, Z.W.; Ma, X.; Cao, X.L.; Li, Z.H.; Wang, X.C. Critical review of applications of discrete element method in agricultural engineering. Chin. Soc. Agric. Mach. 2021, 52, 1–20. [Google Scholar]
- Dong, X.Q.; Su, C.; Zheng, H.N.; Han, R.Q.; Li, Y.L.; Wan, L.P.C.; Song, J.N.; Wang, J.C. Analysis of soil disturbance process by vibrating subsoiling based on DEM-MBD coupling algorithm. Trans. Chin. Soc. Agric. Eng. 2022, 38, 34–43. [Google Scholar]
- Makange, N.R.; Ji, C.Y.; Torotwa, I. Prediction of cutting forces and soil behavior with discrete element simulation. Comput. Electron. Agric. 2020, 179, 105848. [Google Scholar] [CrossRef]
- Song, S.L.; Tang, Z.H.; Zheng, X.; Liu, J.B.; Meng, X.J.; Liang, Y.C. Calibration of the discrete element parameters for the soil model of cotton field after plowing in Xinjiang of China. Trans. Chin. Soc. Agric. Eng. 2021, 37, 63–70. [Google Scholar]
- Wang, X.L.; Zhong, X.K.; Geng, Y.L.; Wei, Z.C.; Hu, H.; Geng, D.Y.; Zhang, X.C. Construction and parameter calibration of the nonlinear elastoplastic discrete element model for no-tillage soil compaction. Trans. Chin. Soc. Agric. Eng. 2021, 37, 100–107. [Google Scholar]
- Zhao, H.B.; Huang, Y.X.; Liu, Z.D.; Liu, W.Z.; Zheng, Z.D. Applications of discrete element method in the research of agricultural machinery: A review. Agriculture 2021, 11, 425. [Google Scholar] [CrossRef]
- Ucgul, M. Simulating soil-disc plough interaction using discrete element method-multi-body dynamic coupling. Agriculture 2023, 13, 305. [Google Scholar] [CrossRef]
- Sadek, M.A.; Chen, Y.; Zeng, Z. Draft force prediction for a high-speed disc implement using discrete element modelling. Biosyst. Eng. 2021, 202, 133–141. [Google Scholar] [CrossRef]
- Asaf, Z.; Rubinstein, D.; Shmulevich, I. Determination of discrete element model parameters required for soil tillage. Soil Tillage Res. 2007, 92, 227–242. [Google Scholar] [CrossRef]
- Aikins, K.A.; Ucgul, M.; Barr, J.B.; Jensen, T.A.; Antille, D.L.; Desbiolles, J.M.A. Determination of discrete element model parameters for a cohesive soil and validation through narrow point opener performance analysis. Soil Tillage Res. 2021, 213, 105123. [Google Scholar] [CrossRef]
- Ucgul, M.; Saunders, C. Simulation of tillage forces and furrow profile during soil-mouldboard plough interaction using discrete element modelling. Biosyst. Eng. 2020, 190, 58–70. [Google Scholar] [CrossRef]
- Milkevych, V.; Munkholm, L.J.; Chen, Y.; Nyord, T. Modelling approach for soil displacement in tillage using discrete element method. Soil Tillage Res. 2018, 183, 60–71. [Google Scholar] [CrossRef]
- Shaikh, S.A.; Li, Y.M.; Ma, Z.; Chandio, F.A.; Tunio, M.H.; Liang, Z.W.; Solangi, K.A. Discrete element method (DEM) simulation of single grouser shoe-soil interaction at varied moisture contents. Comput. Electron. Agric. 2021, 191, 106538. [Google Scholar] [CrossRef]
- Xiang, W.; Wu, M.L.; Lü, J.N.; Quan, W.; Ma, L.; Liu, J.J. Calibration of simulation physical parameters of clay loam based on soil accumulation test. Trans. Chin. Soc. Agric. Eng. 2019, 35, 116–123. [Google Scholar]
- Ma, S.; Xu, L.M.; Yuan, Q.C.; Niu, C.; Zeng, J.; Chen, C.; Wang, S.S.; Yuan, X.T. Calibration of discrete element simulation parameters of grapevine antifreezing soil and its interaction with soil-cleaning components. Trans. Chin. Soc. Agric. Eng. 2020, 36, 40–49. [Google Scholar]
- Zhang, C.; Fan, X.H.; Li, M.S.; Li, G.; Zhao, C.K.; Sun, W.L. Simulation analysis and experiment of soil disturbance by chiesel plow based on edem. Chin. Soc. Agric. Mach. 2022, 53, 52–59. [Google Scholar]
- Ucgul, M.; Fielke, J.M.; Saunders, C. Three-dimensional discrete element modelling of tillage: Determination of a suitable contact model and parameters for a cohesionless soil. Biosyst. Eng. 2014, 121, 105–117. [Google Scholar] [CrossRef]
- Hossein, R.K.; Mahmood, M.E.; Hadi, A.N. Simulation of Draught Force During Chisel Ploughing Using Discrete Element Method. J. Biosyst. Eng. 2022, 47, 152–166. [Google Scholar]
- Zheng, K.; He, J.; Li, H.W.; Diao, P.S.; Wang, Q.J.; Zhao, H.B. Research on polyline soil-breaking blade subsoiler based on subsoiling soil model using discrete element method. Chin. Soc. Agric. Mach. 2016, 47, 62–72. [Google Scholar]
- Wang, X.L.; Hu, H.; Wang, Q.J.; Li, H.W.; He, J.; Chen, W.Z. Calibration method of soil contact characteristic parameters based on DEM theory. Chin. Soc. Agric. Mach. 2017, 48, 78–85. [Google Scholar]
- Wang, X.; Zhang, S.; Pan, H.; Zheng, Z.; Huang, Y.; Zhu, R. Effect of soil particle size on soil-subsoiler interactions using the discrete element method simulations. Biosyst. Eng. 2019, 182, 138–150. [Google Scholar] [CrossRef]
- Du, J.; Heng, Y.; Zheng, K.; Luo, C.; Zhu, Y.; Zhang, J.; Xia, J. Investigation of the burial and mixing performance of a rotary tiller using discrete element method. Soil Tillage Res. 2022, 220, 105349. [Google Scholar] [CrossRef]
- Qiu, Y.Q.; Guo, Z.J.; Jin, X.; Zhang, P.G.; Si, S.J.; Guo, F.G. Calibration and verification test of cinnamon soil simulation parameters based on discrete element method. Agriculture 2022, 12, 1082. [Google Scholar] [CrossRef]
- Xiao, M.H.; Wang, K.X.; Yang, W.; Wang, W.C.; Jiang, F. Design and experiment of bionic rotary blade based on claw toe of cryllotalpa orientalis burmeister. Chin. Soc. Agric. Mach. 2021, 52, 55–63. [Google Scholar]
- Zou, X.X.; Liao, Y.L.; Ma, Q.F.; Liu, S.H.; Zhu, D.Y. Bionic design and finite element analysis for digging shovel of cassava harvester. Sci. Technol. Eng. 2013, 13, 122–128. [Google Scholar]
Samples | Particle Size Ratio of Soil (%) | ||
---|---|---|---|
Gravel (>1 mm) | Sand (0.075–1 mm) | Silt (<0.075 mm) | |
1 | 34.12 | 52.26 | 13.62 |
2 | 35.24 | 51.67 | 13.09 |
3 | 34.98 | 52.43 | 12.59 |
Average | 34.78 | 52.12 | 13.10 |
No. | Stacking Angle of Soil (°) | |||||
---|---|---|---|---|---|---|
Orientation 1 | Orientation 2 | Orientation 3 | Orientation 4 | Average | Total Average | |
1 | 39.30 | 38.25 | 37.60 | 40.55 | 38.93 | 39.34 |
2 | 39.25 | 42.60 | 40.50 | 37.45 | 39.95 | |
3 | 38.60 | 39.45 | 41.85 | 36.70 | 39.15 |
Symbol | Parameter | Parameter Level | ||
---|---|---|---|---|
−1 | 0 | 1 | ||
X1 | Soil-to-soil collision restoration coefficient | 0.2 | 0.4 | 0.6 |
X2 | Soil-to-soil static friction coefficient | 0.2 | 0.4 | 0.6 |
X3 | Soil-to-soil dynamic friction coefficient | 0.05 | 0.2 | 0.35 |
X4 | Soil-to-steel collision restoration coefficient | 0.3 | 0.5 | 0.7 |
X5 | Soil-to-steel static friction coefficient | 0.2 | 0.4 | 0.6 |
X6 | Soil-to-steel dynamic friction coefficient | 0.05 | 0.15 | 0.25 |
X7 | JKR surface energy (J/m2) | 0.05 | 0.25 | 0.35 |
X8–X11 | Virtual parameters |
No. | X1 | X2 | X3 | X4 | X5 | X6 | X7 | X8 | X9 | X10 | X11 | Stacking Angle of Soil (°) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 1 | 1 | −1 | 1 | 1 | 1 | −1 | −1 | −1 | 1 | −1 | 28.57 |
2 | −1 | 1 | 1 | −1 | 1 | 1 | 1 | −1 | −1 | −1 | 1 | 51.90 |
3 | 1 | −1 | 1 | 1 | −1 | 1 | 1 | 1 | −1 | −1 | −1 | 50.16 |
4 | −1 | 1 | −1 | 1 | 1 | −1 | 1 | 1 | 1 | −1 | −1 | 45.32 |
5 | −1 | −1 | 1 | −1 | 1 | 1 | −1 | 1 | 1 | 1 | −1 | 37.19 |
6 | −1 | −1 | −1 | 1 | −1 | 1 | 1 | −1 | 1 | 1 | 1 | 42.74 |
7 | 1 | −1 | −1 | −1 | 1 | −1 | 1 | 1 | −1 | 1 | 1 | 49.88 |
8 | 1 | 1 | −1 | −1 | −1 | 1 | −1 | 1 | 1 | −1 | 1 | 23.18 |
9 | 1 | 1 | 1 | −1 | −1 | −1 | 1 | −1 | 1 | 1 | −1 | 45.17 |
10 | −1 | 1 | 1 | 1 | −1 | −1 | −1 | 1 | −1 | 1 | 1 | 26.42 |
11 | 1 | −1 | 1 | 1 | 1 | −1 | −1 | −1 | 1 | −1 | 1 | 40.51 |
12 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | 24.43 |
Parameter | Degrees of Freedom | Mean Square Sum | F-Value | p-Value | Significance |
---|---|---|---|---|---|
X1 | 1 | 7.47 | 6.66 | 0.0613 | |
X2 | 1 | 49.41 | 44.02 | 0.0027 | ** |
X3 | 1 | 115.51 | 102.91 | 0.0005 | ** |
X4 | 1 | 0.3234 | 0.2881 | 0.6199 | |
X5 | 1 | 141.93 | 126.45 | 0.0004 | ** |
X6 | 1 | 0.3367 | 0.3000 | 0.6130 | |
X7 | 1 | 916.48 | 816.51 | <0.0001 | ** |
Code | X2 | X3 | X5 | X7 |
---|---|---|---|---|
−2 | 0.2 | 0.05 | 0.2 | 0.05 |
−1 | 0.3 | 0.125 | 0.3 | 0.125 |
0 | 0.4 | 0.20 | 0.4 | 0.20 |
1 | 0.5 | 0.275 | 0.5 | 0.275 |
2 | 0.6 | 0.35 | 0.6 | 0.35 |
No. | X2 | X3 | X5 | X7 | Stacking Angle of Soil (°) |
---|---|---|---|---|---|
1 | −1 | −1 | 1 | 1 | 45.09 |
2 | 0 | 0 | 2 | 0 | 43.30 |
3 | 1 | 1 | 1 | 1 | 44.73 |
4 | 0 | 2 | 0 | 0 | 43.75 |
5 | 0 | 0 | 0 | 0 | 40.99 |
6 | 1 | 1 | 1 | −1 | 40.47 |
7 | 0 | 0 | 0 | 0 | 41.91 |
8 | 0 | 0 | 0 | 0 | 41.88 |
9 | −1 | −1 | −1 | −1 | 36.09 |
10 | 0 | −2 | 0 | 0 | 38.60 |
11 | −1 | 1 | 1 | 1 | 47.94 |
12 | 0 | 0 | 0 | 0 | 42.41 |
13 | 0 | 0 | 0 | 0 | 41.66 |
14 | −1 | 1 | −1 | −1 | 38.59 |
15 | 2 | 0 | 0 | 0 | 38.00 |
16 | 0 | 0 | 0 | −2 | 34.61 |
17 | 1 | 1 | −1 | 1 | 43.64 |
18 | 1 | 1 | −1 | −1 | 35.24 |
19 | 0 | 0 | 0 | 2 | 49.71 |
20 | −2 | 0 | 0 | 0 | 44.52 |
21 | 1 | −1 | 1 | −1 | 36.48 |
22 | 0 | 0 | −2 | 0 | 34.04 |
23 | −1 | 1 | 1 | −1 | 40.18 |
24 | 1 | −1 | 1 | 1 | 44.57 |
25 | 1 | −1 | −1 | −1 | 35.17 |
26 | −1 | −1 | −1 | 1 | 44.56 |
27 | −1 | 1 | −1 | 1 | 43.04 |
28 | 1 | −1 | −1 | 1 | 44.04 |
29 | 0 | 0 | 0 | 0 | 43.89 |
30 | −1 | −1 | 1 | −1 | 38.05 |
Source of Variance | Sum of Squares | Degrees of Freedom | Mean Square Sum | F-Value | p-Value | Significance |
---|---|---|---|---|---|---|
Model | 438.2817 | 14 | 31.3058 | 16.0279 | <0.0001 | ** |
X2 | 20.6091 | 1 | 20.6091 | 10.5514 | 0.0054 | ** |
X3 | 16.8002 | 1 | 16.8003 | 8.6014 | 0.0103 | * |
X5 | 52.9848 | 1 | 52.9848 | 27.1271 | 0.0001 | ** |
X7 | 319.3022 | 1 | 319.3022 | 163.4758 | <0.0001 | ** |
X2X3 | 0.2862 | 1 | 0.2862 | 0.1465 | 0.7072 | |
X2X5 | 0.0420 | 1 | 0.0420 | 0.0215 | 0.8853 | |
X2X7 | 0.2256 | 1 | 0.2256 | 0.1155 | 0.7387 | |
X3X5 | 4.4944 | 1 | 4.4944 | 2.3010 | 0.1501 | |
X3X7 | 3.61 | 1 | 3.61 | 1.8482 | 0.1941 | |
X5X7 | 0.5776 | 1 | 0.5776 | 0.2957 | 0.5946 | |
X22 | 0.7524 | 1 | 0.7524 | 0.3852 | 0.5441 | |
X32 | 0.9579 | 1 | 0.9579 | 0.4904 | 0.4945 | |
X52 | 18.1350 | 1 | 18.1350 | 9.2847 | 0.0082 | ** |
X72 | 0.0967 | 1 | 0.0967 | 0.0495 | 0.8269 | |
Residual | 29.2981 | 15 | 1.9532 | |||
Lack of fit | 24.4910 | 10 | 2.4491 | 2.5474 | 0.1569 | |
Pure error | 4.8071 | 5 | 0.9614 | |||
Cor total | 467.5798167 | 29 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Xing, J.; He, X.; Li, X.; Guo, W.; Wang, X.; Hou, S. Study on the Mechanism of Motion Interaction between Soil and a Bionic Hole-Forming Device. Agriculture 2023, 13, 1421. https://doi.org/10.3390/agriculture13071421
Wang L, Xing J, He X, Li X, Guo W, Wang X, Hou S. Study on the Mechanism of Motion Interaction between Soil and a Bionic Hole-Forming Device. Agriculture. 2023; 13(7):1421. https://doi.org/10.3390/agriculture13071421
Chicago/Turabian StyleWang, Long, Jianfei Xing, Xiaowei He, Xin Li, Wensong Guo, Xufeng Wang, and Shulin Hou. 2023. "Study on the Mechanism of Motion Interaction between Soil and a Bionic Hole-Forming Device" Agriculture 13, no. 7: 1421. https://doi.org/10.3390/agriculture13071421
APA StyleWang, L., Xing, J., He, X., Li, X., Guo, W., Wang, X., & Hou, S. (2023). Study on the Mechanism of Motion Interaction between Soil and a Bionic Hole-Forming Device. Agriculture, 13(7), 1421. https://doi.org/10.3390/agriculture13071421